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Minimum Sum of Squares Clustering

It starts from a visit of Angelika Wiegelea in 2019:
V. Piccialli, A. M. Sudoso and A. Wiegele.
SOS-SDP: An Exact Solver for Minimum
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Computing, 34 (4), 2144-2162 (2022).

V. Piccialli, A. Russo Russo and A. M. Sudoso. An
exact algorithm for semi-supervised minimum

sum-of-squares clustering, Computers &
Operations Research (2022).

V. Piccialli and A. M. Sudoso. Global optimization
for cardinality-constrained minimum sum-of-squares
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Large scale MSSC

Idea
What can we do to exploit our tools for small-medium size instances and find some
optimality guarantee for heuristic solutions?

Joint work with Anna Livia Croella Assistant Professor at Mercatorum and Antonio
Maria Sudoso my colleague at DIAG-Sapienza
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MSSC Clustering

We focus on the Minimum Sum of Squares Clustering problem.
Given n data points x1, . . . , xn in Rd , partition them into k clusters by minimizing the
total squared distance between each point and the cluster center.

Given a cluster assignment, the optimal cluster center is the average of the points in
the cluster.
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Mathematical formulation

The mathematical formulation is

min
n∑

i=1

k∑
j=1

δij ||xi −mj ||22

k∑
j=1

δij = 1 i = 1, . . . , n

δij ∈ {0.1}, mj ∈ Rd i = 1, . . . , n, j = 1, . . . , k

(MSSC)

where δij are the cluster indicator variables, i.e. δij = 1 if point i is assigned to the
cluster j and 0 otherwise, and mj are the cluster centers.

(MSSC) is NP-hard even for k = 2 or d = 2 (Aloise, Deshpande, Hansen, and
Popat 2009)
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Applications

1 Image segmentation

2 credit risk evaluation

3 biology

4 document clustering
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Literature Review

Heuristic methods
✓ k-means (MacQueen 1967; Lloyd 1982) heuristic (≈ 3M references in Google

Scholar 2024) is the most popular heuristic for solving MSSC.

✓ a lot of research has been dedicated to finding efficient initialization for k-means
(Arthur and Vassilvitskii 2006; Yu, Chu, Wang, Chan, and Chang 2018; Franti
and Sieranoja 2019)

✓ Standard metaheuristic algorithms:simulated annealing (Lee and Perkins 2021),
tabu search (Al-Sultan 1995), variable neighborhood search (Hansen and
Mladenovic 2001; Orlov, Kazakovtsev, Rozhnov, Popov, and Fedosov 2018),
iterated local search (Likas, Vlassis, and Verbeek 2003), evolutionary algorithms
(Maulik and Bandyopadhyay 2000; Karmitsa, Bagirov, and Taheri 1997).

✓ DC (Difference of Convex functions) programming for clustering large datasets
(Tao et al. 2014; Bagirov, Taheri, and Ugon 2016; Karmitsa, Bagirov, and Taheri
2017; Karmitsa, Bagirov, and Taheri 2018).

✓ The k-means algorithm is also used as a local search subroutine in various
algorithms, such as population-based metaheuristics (Mansueto and Schoen 2021)
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The importance of the global minimum

200 points in the plane k = 5

Heuristic solution Unconstrained global minimum

Interpretation derived by the heuristic solution can be completely wrong!
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Literature Review - Exact

Three main approaches:

B& B (Koontz, Narendra, and Fukunaga 1975), (Diehr 1985), and RBBA (Brusco
2006) are B& B algorithms where the lower bound is computed by solving smaller
instances and exploiting the properties of MSSC. (Sherali and Desai 2005)
employs the reformulation-linearization technique (RLT) to derive lower bounds
by transforming the non-linear problem into a 0-1 mixed-integer program.
(Burgard, Moreira Costa, Hojny, Kleinert, and Schmidt 2023) focus on
mixed-integer programming techniques to improve solver performance.

Col Gen (Du Merle, Hansen, Jaumard, and Mladenovic 1999) propose a column
generation approach where the restricted master problem is solved using an
interior point method and the auxiliary problem using a hyperbolic program with
binary variables to find a column with negative reduced cost. The approach has
been improved in (Aloise, Hansen, and Liberti 2012a), and recently in (Sudoso
and Aloise 2024), where they can solve problems in the plane up to 6000 points.

SDP Peng (Peng and Xia 2005; Peng and Wei 2007) showed the equivalence between
MSSC and a 0-1 SDP reformulation. Aloise and Hansen 2009 developed a
branch-and-cut algorithm based on the linear programming relaxation of the 0-1
SDP model. Piccialli, Sudoso, and Wiegele 2022 proposed SOS-SDP, a
branch-and-bound algorithm using SDP relaxation and polyhedral cuts, capable
of solving real-world instances with up to 4.000 data points.
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SOS-SDP

SOS-SDP is a branch and bound approach for solving MSSC problem with the
following ingredients:

1 an SDP relaxation for computing the lower bound at each node solved by means
of a cutting plane algorithm

2 a primal heuristic to compute an upper bound that heavily relies on the solution
of the SDP relaxation

3 a branching rule based on the problem
4 We manage to exploit the must link constraints to reduce the size of the SDPs

for computing the lower bound
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SDP reformulation

Unconstrained Problem (MSSC) can be reformulated as a nonlinear SDP problem
[Peng & Wei 2007]:

min
n∑

i=1

k∑
j=1

δij ||xi −mj ||22

k∑
j=1

δij = 1 i = 1, . . . , n

δij ∈ {0.1}
mj ∈ Rd i = 1, . . . , n, j = 1, . . . , k

(MSSC)

min ⟨WWT , I − Z⟩
Ze = e
trace (Z) = k
Z ≥ 0
Z = ZT

Z2 = Z
(SDP−MSSC)

where W ∈ Rn×d is the data matrix obtained by stacking the data points xi for all i ,
e ∈ Rn is the vector of all ones and I ∈ Rn×n is the identity matrix.

Problem (MSSC) and (SDP-MSSC) are equivalent.
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Clustering matrix

Any feasible Z ∈ Rn×n is a block diagonal matrix with a special structure.

✓ If i and j are in the same cluster C:
▶ rows i and j of Z are equal, i.e. Zi· = Zj·
▶ non-zero entries of rows i and j are equal to 1

|C| , where |C | is the cardinality of the
cluster C.

✓ If i and j are not in the same cluster:
▶ Zij = 0

Remark
Instance-level constraints can be translated into linear constraints on Z

▶ As an example, we consider 6 points in 3 clusters :

▶ x1, x2, x3, x4, x5, x6, Z =


1 0 0 0 0 0
0 1

2
1
2 0 0 0

0 1
2

1
2 0 0 0

0 0 0 1
3

1
3

1
3

0 0 0 1
3

1
3

1
3

0 0 0 1
3

1
3

1
3


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SDP relaxation

Problem (SDP-MSSC) can be rewritten as an SDP with an additional rank constraint:

min ⟨WWT , I − Z⟩
Ze = e
trace (Z) = k
Z ≥ 0
Z = ZT

Z2 = Z

(SDP−MSSC)

min ⟨WWT , I − Z⟩
Ze = e
trace (Z) = k
rank (Z) = k
Z ≥ 0
Z ⪰ 0

(SDP−MSSC)

By dropping the non-convex constraint rank(Z) = k, we obtain the Semidefinite
Programming (SDP) relaxation [Peng, Wei 2007]

min ⟨WWT , I − Z⟩
Ze = e
trace (Z) = k
Z ≥ 0
Z ⪰ 0

(SDP− REL)

In order to tighten the bound, we add valid inequalities of different classes with a
cutting plane procedure.
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Cutting plane

In order to tighten the bound, it is possible to add valid inequalities of the following
classes:

Pair we know that in any clustering Zij ≤ Zii ∀i , j .
Triangle if i and j are in the same cluster and i and h are in the same cluster,

then j and h must be in the same cluster [Peng, Wei 2007], that
translates into

Zij + Zih ≤ Zii + Zjh ∀i , j , h.

Clique if the number of clusters is k, given any subset Q of k + 1 points, it
must hold that at least two points have to be in the same cluster:∑

(i,j)∈Q,i<j

Zij ≥
1

n − k + 1
∀Q ⊂ {1, . . . , n}, |Q| = k + 1

We search for violated inequalities and keep adding them until there is a bound
improvement.

We remove at each iteration the added inequalities that are not active to keep the size
of the SDP tractable
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Branching Decision
Cannot Link Node Points i and j in different clusters:

▶ we add the constraint Zij = 0 to the SDP relaxation

Must Link Node Points i and j in the same cluster:
▶ we add the constraint that row Zi· and row Zj· are equal to the

SDP relaxation:

min ⟨WWT , I − Z⟩
Ze = e
trace (Z) = k
Zi· = Zj·
Z ≥ 0
Z ⪰ 0

(MLij)

How do we choose the branching pair i and j?

In a matrix Z corresponding to a clustering, for each pair (i , j) either Zij = 0 or
Zi· = Zj·. Select a pair of data points to branch on:

max
i,j
{min{Zij , ∥Zi· − Zj·∥2}}

Note:
In the B&B nodes we add instance level constraints!
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K-means Algorithm

Kmeans alternates two phases:

1 Optimal assignment of the points to the clusters given the current centers
2 Optimal choice of the centers given the points currently in the cluster
3 The algorithm stops when the solution does not change

The produced solution is suboptimal and heavily depends on the choice of the
centers
At each node, we have additional constraints (must link and cannot link), we need a
constrained version!
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IPC-k-means (Baumann 2020)
Input Data points p1, . . . , pn, initial cluster centers m1, . . . ,mk , must-link

ML and cannot-link CL constraints

Repeat

1 Compute the optimal cluster assignments x⋆ij by solving:

min
∑n

i=1
∑k

j=1 xij∥pi −mj∥22∑k
j=1 xij = 1 ∀i ∈ N∑k
i=1 xij ≥ 1 ∀j ∈ K

xih = xjh ∀h ∈ K, ∀(i , j) ∈ML

xih + xjh ≤ 1 ∀h ∈ K, ∀(i , j) ∈ CL

xij ∈ {0.1} ∀i ∈ N , ∀j ∈ K

2 Set Cj ← {pi : x⋆ij = 1} for each j = 1, . . . , k.
3 Update the cluster centers m1, . . . ,mk by taking the mean of

the data points assigned to each cluster C1, . . . ,Ck .

Until Convergence
Return Clusters C1, . . . ,Ck .

Center Initialization
The center initialization is based on the SDP solution
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3 Update the cluster centers m1, . . . ,mk by taking the mean of

the data points assigned to each cluster C1, . . . ,Ck .
Until Convergence
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Center Initialization
The center initialization is based on the SDP solution
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Results

SOS-SDP solves instances up to 4000 points, before up to 1000 only in the plane or
2300 but for k ≥ 230 (n/k small) (Aloise, Hansen, and Liberti 2012b). Recent paper
by Aloise and Sudoso up to 6000 datapoints on the plane. Our code:
https://github.com/antoniosudoso/sos-sdp

Interesting point: the bound is so strong, that in general the gap at the root node is
small

Can we exploit SOS-SDP to give some optimality guarantees for large scale (10000
points) instances?
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Lower bound
Let the dataset O = {p1, . . . , pN} be partitioned into T subsets {S1, . . . , ST }
such that ∪Tt=1St = O and Si ∩ Sj = ∅

Assume also that the optimal value of the MSSC problem on each subset is
available, i.e. let

MSSC(St , k) = min
δtij

K∑
j=1

∑
i∈St

δtij∥pi − µt
j ∥

2 (1a)

s.t.
K∑
j=1

δtij = 1, ∀i ∈ St (1b)

∑
i∈St

δtij ≥ 1, ∀j ∈ {1, . . . ,K} (1c)

δtij ∈ {0, 1}, ∀i ∈ St ∀j ∈ {1, . . . ,K}. (1d)

Lower Bound

MSSC(O, k) ≥
T∑

t=1

MSSC(St , k) ≥
T∑

t=1

LB(St , k). LB

for any valid lower bound LB(St , k) on the objective of Problem (1).
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Literature

This lower bound has been exploited in (Koontz, Narendra, and Fukunaga 1975) and
(Diehr 1985):

They solve smaller subproblems by enumerations, and use a similar version of the lower
bound. For well-separated clusters in two-dimensional space, (Diehr 1985) obtained
optimal partitions for problems with ns = 120 objects and k = 4 clusters. However, for
randomly generated data in the two-dimensional plane, the largest problem instance
solved to optimality consisted of only n = 30 objects grouped into k = 4 clusters

The bound is used again in (Brusco 2006), where the algorithm begins with the
application of branch-and-bound for k + 1 objects and subsequently adds objects, one
at a time, until all n objects are included. Each time a new object is added, the
branch-and-bound algorithm is repeated (or reapplied). The algorithm is improved by
a smart ordering of the data points
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Idea: decomposition in smaller instances

Lower Bound

MSSC(O, k) ≥
T∑

t=1

MSSC(St , k) ≥
T∑

t=1

LB(St , k). LB

for any valid lower bound LB(St , k) on the objective of Problem (1).

Good news: We can use SOS-SDP to compute MSSC(St , k) or LB(St , k) (few nodes
of the B&B tree) as long as the size of St is not too large

Less good news:The quality of the bound heavily depends on the partition!

Research question
How to choose the partitions St in order to have a very good bound (possibly
optimal)??
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Anticlustering

Ideally, we would like to find the partition of O in subsets of equal size providing
the best bound, that is solving the following problem:

max
ξit

T∑
t=1

MSSC(St , k) (2a)

s.t.
T∑

t=1

ξit = 1, ∀i ∈ {1, . . . ,N} (2b)

N∑
i=1

ξit =
N

T
, ∀t ∈ {1, . . . ,T} (2c)

ξit ∈ {0, 1}, ∀i ∈ {1, . . . ,N} ∀t ∈ {1, . . . ,T}. (2d)

Too hard, the lower level problem is NP-hard already
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Using the lower bound for validation

In general, the computation of the lower bound is needed to prove the validity of a
certain heuristic solution.

Assume we have the optimal solution (δ∗ij ) of the original MSSC problem, and a
partition of O.

Figure: MSSC(O, 4) = 287.82
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Partition

We can define the projection of the optimal solution on the single partition:
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Projection

We can define the projection of δ∗ij :

If the clusters are well separated, the projection is optimal for each subset (as in this
example)
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Quality of the bound
What is the quality of this partition?:

(a) MSSC(S1, 4) = 48.69695 (b) MSSC(S2.4) = 23.25395

(c) MSSC(S3.4) = 42.33187 (d) MSSC(S3.4) = 29.62268

Summing up the different contribution of each subset we get a lower bound
LB = 143.90546 with a gap of around 50%!!!
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Our problem

What makes a partition “good”?

Let’s look at the objective function of MSSC:

K∑
j=1

∑
i∈St

δtij∥pi − µt
j ∥

2

with

µt
j =

N∑
i=1

piδ
t
ij

N∑
i=1

δtij

It can be rewritten as

K∑
j=1

∑N
i=1

∑N
i′=1 δ

t
ijδ

t
i′j ||pi − pi′ ||2∑N

i=1 δ
t
ij

The contribution of the single anticluster is larger for larger distances among points in
the same cluster (in that anticluster)
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A different partition

The single anticluster better “represents” the original dataset
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Quality of the bound
What is the quality of this partition?:

(a) MSSC(S1, 4) = 71.97703 (b) MSSC(S2.4) = 71.93196

(c) MSSC(S3.4) = 71.97695 (d) MSSC(S4.4) = 71.93248

Summing up the different contribution of each subset we get a lower bound
LB = 287.81842 with a gap of around 0%!!!
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Assumption

Assumption
Assume that we have a feasible (possibly optimal) solution (δ∗ij ) of the original MSSC
problem, and that for any partition of the dataset the projection of δ∗ on the partition
is still optimal. This implies that the optimal solution of the MSSC(St) is still δ∗
restricted to St .

Under this assumption, problem 2 can be written as follow:

max
ξit

T∑
t=1

K∑
k=1

∑
i∈C(k)

∑
j∈C(k):j ̸=i

∥pi − pj∥2

Nk/T
· ξit · ξjt (3a)

s.t.
T∑

t=1

ξit = 1, ∀i ∈ {1, . . . ,N} (3b)

∑
i∈C(k)

ξit =
|C(k)|
T

, ∀t ∈ {1, . . . ,T} ∀k ∈ {1, . . . ,K} (3c)

ξit ∈ {0, 1}, ∀i ∈ {1, . . . ,N} ∀t ∈ {1, . . . ,T}. (3d)
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Problem 3 can be decomposed in K independent subproblems, one for each cluster
C(k) with k ∈ {1, · · · ,K}. We have that:

max
ξit

T∑
t=1

∑
i∈C(k)

∑
j∈C(k):j ̸=i

∥pi − pj∥2

Nk/T
· ξit · ξjt (4a)

s.t.
T∑

t=1

ξit = 1, ∀i ∈ C(k) (4b)

∑
i∈C(k)

ξit =
|C(k)|
T

, ∀t ∈ {1, . . . ,T} (4c)

ξit ∈ {0, 1}, ∀i ∈ C(k) ∀t ∈ {1, . . . ,T}. (4d)

Each subproblem (4) can be linearized by introducing a binary variable for every pair
of points and for every anticluster t ∈ {1, · · · ,T}.
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Related literature

Problem (4) is related to:

1 the Anticlustering problem (Späth 1986; Papenberg and Klau 2021; Brusco,
Cradit, and Steinley 2020; Papenberg 2024) in the psycology literature

2 Maximally Diverse Grouping problem (Lai and Hao 2016; Schulz 2023a; Schulz
2023b; Schulz 2021) in the OR community

3 clique partitioning problem that can be formulated as a Maximally Diverse
Grouping problem (Brimberg, Janićijević, Mladenović, and Urošević 2017)

The idea is to partition elements into disjoint groups with the goal of obtaining high
between-group similarity and high within-group heterogeneity.
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Anticlustering

One of the most common objective functions is the sum of the (squared) distances of
the points in the anticluster (group) that is exactly our objective function

The problem is equivalent to the m-equipartition problem on a complete graph

There are different formulations, but exact methods can be used only for very small
size datasets, so heuristic approaches are proposed

Our idea
We define our heuristic for our version of the anticlustering problem
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Our evaluation algorithm

S1. Compute a heuristic solution by k-means with objective value UB(δ∗ij )

S2. Compute a partition of the dataset {S1, . . . ,ST } by heuristically solving problems
(4)

S3. Compute the lower bound (LB(δ∗ij ))

S4. Return the optimality gap

γLB =
UB(δ∗ij )− LB(δ∗ij )

UB(δ∗ij )
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Anticlustering heuristic

We aim to find a good feasible solution for the following problems (one for each C(k)
induced by the solution δ∗ij , they can be solved in parallel)

max
ξit

T∑
t=1

∑
i∈C(k)

∑
j∈C(k):j ̸=i

∥pi − pj∥2

Nk/T
· ξit · ξjt

s.t.
T∑

t=1

ξit = 1, ∀i ∈ C(k)

∑
i∈C(k)

ξit =
|C(k)|
T

, ∀t ∈ {1, . . . ,T}

ξit ∈ {0, 1}, ∀i ∈ C(k) ∀t ∈ {1, . . . ,T}. (5a)

Random Generate a random balanced partition for each C(k).

Mounting Solve a MILP for finding the optimal “mounting” of the generated anticlusters

Improve Try to improve the current partition by a swap procedure: we try to swap points
exchanging points close to the centroid of the cluster in the anticluster with
points far away from the center in the same cluster but in a different anticluster
(larger contribution to the objective)
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Swap evaluation

How to decide whether a swap improves my lower bound?

We cannot afford to compute the lower bound, neither we can trust that the projecton
of δ∗ij is optimal

We rely on k-means and compute a proxy of the lower bound: we apply k-means with
a smart initialization on each anticluster (related to the starting solution) and use the
obtained value ˜UBt to approximate the lower bound:

L̃B =
T∑

t=1

˜UBt

If the bound improves, the swap is implemented and the procedure keeps going until
no improvement is achieved (or a time limit is reached)
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Actual lower bound computation

Once we have the final anticlusters,with corresponding estimated gap γ+ = UB−LB+

UB
,

we compute the real lower bound by applying SOS-SDP on each anticluster (in
parallel)

We need to choose whether to run it only at the root node, or allowing for some
branching to improve the lower bound, there is a trade off related also to the size of
each subproblem (number of anticlusters)

We need to choose the number of anticlusters, the quality of the bound can oscillate
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Experimental setup

We run SOS-SDP on each anticluster only at the root node, allowing the default
cutting plane procedure for computing the bound:

1 As for the pair and triangle inequalities, we randomly separate at most 100000
valid cuts, we sort them in decreasing order with respect to the violation, and we
select the first 10% of violated ones, yielding at most 10000 pairs and at most
10000 triangles added in each cutting-plane iteration.

2 The tolerance for checking the violation of the cuts is set to εviol = 10−4,
whereas the tolerance for identifying the active inequalities is set to εact = 10−6.

3 Finally, we set the accuracy tolerance of SDPNAL+ to 10−4

4 The lower bound is valid since we postprocess the output of the SDP solver (to
be improved)
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Two toy examples

Table: Toy datasets

Dataset N D K
pr1002 1002 2 4
Synthetic 900 2 9

The two instances are on the plane. We use them to visualize what happens in two
very different cases: one where the clusters are well separated and one where they are
not well separated
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Synthetic- Random Initial Partition

900 points, 9 cluster each with 100 points, 3 anticlusters

Gap (estimated with k-means) = 1.65 %
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Synthetic- Final Partition

900 points, 9 cluster each with 100 points, 3 anticlusters

Gap (with respect to the lower bound computed by SOS-SDP) = 0.29 %
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Synthetic- Final Partition

900 points, 9 cluster each with 100 points, 3 anticlusters

Gap (with respect to the lower bound computed by SOS-SDP) = 0.29 %
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pr1002- Random Initial Partition
1002 points, 4 clusters, 4 anticlusters
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pr1002- Random Initial Partition

1002 points, 4 clusters, 4 anticlusters

Gap (estimated with k-means) =2.516 %
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pr1002- Final Partition

1002 points, 4 clusters, 4 partitions

Gap (with respect to the lower bound computed by SOS-SDP) = 1.49%, with the UB
= 0.06%
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pr1002- Final Partition

1002 points, 4 clusters, 4 partitions

Gap (with respect to the lower bound computed by SOS-SDP) = 1.49%, with the UB
= 0.06%
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Artificial Instances

▶ We generate large-scale Gaussian datasets comprising N = 10.000 data points in
a two-dimensional space (D = 2).

▶ These datasets vary in the number of clusters (K ∈ {2, 3.4}) and noise levels.
▶ Data points are sampled from a mixture of K Gaussian distributions N (µj ,Σj )

for j ∈ {1, . . . ,K}, with equal mixing proportions, where each distribution has a
mean µj and a shared spherical covariance matrix Σj = σI .

▶ The standard deviation σ varies among {0.50, 0.75, 1.00}, representing different
noise levels. Cluster centers µj are drawn from a uniform distribution within the
interval [−10.10].
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Results on artificial datasets : 2 clusters

Noise T GAP(LB) ˜GAP(UB) Time(min)

0.5 10 0.18% 0.18% 43.27
0.5 12 0.29% 0.29% 61,9
0.5 15 0.36% 0.36% 37.58
0.5 17 0.33% 0.33% 38,92
0.5 20 0.4% 0.4% 37.05
0.75 10 0.28% 0.26% 127.68
0.75 12 0.25% 0.22% 102.4
0.75 15 0.32% 0.3% 73.18
0.75 17 0.38% 0.36% 92.07
0.75 20 0.4% 0.38% 65.47
1 10 0.47% 0.26% 198,25
1 12 0.41% 0.23% 130.32
1 15 0.41% 0.32% 146.32
1 17 0.75% 0.65% 126.68
1 20 0.56% 0.5% 105.87
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Results on artificial datasets : 3 clusters

Noise T GAP(LB) ˜GAP(UB) Time(min)

0.5 10 0.31% 0.3% 95.62
0.5 12 0.38% 0.38% 88.85
0.5 15 0.58% 0.58% 67.47
0.5 17 0.53% 0.53% 50.8
0.5 20 0.62% 0.61% 57.3
0.75 10 0.43% 0.37% 138.12
0.75 12 0.56% 0.48% 178.25
0.75 15 0.61% 0.56% 94.38
0.75 17 0.65% 0.62% 122.68
0.75 20 0.8% 0.77% 63.98
1 10 1.43% 0.43% 184.53
1 12 1.44% 0.52% 217.72
1 15 1.24% 0.58% 89.18
1 17 0.93% 0.4% 115.2
1 20 1.29% 0.78% 114.52
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Results on artificial datasets : 4 clusters

Noise T GAP(LB) ˜GAP(UB) Time(min)

0.5 10 0.51% 0.51% 110.57
0.5 12 0.68% 0.68% 75.18
0.5 15 0.83% 0.83% 70.7
0.5 17 0.99% 0.98% 53.35
0.5 20 0.87% 0.87% 60.83
0.75 10 0.54% 0.47% 155.62
0.75 12 0.58% 0.53% 100.4
0.75 15 0.61% 0.58% 104.32
0.75 17 0.83% 0.79% 76.22
0.75 20 0.91% 0.88% 72.5
1 10 1.58% 0.73% 201.72
1 12 1.25% 0.57% 120.13
1 15 1.31% 0.86% 105.27
1 17 1.24% 0.92% 121.32
1 20 1.16% 0.87% 83.85
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Datasets

We select some large scale datasets that cannot be solved directly by SOS-SDP:

Dataset N D K |C1| . . . |CK |
Abalone 4,177 10 3 1,308 1,341 1,528
Facebook 7,050 13 3 218 2,558 4,274
Frogs 7,195 22 4 605 670 2,367 3,553
Electric 10,000 12 3 2,886 3,537 3,577
Pulsar 17,898 8 2 2,057 15,841

Table: Characteristics of real-world datasets.

▶ Each dataset has been tested for 5 different values of the number of anticlusters
T , depending on the number of data points N and on the size of the clusters of
the initial solution.

▶ The choice of T is influenced by two key requirements: (i) the size of each
anticluster must be tractable, i.e., less than 1,000 data points; (ii) each cluster
must be adequately represented in each anticluster

▶ The smallest instance Abalone was solved exactly in 2.6 hours
▶ Solving an instance of around 1,000 data points to global optimality requires

several hours of computational time
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Results on real world datasets

Inst (K) T γ LB (%) γUB (%) γ+ (%) MILP (s) Heur (s) SOS (s) Time (min)

Ab (3)

4 0.003 0.001 0.001 0 172 424 10
5 0.007 0.001 0.001 0 154 314 8
6 0.004 0.001 0.001 0 205 213 7
8 0.009 0.001 0.001 0 546 198 12

10 0.004 0.001 0.002 0 591 158 12

El (3)

10 2.880 0.460 0.001 2 1,384 5,467 114
15 2.198 0.757 0.001 4 1,759 6,417 136
20 2.329 0.944 0.001 9 5,118 3,915 151
25 2.482 1.270 0.002 21 5,062 3,218 138
30 2.837 1.393 0.003 45 6,856 2,248 152

FB (3)

7 2.428 0.321 0.014 0 1,694 4,813 108
8 2.881 0.923 0.029 1 1,937 3,155 85

10 3.820 2.107 0.034 1 2,439 4,130 110
13 5.157 3.306 0.093 1 3,155 2,423 93
18 7.639 6.373 0.285 5 4,343 2,349 112

Frogs (4)

8 5.147 2.008 1.824 1 2,032 5,558 127
10 4.824 2.252 1.807 1 2,443 2,639 85
13 4.121 1.881 1.795 4 3,202 2,217 90
15 4.339 2.397 1.788 9 3,714 1,885 93
16 4.131 2.323 1.780 10 3,849 1,758 94

Pulsar (2)

18 2.625 0.165 0.001 7 4,059 19,012 385
20 2.727 0.206 0.002 7 4,884 19,502 407
25 2.562 0.020 0.002 7 6,031 11,727 296
30 2.390 0.159 0.002 8 7,275 10,435 295
35 2.274 0.524 0.003 7 8,523 7,873 273
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Results

(a) Abalone (b) Facebook (c) Pulsar

(d) Frogs (e) Electric

Figure: Performance comparison for different numbers of anticlusters. The bar chart represents
the lower bound gap (γLB), while the black line with markers indicates the total computation
time in minutes (Time (min)).
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Conclusions and future work

1 The gap is in general pretty good, and would be amazing if we could certify the
optimality of the solutions of the single anticlusters

2 When the number of anticlusters changes the lower bound can fluctuate, on some
instances it tends to increase when the number of partitions increases..should we
optimize more? The answer seems to be NO

3 The good news is that now we can tackle much larger instances, proving gaps
lower than 5%

4 Can we do something exact for the anticlustering problem? Work in progress...
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optimize more? The answer seems to be NO

3 The good news is that now we can tackle much larger instances, proving gaps
lower than 5%

4 Can we do something exact for the anticlustering problem? Work in progress...
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