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Integer linear programs

maximize p⊺x
subject to Ax ≤ b,

x ∈ Zn,

where A ∈ Zm×n is the constraint (coefficient) matrix, b ∈ Zm, p ∈ Zn.
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Totally ∆-modular constraint matrices

∆(A) = max{| det A′| : A′ square sub-matrix of A}
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Totally ∆-modular constraint matrices

∆(A) = max{| det A′| : A′ square sub-matrix of A}

A ∈ Zm×n is
totally unimodular (TU) if ∆(A) ≤ 1
totally ∆-modular matrix (T∆) if ∆(A) ≤ ∆

Can integer programs with T∆ constraint matrices be solved
in polynomial time?
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Totally ∆-modular constraint matrices

The conjecture is true in the following cases,
∆(A) = 1,
∆(A) = 2 (Artmann, Weismantel, Zenklusen ‘17),
∆(A) ≤ ∆ and A has at most 2 nonzero entries per row (or per
column) (Fiorini, Joret, Weltge, Y. ‘21)
∆(A) ≤ ∆ and A is a network transposed matrix with a constant
number of additional rows and columns (AFJKSWY ’25)
∆(A) ≤ ∆ and A has at most 2 nonzero entries per row (or per
column) and a constant number of additional rows and columns
(Kober ’25)

Related results:
randomized algorithm for strictly 3 and 4-modular constraint matrices
(Nägele, Nöbel, Santiago, Zenklusen ’24)
deterministic algorithm for S-modular matrices for restricted set of
polynomials S (Celaya, Kuhlmann, Weismantel ’24)
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Outline

T∆ constraint matrices with at most 2 nonzero entries in each row.

T∆ constraint matrices which is a transposed network matrix with k
additional rows and columns.

A specific problem: Total matching with T∆ constraint matrix.
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T∆ constraint matrices with at most 2 nonzero entries in
each row

Theorem (Fiorini, Joret, Weltge, Y. ‘21)
For every integer ∆ ≥ 0 there exists a strongly polynomial-time algorithm
for solving integer programs of the form

maximize p⊺x
subject to Ax ≤ b,

x ∈ Zn,

where A is T∆M and contains at most two nonzero entries in each
row.
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T∆ constraint matrices with at most 2 nonzero entries in
each row

Theorem (Fiorini, Joret, Weltge, Y. ‘21)
For every integer ∆ ≥ 0 there exists a strongly polynomial-time algorithm
for solving integer programs of the form

maximize p⊺x
subject to Ax ≤ b,

x ∈ Zn,

where A is T∆M and contains at most two nonzero entries in each
row.

Theorem (Fiorini, Joret, Weltge, Y. ‘21)
For every integer k ≥ 0 there exists a strongly polynomial-time algorithm
for solving the maximum weight independent set problem in graphs G with
at most k disjoint odd cycles.
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T∆ incidence matrix of a graph

Observation
Let G be a graph with k (vertex-) disjoint odd cycles. Then the constraint
matrix in the maximum independent set problem contains a submatrix
with determinant 2k .
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T∆ incidence matrix of a graph

v1 v2 v3 v4 v5 v6 v7
e1 1 1 0 0 0 0 0
e2 0 1 1 0 0 0 0
e3 1 0 1 0 0 0 0
e4 0 1 0 1 0 0 0
e5 0 0 0 1 1 0 0
e6 0 0 1 0 1 0 0
e7 0 0 1 0 0 1 0
e8 0 0 0 0 1 1 0
e9 0 0 0 1 0 1 0
e10 0 0 0 1 0 0 1
e11 0 0 0 0 0 1 1
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The structure of graphs with bounded number of disjoint
odd cycles

An easy case: There is a small set of vertices H such that G \ H is
bipartite.
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The structure of graphs with bounded number of disjoint
odd cycles

Otherwise, G has a bounded number of disjoint odd cycles and no set H
whose removal makes the graph bipartite.
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The structure of graphs with bounded number of disjoint
odd cycles

Escher wall:

G contains a large Escher wall (Reed ’99).
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The structure of graphs with bounded number of disjoint
odd cycles

G contains a large Escher wall (Reed ’99).

G does not contain a large minor of a complete graph which is “well
attached” to the Escher wall.

Using the version of the Excluded Minor Structure Theorem of Robertson
and Seymour due to Kawarabayashi, Thomas, and Wollan ‘20 we obtain a
structural characterization.
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The structure of graphs with bounded number of disjoint
odd cycles

After removing a bounded number of vertices, a subgraph G0 of G can be
embedded on a bounded genus surface S, where the rest of G is
partitioned between a bounded number of “large vortices” and possibly
unbounded number of “small vortices”. 8 / 21



T∆ constraint matrices which is a transposed network
matrix with k additional rows and columns

Theorem (Aprile, Fiorini, Joret, Kober, Seweryn, Weltge, Y. ’25)
Let ∆ ∈ N, then there exists a strongly polynomial-time algorithm for
solving integer programs of the form

maximize pTx
subject to Ax ≤ b

x ∈ Zn,

where A is T∆M and is a transposed network matrix with ≤ k
additional rows and columns.
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T∆ constraint matrices which is a transposed network
matrix with k additional rows and columns

(ntwk)T
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Why this case?

TU
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Why this case?

Theorem (Seymour ’80, informal)
Let A be a TU matrix then one of the following holds,

A is a network matrix,
A is transposed network matrix (denoted (ntwk)T),
A is one of two well-defined 5 × 5 matrices,
A can be obtained through ”simple block operations” (1-sum, 2-sum,
3-sum) applied on smaller TU matrices.
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Why this case?

1 partially ordered knapsack

max{c⊺x : xi ≤ xj ∀i ⪯ j , w⊺x ≤ d , x ∈ {0, 1}n}

2 densest k-subgraph in a graph G = (V , E )

max
{ ∑

e∈E
x(e) : x(e) ≤ x(v) ∀v ∈ V , ∀e ∈ δ(v),∑

v∈V x(v) = k, x ∈ {0, 1}V ∪E
}
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A simplified version

Theorem (Aprile, Fiorini, Joret, Kober, Seweryn, Weltge, Y. ’25)
Let ∆ ∈ N, then there exists a strongly polynomial-time algorithm for
solving integer programs of the form

maximize pTx
subject to Ax ≤ b

x ∈ Zn,

where A is T∆M and is a transposed network matrix with 1
additional row.
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Totally ∆-modular (ntwk)T + one row
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Docsets

A set S ⊆ V is doubly connected (in short, a docset) if G [S] and G [V \ S]
are connected.
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The weight of a docset is the sum of the weights of the vertices.
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Docsets

A set S ⊆ V is doubly connected (in short, a docset) if G [S] and G [V \ S]
are connected.

The weight of a docset is the sum of the weights of the vertices.

Lemma

∆ = max
S is a docset

|weight(S)|.
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Rooted graphs

Lemma
Let ∆ ∈ N and let G be a graph with no docset of weight larger than ∆,
then G does not contain a rooted Kf (∆)-model.
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Embedded graphs without a rooted K2,t-minor

Theorem (Böhme, Mohar ’02, Fiorini, Kober, Seweryn, Shantanam,
Y. ’25+)
Let G be a 3-connected planar graph without a rooted K2,t-minor, then all
the roots are contained in f (t) faces.

Theorem (Böhme, Kawarabayashi, Maharry, Mohar ’08, Fiorini,
Kober, Seweryn, Shantanam, Y. ’25+)
Let G be a 3-connected graph embedded on a surface of genus g with
large face-width and without a rooted K2,t-minor, then all the roots are
contained in f (t, g) faces.

17 / 21



Embedded graphs without a rooted K2,t-minor
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The structure of graphs without rooted K2,t-minors
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Total matching

Problem: Let G be a graph with weights on vertices and edges. Find a
maximum weight set of elements X ⊆ V (G) ∪ E (G) such that no two
elements of X are adjacent or incident.
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Total matching

Problem: Let G be a graph with weights on vertices and edges. Find a
maximum weight set of elements X ⊆ V (G) ∪ E (G) such that no two
elements of X are adjacent or incident.

max
∑

v∈V (G) p(v)xv +
∑

e∈E(G) p(e)ye
s.t. xv +

∑
e∈δ(v) ye ≤ 1 ∀v ∈ V (G)

xv + xw + ye ≤ 1 ∀e = vw ∈ E (G)
x ∈ {0, 1}n, y ∈ {0, 1}m
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Total matching

Problem: Let G be a graph with weights on vertices and edges. Find a
maximum weight set of elements X ⊆ V (G) ∪ E (G) such that no two
elements of X are adjacent or incident.

max
∑

v∈V (G) p(v)xv +
∑

e∈E(G) p(e)ye
s.t. xv +

∑
e∈δ(v) ye ≤ 1 ∀v ∈ V (G)

xv + xw + ye ≤ 1 ∀e = vw ∈ E (G)
x ∈ {0, 1}n, y ∈ {0, 1}m

Theorem (Ferrarini, Fiorini, Kober, Y. ’24)
Let G be a graph for which the constraint matrix in the above formulation
is T∆M, then there is an algorithm which finds the maximum weight total
matching in G in polynomial time.
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Total matching

Observation
A cycle has a determinant at least 2.

Observation
The max degree in G is ∆ + 1.

Claim
There are O(log ∆) vertices of degree at least 3 in G.

20 / 21



Total matching

Observation
A cycle has a determinant at least 2.

Observation
The max degree in G is ∆ + 1.

Claim
There are O(log ∆) vertices of degree at least 3 in G.

20 / 21



Total matching

Observation
A cycle has a determinant at least 2.

Observation
The max degree in G is ∆ + 1.

Claim
There are O(log ∆) vertices of degree at least 3 in G.

20 / 21



Future directions

Polynomial time algorithm for the case of ntwk + constant number of
rows?

NP-hard problems with T∆ constraint matrices.

Thank you.

21 / 21



Future directions

Polynomial time algorithm for the case of ntwk + constant number of
rows?
NP-hard problems with T∆ constraint matrices.

Thank you.

21 / 21



Future directions

Polynomial time algorithm for the case of ntwk + constant number of
rows?
NP-hard problems with T∆ constraint matrices.

Thank you.

21 / 21


