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MIP INTERNATIONAL 2024 MIP WORKSHOP

MIP International 2024 was the inaugural international edition of the workshop
since its inception in 2003. The workshop was hosted by IIT Bombay, India
from December 2 through December 6, 2024. The workshop brought together
the global MIP community at IITB. In particular, participants traveled from
15 different countries covering all but one continent. With poster sessions for
students and insightful talks by leading experts in the area, it was an enriching
experience for the students in particular, and everyone involved at large. In the
poster competition, Prachi Shah’s work on "Improving Strong-Branching With
Additional Information" was awarded the best poster award, with honorable
mentions of Akul Bansal and Shreyas Bhowmik’s work. Recordings of the talks
are available on the MIPS Youtube channel.

THE 2025 MIP WORKSHOP

Registration is open for the 2025 Mixed Integer Programming Workshop and
Summer School, which will be held June 2—6, 2025 at the University of Min-
nesota. This will be the twenty-second edition of the series, returning to Min-
neapolis twenty years after the second MIP workshop. MIP 2025 will continue
many of the essential traditions that have made this annual workshop a gathering
place for the community, and we invite you to join us and participate in

e a single track of 19 invited experts across theoretical, computational, and
applied aspects of integer programming and discrete optimization.

* a poster session, including a competition among selected student finalists for
the best poster award, held jointly with a welcome reception.

e a computational competition on "Primal Heuristics for MIQCQP".
* a summer school with three invited speakers.
* asession of contributed "flash" talks.

Also, please note that the annual business meeting of the Mixed Integer Pro-
gramming Society (MIPS) will be held in a hybrid format this year. If you
would like to attend via Zoom, then please use the following login information:

Topic: MIPS Business Meeting at MIP 2025

Time: Jun 5, 2025 16:15 Central Time (US and Canada)
Meeting ID: 931 8366 2178

Passcode: MIP

If you have any questions, please email Aleksandr Kazachkov at
akazachkov@ufl.edu. We hope to see you in Minneapolis!

Program Committee: Sophie Huiberts, Aleksandr Kazachkov, Sebastian Perez-
Salazar, Christian Tjandraatmadja, Yiling Zhang

Local Committee: Jean-Philippe Richard, Saumya Sinha, Yiling Zhang
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MIP EUROPEAN WORKSHOP 2025

The MIP International Workshop Series is coming to Europe. On July 1-3, 2025
we will meet for a three-day workshop in Clermont-Ferrand, France. This will
be a single-track workshop with invited talks and a poster session.

Registration is open until June 1, 2025, on the website. Student travel support is
available in the form of free accommodation.

Organizing Committee: Rafael Colares, Renaud Chicoisne, Sophie Huiberts Pro-
gram Committee: Mathieu Besancon, Alexander Black, Claudia D’ Ambrosio,
Christopher Hojny, Sophie Huiberts

MIP SOUTH AMERICA 2025

We are excited to announce the Mixed Integer Programming Workshop South
America, which will take place December 9 - 12, 2025, at Universidad Adolfo
Ibafiez in Vifia del Mar, Chile. MIP South America is part of the MIP Interna-
tional Workshop series, which is held in addition to the classical MIP Workshop.
This will be the first time a MIP event is held in South American exciting
milestone for the community!

The workshop will follow the traditional MIP single-track format of invited
talks that showcase the latest advances in integer programming and discrete opti-
mization. The speaker lineup will feature prominent researchers from academia
and industry across a wide range of fields and career stages. The program will
also include a poster session, which is currently open for submissions.

For the full list of speakers, poster submission form, and more information, visit
the website. We look forward to seeing you in Chile!

Program Committee: Victor Bucarey, Margarida Carvalho, Andrés Gomez,
Javier Marenco, Gonzalo Muiioz, Eduardo Uchoa

Local Committee: Victor Bucarey, Rodolfo Carvajal, Gonzalo Mufioz

WELCOME NEW MEMBERS OF COMIPS

The Committee Mixed Integer Programming Society (COMIPS) is the govern-
ing board of the Mixed Integer Programming Society. The duties of COMIPS
include ensuring the continuity of the MIP Workshop, approving the new MIP
organizing committee, and auditing its financial reports.

COMIPS consists of three elected officials plus the chairs of the last two MIP
organizing committees. The MIP 2024 and 2025 chairs are Joseph Paat (Uni-
versity of British Columbia, Canada) and Aleksandr Kazachkov (University of
Florida, USA), respectively. In March 2025, elections were held for the remain-
ing three COMIPS positions. Congratulations to the following individuals, who
will be joining Aleks and Joseph on COMIPS:

* Silvia Di Gregorio (Université Sorbonne Paris Nord, France)
 Christopher Hojny (Eindhoven University of Technology, Netherlands)
* Weijun Xie (Georgia Institute of Technology, USA)

Thank you to Silvia, Christopher, and Weijun for willing to serve on COMIPS!
We would also like to thank current COMIPS members — Akshay Gupte, Gon-
zalo Muiioz, and Stefan Weltge — whose tenure on COMIPS ends in 2025. We
appreciate all of the effort you have made to help MIPS grow!

DISCRETE OPTIMIZATION TALKS (DOTS)

The Mixed Integer Programming Society supports Discrete Optimization Talks
(DOTs), a virtual seminar series on all aspects of integer and combinatorial
optimization. A typical DOTs session features two half-hour talks followed
by breakout rooms to facilitate small-group interactions. Thank you to all the
speakers and participants of DOTs this season. We are excited to be updating
the organizational team later this year. Stay tuned!

To receive updates about upcoming DOTs, please join the mailing list. Past
talks and more information can be found on our website. If you are interested
in giving a DOT, please submit a proposal. We look forward to seeing you!
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NEW BOOKS ON MIP TOPICS

Recently, members of the discrete optimization community have written new
books covering a variety of topics. Here, we summarize some of these books
and highlight some of the content. All of these were published by Cambridge
University Press.

These summaries were collected by Akshay Gupte.
1. Title: Convexity and its applications in discrete and continuous optimization
Author: Amitabh Basu

Using a pedagogical, unified approach, this book presents both the analytic
and combinatorial aspects of convexity and its applications in optimization.
On the structural side, this is done via an exposition of classical convex anal-
ysis and geometry, along with polyhedral theory and geometry of numbers.
On the algorithmic/optimization side, this is done by the first ever exposition
of the theory of general mixed-integer convex optimization in a textbook
setting. Classical continuous convex optimization and pure integer convex
optimization are presented as special cases, without compromising on the
depth of either of these areas. For this purpose, several new developments
from the past decade are presented for the first time outside technical re-
search articles: discrete Helly numbers, new insights into sublinear functions,
and best known bounds on the information and algorithmic complexity of
mixed-integer convex optimization. Pedagogical explanations and more than
300 exercises make this book ideal for students and researchers.

This book

* Introduces both the analytic and combinatorial aspects of convexity in
a unified setting, treating the completely continuous and purely discrete
settings as special cases without compromising on the depth of either one.

* Presents easy-to-follow, pedagogical exposition of recent developments in
convex analysis and mixed-integer convex optimization, including discrete
Helly numbers, new insights into sublinear functions, and best known
bounds on the information and algorithmic complexity of mixed-integer
convex optimization.

* Includes more than 300 exercises that reinforce conceptual understanding
and improve technical skills in structural and algorithmic arguments.

2. Title: Primal heuristics in integer programming
Authors: Timo Berthold, Andrea Lodi, Domenico Salvagnin

Primal heuristics guarantee that feasible, high-quality solutions are provided
at an early stage of the solving process, and thus are essential to the success
of mixed-integer programming (MIP). By helping prove optimality faster,
they allow MIP technology to extend to a wide variety of applications in
discrete optimization. This first comprehensive guide to the development
and use of primal heuristics within MIP technology and solvers is ideal
for computational mathematics graduate students and industry practitioners.
Through a unified viewpoint, it gives a unique perspective on how state-of-
the-art results are integrated within the branch-and-bound approach at the
core of the MIP technology. It accomplishes this by highlighting all the
required knowledge needed to push the heuristic side of MIP solvers to their
limit and pointing out what is left to do to improve them, thus presenting
heuristic approaches for MIP as part of the MIP solving process.

This book

* Presents heuristic approaches as part of the MIP solving process, help-
ing readers build a cohesive understanding of how primal heuristics
interact with the MIP solution scheme

* Tackles practical concerns by examining trade-offs between efficiently
providing feasible solutions and assuring high quality

* Shows how published results are integrated within the branch-and-
bound approach at the core of MIP technology

3. Title: Approximation algorithms for traveling salesman problems
Authors: Vera Traub and Jens Vygen

The Traveling Salesman Problem (TSP) is a central topic in discrete math-
ematics and theoretical computer science. It has been one of the driving
forces in combinatorial optimization. The design and analysis of better and
better approximation algorithms for the TSP has proved challenging but
very fruitful. This is the first book on approximation algorithms for the TSP,
featuring a comprehensive collection of all major results and an overview
of the most intriguing open problems. Many of the presented results have
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been discovered only recently, and some are published here for the first time,
including better approximation algorithms for the asymmetric TSP and its
path version. This book constitutes and advances the state of the art and
makes it accessible to a wider audience. Featuring detailed proofs, over
170 exercises, and 100 color figures, this book is an excellent resource for
teaching, self-study, and further research.

This book

» Serves as a self-contained resource on approximation algorithms for
the Traveling Salesman Problem, covering all major results and putting
recent developments into context

 Serves as a starting point for future research with several of the authors’
previously unpublished results

* Guides students and self-learners through the field through pedagogical
explanations, detailed proofs, and many exercises and color figures.

AN INVITATION TO SUBMIT TO INFORMS JOUR-
NAL ON OPTIMIZATION

by Oktay Giinliik

Dear fellow optimizers,

The INFORMS Journal on Optimization (IJOO) has recently broadened its
focus to welcome papers from all aspects of mathematical optimization, includ-
ing theory, algorithms, software, computation, and the connections between
these areas. The journal also invites submissions that explore significant and
novel applications of optimization. We encourage contributions at the inter-
section of optimization and machine learning, particularly those relevant to
decision-making.

1JOO welcomes papers that have appeared previously in conference proceed-
ings, provided they meet the journal’s standards. We also invite proposals for
special issues on topics of current interest to the optimization community; each
special issue will be managed by one or more guest editors.

On behalf of the editorial board of IJOO, we look forward to your contributions!

The current editorial board includes Guzin Bayraksan (Ohio State), Frank E.
Curtis (Lehigh), Sanjeeb Dash (IBM Research), Oktay Gunluk (Georgia Tech),
Giacomo Nannicini (USC), Courtney Paquette (McGill), Mohit Singh (Georgia
Tech), and Nick Sahinidis (Georgia Tech).

Oktay Giinliik, Editor-in-Chief
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The ACOPF Problem - try it if you dare'
by Daniel Bienstock (Columbia University)

Introduction

The Alternating-Current Optimal Power Flow (ACOPF) problem is a challeng-
ing and compelling problem arising in the operation of power grids. Lest our
methodologically-minded colleagues roll their eyes at an application, let me
point out that this problem is one that all of us would benefit from understanding.
Its study encompasses a number of appealing features: it involves many areas
of optimization (linear, convex, nonlinear, global and integer optimization); it
is a realistic problem for which we have a large amount of realistic datasets,
ranging from very small to very large; it is very well documented and supported
by a large community of strong researchers; and, last but not least, ACOPF
instances strain all of our solvers. The problem is also of vital importance in the
daily operation of power grids —currently, simplifications, approximations and
relaxations of ACOPF are run, on a daily basis, and they constitute the backbone
of the intelligence underlying power grids. As ACOPF capabilities (rapidly)
improve, we can anticipate a forthcoming day where full ACOPF is run, instead
of simplifications — it is notable that the power engineering community views
that capability as critical, in light of increasingly demanding grid operations
and economics. Finally, the underlying mathematics touches on fundamental
and cutting-edge topics ranging from semidefinite optimization to algebraic
geometry.

Here we will provide a very high-level and brief outline of the state of the art;
please see the references therein. A good resource is the survey [16]. Also see
[4], [7]. We also invite the readers to explore the power engineering perspective;
see the excellent textbooks [2] and [ 1 1] which include extensive discussion on
optimization details and how they arise. Finally, our recent paper [6] (joint with
my PhD student Matias Villagra) contains an extensive list of references.

Basic description

The standard, single-period ACOPF problem is as follows: we are given a
network where some nodes have load (i.e., demand for power) and some nodes
house generators. The goal is to generate power at minimum cost so as to satisfy
the demands, with power flowing according to laws of physics. The latter is
accomplished using complex variables to represent voltages and using a bilinear
representation of (complex) power flows. In equation form (notation below):

[ACOPF] : min Y Fp(PY)
keg
subject to: ¥V branch {k,m} € &:
Prn = G| Viel? + Vil |Vinl (Grem c08(0 — O1m) + Biemn sin(6 — 6,,))
(I1b)
Pt = Gram| Vin|* + Ve [Vin (G ke €08(8) — 01) — Byge sin(0y, — 0,,))
(1o)
ka = — Bkk’Vk‘Q — |VkHVm’(Bkm COS(Qk — Qm) — ka sin(@k — Hm))
(1d)
Quk = — Brm|Vinl? = Vil [Vinl (Buk 080k — 0 + G sin(0y, — 0,,))
(le)

(1D

(1a)

> Pun=) P{-PF VbuskeB

(k;mYes(k) 0€Gs
S Q=) Q/-Ql VbuskeB (g
(k;mYes(k) =

(Vkmin)Q S ‘Vk’|2 g (VkmaX)Q Y bus k € B (lh)

max {szm + Qim? P’rgzk + ank} < Ukm V branch {k’ m} €¢
(11)
PPin < P9 < P generator k € G (1))

Qgﬁn < Qi < leax V generator k € G
(1k)

In this formulation, N := (B, ) is a network where B denotes the set of
nodes (or buses in power engineering parlance), and £ denotes the set of edges
(branches). We denote by G the set of generators of the grid, each of which is
located at some bus; for each bus k& € B, we denote by G, C G the generators
at bus k. The variables in the above problem are: for each bus k£ its voltage
magnitude |V} | and phase angle 6y, and for each generator £, its output given
by P and ()f. All other parameters above are data inputs to the problem. The
cost functions Fj, are convex; specifically, convex quadratics in the data sets that
are publicly available. In industrial practice they are convex piecewise-linear,

!This work was supported by an ARPA-E GO award
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reflecting bids from generator operators to energy markets.
We refer the reader to the textbook citations for background on this formulation.

Scale of problem

ACOPF problems involve networks that are quite sparse but can be very large.
The number of variables scales linearly with the number of nodes but the multi-
ple is nontrivial (say, eight times the number of nodes) and likewise with the
number of constraints. As an example, 1354pegase has over 60,000 variables
and 72,000 constraints, while a much larger instance such as ACTIVSg70k has
over 3.1 million variables and 3.3 million constraints. Their multiperiod variants
are, of course, significantly larger: the number of periods is the multiplier to
be used to scale the variable and constraint counts, and that number may be as
large as 24 or, even, 48.

Such numbers are somewhat daunting. These problems, and their convex relax-
ations, strain the capabilities of all solvers. See [6] for extensive experiments
that support this view. An additional hazard arises from numerical difficulties —
discussed below.

What works: computing feasible solutions.

The current dominant industry perspective is that computing good feasible
solutions is of primary importance. In this domain, there is a clearly dom-
inant technology: local solvers, i.e., interior point methods. Knitro [8] and
IPOPT [ 18] are outstanding examples — every optimizer should understand their
respective methodologies, which are closely related but differ in some critical
elements. One should note (a point taken up in the next section) that ACOPF
can be equivalently reformulated as a QCQP, and, in principle, any QCQP solver
(which will rely on spatial branch-and-bound as well as other techniques) could,
in principle, be deployed. However, the empirical experience at this point is that
the local solvers are overwhelmingly superior. We invite readers to peruse the
performance tables in [6]. We are primarily familiar with Knitro, and we have
been able to compute solutions to all single-period problems that are publicly
available, in quite reasonable time.

There is inadequate space in this article to describe the methodology incorpo-
rated in Knitro or [IPOPT; indeed, it is supported by a very strong literature — one
that all optimizers should familiar with. In short, given a nonlinear optimization
problem, it is nominally replaced by its barrier version. "Solving" that problem
and allowing the barrier parameter to converge to zero would, ideally, yield
the desired outcome. We use quotes because we are referring to nonconvex
problems here. Instead we should say that we are computing a critical point for
the barrier function. And that goal is tackled by writing the KKT conditions (for
the barrier problem) — again, there is a leap of faith here because it is not clear
that KKT multipliers will exist. At any rate, one could then solve for the KKT
conditions using Newton’s algorithm. Here, the solvers do something clever: at
each Newton iteration, rather than take a Newton step, a line search is performed.
And, if in the course of the line search, a better solution to the original problem
(not the barrier problem) the algorithm will avoid being pedantic and, instead,
attempt to move to that solution. Or, if in the course of the Newton algorithm,
convergence to an inferior solution is detected, then steps are taken to prevent
such steps in the future.

We refer the readers to [8] and [18] for precise mathematical statements. In
any case, local solvers dominate the ACOPF landscape. Of course, their per-
formance comes at the cost of complete lack of guarantee as to the quality of
the computed solution — even, feasibility. Moreover, roundoff error can be
significant. Here we are touching on a touchy issue: what is the relationship
between numerical infeasibility and superoptimality in the case of nonlinear
problems; especially in the nonconvex case?

Convex relaxations — and why do we care? And do they work — why or why
not?

My co-conspirators of the integer programming persuasion would loudly argue
that of course it is vitally important to develop tight convex relaxations, so as
to certify the quality of solutions produced by local solvers. That is certainly a
worthwhile goal from a research perspective — but do our industry counterparts
actually care?

Let us defer, or rather, avoid this pesky question, and instead temporize by
remarking that convex relaxations must be speedy, reliable and accurate in order
to be actually useful. And there is much work to be done in this regard — in our
experience, nonlinear convex solvers struggle with convex relaxations (which
we detail next) for ACOPF. There is work to be done.
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However, there is a compelling, practical reason for the use of convex relax-
ations. Power grids around the world perform daily operations by running
so-called Energy Markets. This term is to be taken with some latitude. At any
rate, an essential function of power grids is that of payments: from entities
representing consumers to those that operate generators. A central piece in this
mechanism is the computation of ideally accurate marginal prices. Such prices
can be obtained, in principle, from convex relaxations (especially when linear)
but are very difficult to get from local solvers, if at all. We cannot overstate the
importance of the pricing capability — it is indeed central in the operation of
power delivery.

There is a very abundant literature addressing convex relaxations to ACOPE.
See [16], [13], [14], 91, [3], [15], [5], [11, [10], [17]. Most of these relaxations
rely on a common idea; a very effective way to obtain a (very) tight convex re-
laxation to ACOPF, which is due to Jabr [12]. Consider constraint (1b), repeated
here for convenience:

Pkm = Gkk|Vk]2 + |W|’Vm|(ka COS(Qk — Qm) + Bkm sin(é)k — Hm))

. . 2 .
Suppose we introduce new variables v,i ), ckm and S, representing, respec-

tively, [Vi|?, |Vil|Vin| cos(0r, — 0,,) and |Vi||Vi,|sin(6x — 6,,,)). Using these
variables, (1b) becomes the linear expression

Py, = Gkkv;(f) + GrmChm + BlmSkm,

and a similar linearization applies to all other nonconvex constraints in ACOPF!
We now have a convex relaxation, but there is more: note that

2 2 _ 2 (2
Ckm+8km - Uk U’

which is nonconvex, but can be relaxed to the SOC constraint

o+ 5t < 0700,
This is the well-known Jabr inequality, and extensive numerical computation the
SOC formulation using it (and the linearizations described a few lines above),
yields a very strong relaxation to all ACOPF instances.

In [6] we provide theoretical justification for this fact, outlined below. More-
over, we also perform experiments where a random, but small subset of Jabr
inequalities are removed from the SOC relaxation — the result is, almost always,
a drastic worsening of the relaxation. Why? Please read the following section.

We need to pause, however, because computational experiments performed by
many authors show that these SOC relaxations are actually very challenging for
all solvers. And why is that? Part of the reason lies in the explanation provided
in the paragraph above: all, or almost all the Jabr inequalities will be tight at
optimality. This fact alone seems to be a source of difficulty for the solvers,
which takes us to the next topic.

Linear relaxations

Consider the variables P, and Py, in the ACOPF formulation given above.
They describe, in power engineering language, the amount of ("active") power
injected into branch {k, m} at its two endpoints. One can argue mathematically,
and also using basic physics, that in any feasible solution to ACOPF we must
have P,,; + Py > 0. Using this linear "loss inequality” instead of the Jabr
inequality renders a linear model (in the space of the v?, ¢, s variables), which,
surprisingly, is quite tight [5].

Again, one might wonder why that is the case. In [6] we show that P, + Py, >
0 is a positive multiple of v,% + vg) — 2¢,m, > 0, and, it turns out, this latter
inequality is an outer-approximation to the Jabr inequality. Thus, enforcing
Jabr implies the loss inequality, and, in turn that will provably imply a stronger
relaxation bound than otherwise, because the alternative — i.e., negative losses —
imply a form of free energy generation: each branch with a negative loss L < 0
acts as a zero cost generator producing — L units of energy. Here, recall that the

objective function for ACOPF is the cost of generation.

In [6] we perform extensive computational experiments using a robust algorithm
for solving the Jabr relaxation (and the stronger and related :2-relaxation) using
a cutting plane algorithm that relies on outer-approximation with a form of cut
management combining rejection of new cuts that are too parallel to existing
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cuts, and removal of old cuts that have become slack. This methodology proves
fast and robust — it scales well to multiperiod formulations even in the largest
cases.

Best of all: the algorithm is warm-startable, a critical feature in the operation
of real-time markets, where the solution of a problem is followed (after a short
time) by that of a closely related problem. In our opinion this feature is a heavy
selling point for the use of linear relaxations. Additionally, of course, we benefit
from highly evolved LP solution methodologies.

What is next

In current research we are focusing on using our linear relaxations in the role
of outer approximations to more evolved convex relaxations, i.e., beyond the
Jabr and 72 formulations. A particularly enticing goal is that of producing good
feasible solutions as a byproduct. Today, that goal is still proving elusive.
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