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hG) = max{% : (A, B) biindependent in G}  ~» Complexity?
(Question of Vallentin, 2020)

v

Definition (Balanced analogs)

A pair (A, B) is balanced if |A| = |B|.

Define the balanced parameters a,,1(G), gpa1(G), hia(G),
where we optimize over balanced biindependent pairs.
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v

Lemma (Links to bipartite graphs)

Let G = (V,E) be a (general) graph.
e The (extended) bipartite double B (G) of G has bipartition V U V',
and edges {i,5'},{j,i'} for {i,j} € E, and {i,'} fori € V.
o A pair (A, B) of disjoint subsets of V' is biindependent in G
<= (A, B’) is biindependent in the bipartite graph By(G).
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Some applications

@ Computing the maximum number of nodes in a balanced
biclique has applications, e.g., to VLSI design [Al-Yamani et al.’'07,
Tohhory'06], for analysis of biological data [Yang et al.’05], protein
interactions modeling (Mukhopadhyay et al.’14]

~ parameter apa(Bo(G))
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interactions modeling (Mukhopadhyay et al.’14]

~ parameter apa(Bo(G))

@ Computing the maximum number of edges in a biclique in a
bipartite graph relates to the rectangle covering bound for a
nonnegative matrix, and thus to bounding the nonnegative rank

~> parameter g(G)

@ Computing the maximum number of nodes in a balanced
biindependent pair in a bipartite graph relates to product-free
sets in groups

~» parameters ap, (G) and h(G)

This connection was communicated to us by Frank Vallentin (2020)
and motivated our research.

A few details in next slide.
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If A C T is product-free, then the pair (A, A) (of copies of A in V4, V3)
is balanced biindependent in G.

o Hence, [2/A] < ana(G) <4-1(G)|

e Using the eigenvalue bound | 7(G) < | % (see later)
and the relation | A\2(A¢g) < \A|<|]£\AI , where k is the min dimension of

a nontrivial representation of I'

sharpening Gower's bound | p(I") < IJIF/L

we get | o(I') < 975
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RELATIONS BETWEEN

THE (BALANCED) PARAMETERS
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a(G) = max{|A| + |B| : (A, B) biindependent in G},
g(G) = max{|A| - |B] : (A, B) biindependent in G},

h(G) = max{ \‘j!ﬁ;l : (A, B) biindependent in G},

abal (G)
Jbal (G)

hiat (G)
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IN
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2
8

e The right most inequalities are based on |A| + |B| > 2./|A| - | B]:
|B
WG) = i < 5VIAT 1Bl < 3V/4(6)

3V3G) = 1VTATTB < 44|+ |B)) < a(G)

e The non-trivial implication follows from the fact that equality

|A| + |B| = 2,/|A| - |B] holds iff |A| = |B|.
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Moreover, o(G) = a1 (G) <= h(G) = 10(G) <= 1/9(CG) = +a(G).

Theorem (L-Polak-Vargas, MOR 2025)

For a bipartite graph G, testing whether a(G) = a1 (G) is an
NP-complete problem.

Hence, it is NP-hard to compute h(G) and g(G).
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SEMIDEFINITE AND EIGENVALUE
BOUNDS
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Semidefinite bounds
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1
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Semidefinite bounds

hG) < 5/9(G) < 2a(G) | for G = (V1 U Va, E) bipartite graph
, . 0o J . .
Define the (V1, V2)-block matrix C' = 7 o) with J all-ones matrix

Definition (Upper bounds 1(G) < h;(G) and ¢(G) < ¢1(G))
hi(G) = )grggg/{(C,X} X -0, Tr(X) =1, X;;, =0 ({1,j} € E)}

56 = s {0 (o) ") 20X =0 (iay e )

Pf: (A, B) biindependent ~ z = xAYB ~ X =z

[Al|B]

. is feasible for hy(G), with value TATTIB]

X
Tr(X)
e X is feasible for g1 (&), with value |A| - |B|
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hi(G) = max {(C,X): X =0, Tr(X) =1, X;; =0 ({1,j} € E)}
Xesv

Define the (V1, V2)-block matrix C' = < ) with J all-ones matrix

06 = max (€30 s (g ey X ) 0% =0 () € H)

Compare with Lovasz theta number (for any G):

IG) = )2%)3{<J’X> X =0, Tr(X) =1, X;; =0 ({3,5} € E})
1 diag(X)T

1as1(G):)?éaé>$/{(I,X>:<diag(X) v )zo,Xij=0({i7j}e )}
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Semidefinite bounds

hG) < 5/9(G) < 2a(G) | for G = (V1 U Va, E) bipartite graph

PN

0 J
J 0
Definition (Upper bounds 1(G) < h;(G) and ¢(G) < ¢1(G))

Define the (V1, V2)-block matrix C' = < ) with J all-ones matrix

h(G) = &%&{(C,X} X -0, Tr(X) =1, X;;, =0 ({1,j} € E)}

56 = s {0 (o) ") 20X =0 (iay e )

Compare with Lovasz theta number (for any G):

Y(G) = max {(J,X): X =0, Tr(X) =1, X;; =0 ({4,j} € E})

Xesv
1 (6) = g () (o) ) = 0X =0 (i) € )

Recall: a(G) < 9(G) = lasi (G), with equality if G is bipartite
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Semidefinite bounds

hG) < 5/9(G) < 2a(G) | for G = (V1 U Va, E) bipartite graph

PN

0 J
J 0
Definition (Upper bounds 1(G) < h;(G) and ¢(G) < ¢1(G))

Define the (V1, V2)-block matrix C' = < ) with J all-ones matrix

h(G) = &%&{(C,X} X -0, Tr(X) =1, X;;, =0 ({1,j} € E)}

91(G) = max {(C. X) : ( Ling( ) diag)((X)T) = 0,Xy; =0 ({i.j} € H)}

Compare with Lovasz theta number (for any G):

Y(G) = max {(J,X): X =0, Tr(X) =1, X;; =0 ({4,j} € E})

Xesv
1 (6) = g () (o) ) = 0X =0 (i) € )

Note: Replace C by J in hy (resp., by I in g1) ~ get ¥ (resp., las;).

11/18



Relations between the semidefinite bounds
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Relations between the semidefinite bounds

h@) < $/9(G) < 1alG)| [(G) < m(G)] [9(G) < (@)

Theorem

For any bipartite graph G

h(G) < | 5v/a(@) < (G) <

91(G) | <

a(G) = 19(G)

N[
W=

e So, the SDP bounds behave like the combinatorial parameters
e 111 (@) provides the best bound, even for g(G)
e Strict inequality /1, (G) < 5+/¢1(G) may hold

o lf Gis Ky migus a perfect matching (n > 5), h = % g=1,a=n
hy = % g1 = m that we compute via the eigenvalue reformulations
(see later )

12/18



1

2

e For the inequality

About the proofs of

9(G) < (G) < 3v/91(G)

5V 9(G) < hi(G)

Use the dual semidefinite formulation of /1, (G):

hi(G)= " min
AeER,ZeSV

N M+Z-C=0, Z;=0(i=4{i,j} € E)}
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About the proofs of
3V 9(G) < (G) < 5v/a1(G)

2

e For the inequality | 5/g(G) < hi(G)

Use the dual semidefinite formulation of /1, (G):

hi(G) = Ae]&igsvu M+ Z-C0=0, Z;=0(i=31{ij} € E)}

and show that A > 1. /|A| - |B| if (4, B) is a biindependent pair,
by considering the principal submatrix of A\l + 7 — (' indexed by AU B.
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About the proofs of
3V 9(G) < (G) < 5v/a1(G)

2 2

e For the inequality | 5/g(G) < hi(G)

Use the dual semidefinite formulation of /1, (G):

hi(G) = Ae&igsvu M+ Z-C0=0, Z;=0(i=31{ij} € E)}

e For the inequality | b1 (G) < %\/gl((}) , the proof is somewhat analog

to the classical proof for showing ‘ Y(G) < las1(G) ‘ but more involved

e In comparison, the dual formulation of ¢;(G) reads:

A u'l /2

_ . i o - P PR T
9@ = min  {}: (u/Z Diag(u) —C+Z> =0, Zi =0 =j{i.jt € B
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Eigenvalue bounds

hG) < 51/9(G) <

a(Q)

N
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Assume G is bipartite r-regular, |Vi| = [V2| = n, and let Ay be the
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Definition (Eigenvalue bounds /., (G) and geis(G))

Assume G is bipartite r-regular, |Vi| = [V2| = n, and let Ay be the
second largest eigenvalue of the adjacency matrix Ag. Then,

h(G) < heig(G) = 5524y, 91(G) < geig(G),
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Geig(G) = ( URS ) if r <32,  Geig(G) 12 otherwise.
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Eigenvalue bounds

hG) < 1/9(G) < 2a(@)

N

Definition (Eigenvalue bounds /., (G) and geis(G))

Assume G is bipartite r-regular, |Vi| = [V2| = n, and let Ay be the
second largest eigenvalue of the adjacency matrix Ag. Then,

h(G) < heig(G) = 5524y, 91(G) < geig(G),

2
Geig(G) = ( LY ) if r <32, Gein(G) = S(’ff)‘/\i) otherwise.

)\2 +7"

Moreover, equality /i (G) = heig(G) if G is edge-transitive,
and g1(G) = geig(G) if G is vertex- and edge-transitive.
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Eigenvalue bounds

hG) < 150G <

a(Q)

N

Definition (Eigenvalue bounds /., (G) and geis(G))

Assume G is bipartite r-regular, |Vi| = |V2| = n, and let Ay be the
second largest eigenvalue of the adjacency matrix Ag. Then,

hi(G) < heig(G) = g(fjir)v g1(G) < geig(G)a

2 . nz .
Geig(G) = (/\’;ﬁfr) if r <32, Gein(G) = 8(7‘—)\)\22) otherwise.

Moreover, equality /i (G) = heig(G) if G is edge-transitive,
and g1(G) = geig(G) if G is vertex- and edge-transitive.

Key proof idea: Use the dual semidefinite programs and restrict to
symmetric solutions: Z = tAg, u = se

14/18



Eigenvalue bounds

hG) < 1/9(G) < 2a(@)

N

Definition (Eigenvalue bounds /., (G) and geis(G))

Assume G is bipartite r-regular, |Vi| = [V2| = n, and let Ay be the
second largest eigenvalue of the adjacency matrix Ag. Then,

h(G) < heig(G) = 5524y, 91(G) < geig(G),

2
Geig(G) = ( nA2 ) if 7 <3Xa, geig(G) = 8(2%\/\22) otherwise.

)\2 +7"

Moreover, equality /i (G) = heig(G) if G is edge-transitive,
and ¢1(G) = geig(G) if G is vertex- and edge-transitive.

Lemma (Relation between the eigenvalue bounds)

We have:  hei,(G) < %\/gcig(G)
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Relation to Haemers spectral bound

Haemers (2003) studied bicliques and biindependent pairs in general
graphs.

Proposition (Link to a bound of Haemers (2003))

Let G=(V,E) agraph,n=1|V|, and 0 = p1 < po < ... < u, the
eigenvalues of the Laplacian of G. Let By((G) be the extended bipartite
double of G.
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Relation to Haemers spectral bound

Haemers (2003) studied bicliques and biindependent pairs in general
graphs.

Proposition (Link to a bound of Haemers (2003))

Let G=(V,E) agraph,n=1|V|, and 0 = p1 < po < ... < u, the
eigenvalues of the Laplacian of G. Let By((G) be the extended bipartite
double of G. Then,

% 9(Bo(G)) < hi(Bo(G)) < 3(1 - B2

Hn

Moreover, equality hy(Bo(G)) = (1 —
edge-transitive.

L’J) holds if G is vertex- and

Recall: ¢(By(()) is the maximum edge-cardinality of a biclique in G.
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Bounds for the balanced parameters

Recall: | 2,01 (G) = 2/ g0 (G) = Tabal(G)
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Bounds for the balanced parameters

Recall: hbal(G) = %\/gbal(G) = iabal(G)

e For G bipartite and f = x"* — x"2, the constraint fT2 = 0 models
balanced pairs.

e Adding the constraints (ffT, X) = 0 or (Diag(f), X) = 0 to the
formulations of h1, g1, 9 may lead to distinct parameters.

e However, all natural symmetrizations of these bounds do not improve
the spectral parameter iy (G).
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Q. has vertex set V = {0,1}", with an edge {u,v} if dg(u,v) = 1.
Q@ is bipartite, with V' = Voyen U Voda.
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Q@ is bipartite, with V' = Voyen U Voda.
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e Upper bound:
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Example: The Hamming cube @),

Q. has vertex set V = {0,1}", with an edge {u,v} if dg(u,v) = 1.
Q@ is bipartite, with V' = Voyen U Voda.

’ Question: What is the value of m,al(Q,.)?‘

e Upper bound: | o, (Q,) < 4-h(Q,) =2""12=2 | (eigenvalue bound)

r—1

e Lower bound (via construction): ‘abal((g,,) >a(r—1) ‘ where

a(r) =2" — (,7/2) for even r, a(r) = 2a(r — 1) for odd r

is the A307768 OEIS sequence, with values
2, 4, 10, 20, 44, 88, 186, 372 for r = 2,3,4,5,6,7,8,9

e Hence, ‘aba](Q,w) ~a(r—1) ‘ for large r.

Conjecture (L, Polak, Vargas 2025)
apa (@) = a(r — 1) for all r. J

We show that this is true for r < 13 (using higher order Lasserre bound)
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Conclusions

@ Computing h(G) and g(G) are NP-hard problems.

@ The bounds hi(G) and ¢;(G) are the first bounds in a Lasserre-type
hierarchy, with finite convergence in a(G) steps.

@ We give simpler, eigenvalue bounds that coincide with h;(G) and
91(G) for transitive graphs (and relate them to earlier bounds of
Haemers and Hoffman).
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Conclusions

Computing h(G) and g(G) are NP-hard problems.

The bounds hq(G) and g1 (G) are the first bounds in a Lasserre-type
hierarchy, with finite convergence in a(G) steps.

We give simpler, eigenvalue bounds that coincide with hy(G) and
91(G) for transitive graphs (and relate them to earlier bounds of

Haemers and Hoffman).

Open problem: Finding sharper spectral bounds for the balanced
parameters.

Open problem: Compute apa(Q;) for the Hamming cube, and
verify whether it is given by the sequence a(r — 1).

THANK YOU !
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