Sparse Integer Solutions and Approximations

Stefan Kuhlmann

ETH Zürich

Mixed Integer Programming European Workshop Clermont-Ferrand, France July, 2025

What is Sparsity?

Consider a matrix $\mathbf{A} \in \mathbb{Z}^{m \times n}$ and $\mathbf{x} \in \mathbb{Z}^n_{\geq 0}$ such that

$$b = Ax$$
.

Suppose |supp(x)| = "#nonzero entries" is large.

Does there exist $y \in \mathbb{Z}_{\geq 0}^n$ such that b = Ay with small $|\operatorname{supp}(y)|$?

Why you might care?

- In practice, sparse solutions are preferred.
- Sparse solutions often give fast(er) algorithms: Reduces problems with many variables to subproblems with fewer variables.

What is Known?

Consider a matrix $\mathbf{A} \in \mathbb{Z}^{m \times n}$ and $\mathbf{x} \in \mathbb{Z}^n_{\geq 0}$ such that

$$b = Ax$$
.

Suppose |supp(x)| = "#nonzero entries" is large.

Does there exist $y \in \mathbb{Z}_{\geq 0}^n$ such that b = Ay with small $|\operatorname{supp}(y)|$?

In terms of m and $\|\mathbf{A}\|_{\infty}$:

$$|\mathsf{supp}(\boldsymbol{y})| \lesssim \mathcal{O}(m \cdot \log_2(c \cdot \sqrt{m} \cdot \|\boldsymbol{A}\|_{\infty}))$$

(Eisenbrand, Shmonin '06; Aliev, De Loera, Oertel, O'Neill '17; Berndt, Jansen, Klein '21,...)

This tight up to the constant c!

What is Known?

Consider a matrix $\mathbf{A} \in \mathbb{Z}^{m \times n}$ and $\mathbf{x} \in \mathbb{Z}^n_{\geq 0}$ such that

$$b = Ax$$
.

Suppose |supp(x)| = "#nonzero entries" is large.

Does there exist $y \in \mathbb{Z}_{\geq 0}^n$ such that b = Ay with small $|\operatorname{supp}(y)|$?

In terms of determinants of A:

$$|\mathsf{supp}(\mathbf{y})| \leq m + \log_2(\sqrt{\det \mathbf{A} \mathbf{A}^{\top}})$$

(Aliev, Averkov, De Loera, Oertel, O'Neill '17 & '21; Lee, Paat, Stallknecht, Xu '20; Gribanov, Shumilov, Malyshev, Pardalos '24,...)

What is the Plan for Today?

1. Discuss a novel bound in terms of Δ , the largest subdeterminant \boldsymbol{A} :

$$|\mathsf{supp}(\boldsymbol{y})| \leq m + \mathcal{O}(\Delta^2).$$

(ongoing work with Robert Weismantel)

2. Discuss a more general problem: for a fixed k < n, can we find $\mathbf{y} \in \mathbb{Z}_{>0}^n$ with $|\operatorname{supp}(\mathbf{y})| \le k$ such that

$$\boldsymbol{b} \approx \boldsymbol{A} \boldsymbol{y}$$
?

(jointly with Timm Oertel and Robert Weismantel (IPCO 2025))

1. A Novel Upper Bound

Folklore

Linear programs: Finding an optimal solution x^* to a linear program with

$$Ax = b, x \ge 0$$

can be done efficiently (polynomial time) and

$$|\operatorname{supp}(\boldsymbol{x}^*)| \leq m.$$

Integer linear programs: Finding an optimal solution z^* to the corresponding integer linear program is difficult (NP-hard) and z^* has more complicated structure than x^* .

A Novel Upper Bound

Let Δ be the largest full rank subdeterminant of **A**.

Theorem (jointly with Weismantel)

For each (feasible) integer linear program defined by $\mathbf{A}\mathbf{x}=\mathbf{b},\mathbf{x}\geq\mathbf{0}$, there exists an optimal solution \mathbf{z}^* such that

$$|\operatorname{supp}(\boldsymbol{z}^*)| \leq m + f(\Delta),$$

where
$$\Delta - 1 \le f(\Delta) \le \left\lceil \frac{\Delta - 1}{2} \right\rceil \cdot (\Delta - 1)$$
.

- 1. f(1) = 0: $|supp(z^*)| \le m$ (Hoffmann, Kruskal '56),
- 2. f(2) = 1: $|supp(z^*)| \le m + 1$ (Veselov, Chirkov '09),
- 3. f(3) = 2: $|supp(z^*)| \le m + 2$ (new!).

In general:

 z^* lies on a face of dimension at most $f(\Delta)$ of Ax = b, $x \ge 0$.

What is the New Idea?

ightharpoonup Goal: Let Δ be the largest full rank subdeterminant of $m{A}$, then

$$|\mathsf{supp}(\mathbf{\textit{z}}^*)| \leq \textit{m} + \left\lceil \frac{\Delta - 1}{2} \right\rceil \cdot (\Delta - 1).$$

- Already known approach: Find $\mathbf{y} \in \{-1, 0, 1\}^n$ s.t. $\mathbf{A}\mathbf{y} = \mathbf{0}$.
- In general, y does not exist.

y exists when the number of variables is large and Δ is fixed!

$$\begin{pmatrix} 1 & -1 & & & \\ & 1 & -1 & & \\ & & \ddots & \ddots & \\ & & & 1 & -1 \\ -1 & & & & 1 \end{pmatrix}$$

2. Beyond Sparse Exact Solutions

Beyond Sparsity

Consider a matrix $\mathbf{A} \in \mathbb{Z}^{m \times n}$ and $\mathbf{x} \in \mathbb{Z}^n_{>0}$ such that $\mathbf{b} = \mathbf{A}\mathbf{x}$.

Fix
$$k < n$$
. Does there exist $y \in \mathbb{Z}_{\geq 0}^n$ with $|\operatorname{supp}(y)| \leq k$ such that $b \approx Ay$?

Goal:

Understand the trade-off between sparsity and feasibility.

Our key finding:

Approximation error decreases exponentially as $k \rightarrow n$.

Theorem (jointly with Oertel and Weismantel)

Given $\mathbf{A} \in \mathbb{Z}^{m \times n}$, $\mathbf{x} \in \mathbb{Z}^n$, $\mathbf{b} = \mathbf{A}\mathbf{x}$, there exist $\mathbf{y} \in \mathbb{Z}^n$ with $|\text{supp}(\mathbf{y})| \le k$ such that

$$\|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{y}\|_{\infty} \leq \frac{1}{2^{k-m+1}} \cdot \delta(\boldsymbol{A})$$

Proof sketch:

Theorem (jointly with Oertel and Weismantel)

Given $\mathbf{A} \in \mathbb{Z}^{m \times n}$, $\mathbf{x} \in \mathbb{Z}^n$, $\mathbf{b} = \mathbf{A}\mathbf{x}$, there exist $\mathbf{y} \in \mathbb{Z}^n$ with $|\text{supp}(\mathbf{y})| \le k$ such that

$$\|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{y}\|_{\infty} \leq \frac{1}{2^{k-m+1}} \cdot \delta(\boldsymbol{A})$$

Proof sketch:

Theorem (jointly with Oertel and Weismantel)

Given $\mathbf{A} \in \mathbb{Z}^{m \times n}$, $\mathbf{x} \in \mathbb{Z}^n$, $\mathbf{b} = \mathbf{A}\mathbf{x}$, there exist $\mathbf{y} \in \mathbb{Z}^n$ with $|\text{supp}(\mathbf{y})| \le k$ such that

$$\|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{y}\|_{\infty} \leq \frac{1}{2^{k-m+1}} \cdot \delta(\boldsymbol{A})$$

Proof sketch: Add a new vector.

Theorem (jointly with Oertel and Weismantel)

Given $\mathbf{A} \in \mathbb{Z}^{m \times n}$, $\mathbf{x} \in \mathbb{Z}^n$, $\mathbf{b} = \mathbf{A}\mathbf{x}$, there exist $\mathbf{y} \in \mathbb{Z}^n$ with $|\text{supp}(\mathbf{y})| \le k$ such that

$$\|oldsymbol{b} - oldsymbol{A}oldsymbol{y}\|_{\infty} \leq rac{1}{2^{k-m+1}} \cdot \delta(oldsymbol{A})$$

Proof sketch: Add a new vector.

m=1: From n to n-1

Let $\mathbf{a}^{\top} = (a_1, \dots, a_n)$, $\mathbf{x} \in \mathbb{Z}_{>0}^n$, $|\mathsf{supp}(\mathbf{x})| = n$, and $b = \mathbf{a}^{\top} \mathbf{x}$.

Consider $b = a_1 + ... + a_n$. There are 2^{n-1} subsums (ignore a_1).

m=1: From n to n-1

Let $\mathbf{a}^{\top} = (a_1, \dots, a_n)$, $\mathbf{x} \in \mathbb{Z}_{\geq 0}^n$, $|\operatorname{supp}(\mathbf{x})| = n$, and $b = \mathbf{a}^{\top} \mathbf{x}$.

Theorem (jointly with Oertel and Weismantel)

There exists $\mathbf{y} \in \mathbb{Z}_{\geq 0}^n$ with $|\operatorname{supp}(\mathbf{y})| \leq k$ such that

$$\left| \boldsymbol{a}^{\top} \boldsymbol{y} - b \right| \leq \left(\frac{1}{2^{k-1}} - \frac{1}{2^{n-1}} \right) \cdot a_1.$$

This bound is tight when k = n - 1.

Number of **incomparable** boxes $\approx \text{size}(\boldsymbol{b})^{m-1}$.

m > 2

Let
$$\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$$
. Fix $\mathbf{B} = (\mathbf{a}_1, \dots, \mathbf{a}_m)$ with $\mathbf{a}_i \in \text{pos}\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$.

Theorem (jointly with Oertel and Weismantel)

There exists $\mathbf{y} \in \mathbb{Z}_{\geq 0}^n$ with $|\operatorname{supp}(\mathbf{y})| \leq k$ such that

$$\| oldsymbol{b} - oldsymbol{A} oldsymbol{y} \|_{P(oldsymbol{B})} \leq rac{1}{2^{rac{1}{m}} - 1} \cdot \left(rac{1}{2^{rac{k-m}{m}}} - rac{1}{2^{rac{n-m}{m}}}
ight) \cdot \mathit{size}(oldsymbol{b})^{rac{m-1}{m}}$$

Important step:

It suffices to consider only finitely many b!

From this, we get

$$\operatorname{size}(\boldsymbol{b}) \leq \max \|\boldsymbol{a}_i\|_{P(\boldsymbol{B})} \cdot |\det \boldsymbol{B}|$$
.

Next Steps

1. Better bounds when k is small, e.g., $k = \mathcal{O}(m)$ or even k = 3, m = 1.

Theorem (jointly with Oertel and Weismantel)

There exists $\mathbf{y} \in \mathbb{Z}^n_{>0}$ with $|\mathsf{supp}(\mathbf{y})| \leq 2$ such that

$$\left| \boldsymbol{a}^{\top} \boldsymbol{y} - \boldsymbol{b} \right| \leq 0.2901 \dots a_1.$$

This bound is tight.

2. What is possible to compute in polynomial time, where *k* is part of the input?

Thanks for your attention!