A Characterization of Unimodular Hypergraphs with Disjoint Hyperedges

Marco Caoduro¹ Meike Neuwohner² Joseph Paat¹

¹University of British Columbia

²London School of Economics and Political Science

MIP Europe 2025

The maximum absolute subdeterminant of $\mathbf{A} \in \mathbb{Z}^{m \times n}$ is $\Delta(\mathbf{A}) := \max\{|\det(\mathbf{B})| \colon \mathbf{B} \text{ is a square submatrix of } \mathbf{A}\}.$

The maximum absolute subdeterminant of $\mathbf{A} \in \mathbb{Z}^{m \times n}$ is $\Delta(\mathbf{A}) := \max\{|\det(\mathbf{B})| \colon \mathbf{B} \text{ is a square submatrix of } \mathbf{A}\}.$

totally unimodular (TU) matrix: $\Delta(A) \le 1$

The maximum absolute subdeterminant of $\mathbf{A} \in \mathbb{Z}^{m \times n}$ is $\Delta(\mathbf{A}) := \max\{|\det(\mathbf{B})| : \mathbf{B} \text{ is a square submatrix of } \mathbf{A}\}.$

totally unimodular (TU) matrix: $\Delta(A) \le 1$

If **A** is TU and $b \in \mathbb{Z}^m$, the polyhedra $\{x : Ax \leq b\}$ and $\{x : Ax = b, x \geq 0\}$ are integral.

The maximum absolute subdeterminant of $\mathbf{A} \in \mathbb{Z}^{m \times n}$ is $\Delta(\mathbf{A}) := \max\{|\det(\mathbf{B})| : \mathbf{B} \text{ is a square submatrix of } \mathbf{A}\}.$

totally unimodular (TU) matrix: $\Delta(A) \leq 1$

If **A** is TU and $b \in \mathbb{Z}^m$, the polyhedra $\{x : Ax \leq b\}$ and $\{x : Ax = b, x \geq 0\}$ are integral.

Seymour's decomposition theorem (Seymour '80):

Each TU matrix can be "build up" from (co-)network matrices and two 5×5 -matrices.

The maximum absolute subdeterminant of $\mathbf{A} \in \mathbb{Z}^{m \times n}$ is $\Delta(\mathbf{A}) := \max\{|\det(\mathbf{B})| : \mathbf{B} \text{ is a square submatrix of } \mathbf{A}\}.$

totally unimodular (TU) matrix: $\Delta(A) \leq 1$

If **A** is TU and $b \in \mathbb{Z}^m$, the polyhedra $\{x : Ax \leq b\}$ and $\{x : Ax = b, x \geq 0\}$ are integral.

Seymour's decomposition theorem (Seymour '80):

Each TU matrix can be "build up" from (co-)network matrices and two 5×5 -matrices.

Tutte's characterization of regular matroids (Tutte '58):

ightarrow characterization of matrices that can be signed to become TU via forbidden minors

The maximum absolute subdeterminant of $\mathbf{A} \in \mathbb{Z}^{m \times n}$ is $\Delta(\mathbf{A}) := \max\{|\det(\mathbf{B})| : \mathbf{B} \text{ is a square submatrix of } \mathbf{A}\}.$

totally unimodular (TU) matrix: $\Delta(A) \leq 1$

If **A** is TU and $b \in \mathbb{Z}^m$, the polyhedra $\{x : Ax \leq b\}$ and $\{x : Ax = b, x \geq 0\}$ are integral.

Seymour's decomposition theorem (Seymour '80):

Each TU matrix can be "build up" from (co-)network matrices and two 5×5 -matrices.

Tutte's characterization of regular matroids (Tutte '58):

 \rightarrow characterization of matrices that can be signed to become TU via forbidden minors

Truemper's characterization of almost TU matrices (Truemper '92): recursive description of the class of almost TU (i.e., minimally non-TU) matrices

A graph is a pair G = (V, E) of

- a finite set V of vertices and
- a finite multiset $E \subseteq \binom{V}{2}$ of **edges**.

The **incidence matrix** $M(G) \in \{0,1\}^{V \times E}$ of G is defined by $M(G)_{v,e} \begin{cases} 1, & v \in e \\ 0, & v \notin e \end{cases}$.

A graph is a pair G = (V, E) of

- a finite set V of vertices and
- a finite multiset $E \subseteq \binom{V}{2}$ of **edges**.

We call G unimodular if M(G) is TU.

The **incidence matrix** $M(G) \in \{0,1\}^{V \times E}$ of G is defined by $M(G)_{v,e} \begin{cases} 1, & v \in e \\ 0, & v \notin e \end{cases}$.

$$\begin{vmatrix} \{v_1, v_4\} & \{v_1, v_3\} & \{v_2, v_3\} & \{v_2, v_4\} & \{v_3, v_4\} \\ v_1 & 1 & 0 & 0 & 0 \\ v_2 & 0 & 0 & 1 & 1 & 0 \\ v_3 & 0 & 1 & 1 & 0 & 1 \\ v_4 & 1 & 0 & 0 & 1 & 1 \end{vmatrix}$$

A graph is a pair G = (V, E) of

- a finite set V of **vertices** and
- a finite multiset $E \subseteq \binom{V}{2}$ of **edges**.

We call G unimodular if M(G) is TU.

The **incidence matrix**
$$M(G) \in \{0,1\}^{V \times E}$$
 of G is defined by $M(G)_{v,e} \begin{cases} 1, & v \in e \\ 0, & v \notin e \end{cases}$.

$$\begin{cases} v_1, v_4 \} & \{v_1, v_3 \} & \{v_2, v_3 \} & \{v_2, v_4 \} & \{v_3, v_4 \} \\ v_1 & 1 & 0 & 0 & 0 \\ v_2 & 0 & 1 & 1 & 0 \\ v_3 & 0 & 1 & 1 & 0 & 1 \\ v_4 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Theorem (Grossman, Kulkarni, and Schochetman '95)

For a graph G with odd cycle packing number ocp(G), we have $\Delta(\mathbf{M}(G)) = 2^{ocp(G)}$. In particular, G is unimodular if and only if G is bipartite/ contains no odd cycle.

odd cycle packing number: maximum number of pairwise vertex-disjoint odd cycles

A graph is a pair G = (V, E) of

- a finite set V of vertices and
- a finite multiset $E \subseteq \binom{V}{2}$ of **edges**.

$$\mathrm{ocp} = 1$$

$$v_1$$

$$v_2$$

We call G unimodular if M(G) is TU.

The **incidence matrix** $M(G) \in \{0,1\}^{V \times E}$ of G is defined by $M(G)_{v,e} \begin{cases} 1, & v \in e \\ 0, & v \notin e \end{cases}$.

$$\begin{cases} v_1, v_4 \} & \{v_1, v_3 \} & \{v_2, v_3 \} & \{v_2, v_4 \} & \{v_3, v_4 \} \\ v_1 & 1 & 0 & 0 & 0 \\ v_2 & 0 & 1 & 1 & 0 \\ v_3 & 0 & 1 & 1 & 0 & 1 \\ v_4 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Theorem (Grossman, Kulkarni, and Schochetman '95)

For a graph G with odd cycle packing number ocp(G), we have $\Delta(\mathbf{M}(G)) = 2^{ocp(G)}$. In particular, G is unimodular if and only if G is bipartite/ contains no odd cycle.

(generalizes to mixed graphs $\triangleq \{0, \pm 1\}$ -matrices with ≤ 2 non-zeros per column)

A **graph** is a pair G = (V, E) of

- a finite set V of vertices and
- a finite multiset $E \subseteq \binom{V}{2}$ of **edges**.

$$ocp = 1$$

$$v_1$$

$$v_2$$

We call G unimodular if M(G) is TU.

The **incidence matrix** $M(G) \in \{0,1\}^{V \times E}$ of G is defined by $M(G)_{v,e} \begin{cases} 1, & v \in e \\ 0, & v \notin e \end{cases}$.

$$\begin{cases} \{v_1, v_4\} & \{v_1, v_3\} & \{v_2, v_3\} & \{v_2, v_4\} & \{v_3, v_4\} \\ v_1 & 1 & 0 & 0 & 0 \\ v_2 & 0 & 1 & 1 & 0 \\ v_3 & 0 & 1 & 1 & 0 & 1 \\ v_4 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Theorem (Grossman, Kulkarni, and Schochetman '95)

For a graph G with odd cycle packing number ocp(G), we have $\Delta(\mathbf{M}(G)) = 2^{ocp(G)}$. In particular, G is unimodular if and only if G is bipartite/ contains no odd cycle.

What about hypergraphs?

A **hypergraph** is a pair G = (V, E) of

- a finite set V of vertices and
- a finite multiset $E \subseteq 2^V$ of **hyperedges**.

We call G unimodular if M(G) is TU.

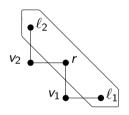
The incidence matrix $M(G) \in \{0,1\}^{V \times E}$ of G is defined by $M(G)_{v,e} \begin{cases} 1, & v \in e \\ 0, & v \notin e \end{cases}$.

General (directed) hypergraphs correspond to arbitrary $\{0,1\}$ -($\{0,\pm1\}$)-matrices.

Research question:

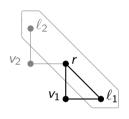
Can we obtain a **simple characterization** of unimodularity via **forbidden subhypergraphs** for a **special class** of hypergraphs?

A partial subhypergraph $H \subseteq_P G$ has the form H = G[U, F] := (U, F[U]), where $U \subseteq V$, $F \subseteq E$, and $F[U] := \{f \cap U : f \in F\}$.



ι.		, .			
	$\{r, v_1\}$	$\{v_1,\ell_1\}$	$\{r, v_2\}$	$\{v_2,\ell_2\}$	$\{r,\ell_1,\ell_2\}$
r	1	0	1	0	1]
v_1	1	1	0	0	0
ℓ_{1}	0	1	0	0	1
<i>V</i> 2	1 0 0	0	1	1	0
ℓ_2	0	0	0	1	1

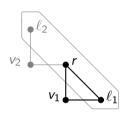
A partial subhypergraph $H \subseteq_P G$ has the form H = G[U, F] := (U, F[U]), where $U \subseteq V$, $F \subseteq E$, and $F[U] := \{f \cap U : f \in F\}$.



ι,		<u> </u>			
	$\{r, v_1\}$	$\{v_1,\ell_1\}$	$\{r, v_2\}$	$\{v_2,\ell_2\}$	$\{r,\ell_1,\ell_2\}$
r	1	0	1	0	1]
v_1	1	1	0	0	0
ℓ_{1}	0	1	0	0	1
V2	0	0	1	1	0
ℓ_2	0	0	0	1	1

Partial subhypergraphs of G correspond to submatrices of M(G).

A partial subhypergraph $H \subseteq_P G$ has the form H = G[U, F] := (U, F[U]), where $U \subseteq V$, $F \subseteq E$, and $F[U] := \{f \cap U : f \in F\}$.

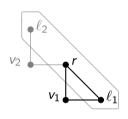


ι.		, .			
	$\{r, v_1\}$	$\{v_1,\ell_1\}$	$\{r, v_2\}$	$\{v_2,\ell_2\}$	$\{r,\ell_1,\ell_2\}$
r	Γ 1	0	1	0	1]
v_1	1	1	0	0	0
ℓ_{1}	0	1	0	0	1
V2	0	0	1	1	0
	0	0	0	1	1

Partial subhypergraphs of G correspond to submatrices of M(G).

 \Rightarrow If G is unimodular, then G cannot contain an odd cycle as a partial subhypergraph.

A partial subhypergraph $H \subseteq_P G$ has the form H = G[U, F] := (U, F[U]), where $U \subseteq V$, $F \subseteq E$, and $F[U] := \{f \cap U : f \in F\}$.

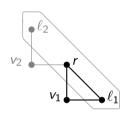


ι.		, .			
	$\{r, v_1\}$	$\{v_1,\ell_1\}$	$\{r, v_2\}$	$\{v_2,\ell_2\}$	$\{r,\ell_1,\ell_2\}$
r	「 1		1	0	1]
v_1	1	1	0	0	0
ℓ_{1}	0	1	0	0	1
V2	0	1 1 0	1	1	0
ℓ_2	0	0	0	1	1

Partial subhypergraphs of G correspond to submatrices of M(G).

 \Rightarrow If G is unimodular, then G cannot contain an odd cycle as a partial subhypergraph. Hypergraphs that do not contain an odd cycle are called **balanced**.

A partial subhypergraph $H \subseteq_P G$ has the form H = G[U, F] := (U, F[U]), where $U \subseteq V$, $F \subseteq E$, and $F[U] := \{f \cap U : f \in F\}$.



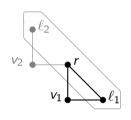
ι.) .			
	$\{r, v_1\}$	$\{v_1,\ell_1\}$	$\{r, v_2\}$	$\{v_2,\ell_2\}$	$\{r,\ell_1,\ell_2\}$
r	1		1	0	1]
v_1	1	1	0	0	0
ℓ_{1}	0	1	0	0	1
V2	0 0	0	1	1	0
ℓ_2	0	0	0	1	1

Partial subhypergraphs of G correspond to submatrices of M(G).

 \Rightarrow If G is unimodular, then G cannot contain an odd cycle as a partial subhypergraph. Hypergraphs that do not contain an odd cycle are called **balanced**.

Fact: Balanced hypergraphs with maximum hyperedge size ≤ 3 are unimodular.

A partial subhypergraph $H \subseteq_P G$ has the form H = G[U, F] := (U, F[U]), where $U \subseteq V$, $F \subseteq E$, and $F[U] := \{f \cap U : f \in F\}$.



($\{r, v_1\}$	$\{v_1,\ell_1\}$	$\{r, v_2\}$	$\{v_2,\ell_2\}$	$\{r,\ell_1,\ell_2\}$
r	「 1	0	1	0	1]
v_1	1	1	0	0	0
ℓ_{1}	0	1	0	0	1
V2	0 0	0	1	1	0
	0	0	0	1	1

Partial subhypergraphs of G correspond to submatrices of M(G).

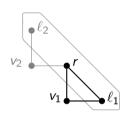
 \Rightarrow If G is unimodular, then G cannot contain an odd cycle as a partial subhypergraph.

Hypergraphs that do not contain an odd cycle are called **balanced**.

Fact: Balanced hypergraphs with maximum hyperedge size ≤ 3 are unimodular.

ightarrow follows from a characterization of balanced hypergraphs by Berge or a theorem by Camion

A partial subhypergraph $H \subseteq_P G$ has the form H = G[U, F] := (U, F[U]), where $U \subseteq V$, $F \subseteq E$, and $F[U] := \{f \cap U : f \in F\}$.



ι.		, .			
	$\{r, v_1\}$	$\{v_1,\ell_1\}$	$\{r, v_2\}$	$\{v_2,\ell_2\}$	$\{r,\ell_1,\ell_2\}$
r	Γ 1	0	1	0	1]
v_1	1	1	0	0	0
ℓ_{1}	0	1	0	0	1
V2	0 0	0	1	1	0
	0	0	0	1	1

Partial subhypergraphs of G correspond to submatrices of M(G).

 \Rightarrow If G is unimodular, then G cannot contain an odd cycle as a partial subhypergraph.

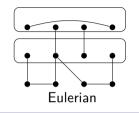
Hypergraphs that do not contain an odd cycle are called **balanced**.

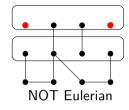
Fact: Balanced hypergraphs with maximum hyperedge size ≤ 3 are unimodular.

ightarrow follows from a characterization of balanced hypergraphs by Berge or a **theorem by Camion**

Camion's characterization of TU matrices (phrased in terms of hypergraphs)

A hypergraph is **Eulerian** if every vertex has even degree and every hyperedge has even size.





Theorem (Camion '65)

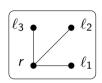
A hypergraph G is unimodular if and only if for every Eulerian $H \subseteq_P G$, $|\operatorname{supp}(\mathbf{M}(H))|$ is divisible by 4, where $\operatorname{supp}(\mathbf{M}(H)) := \{(v,e) \colon \mathbf{M}(H)_{v,e} = 1\}$.

In particular: G is unimodular \Leftrightarrow every Eulerian $H \subseteq_P G$ is unimodular

If every hyperedge in E(G) has size ≤ 3 :

G is unimodular \Leftrightarrow every graph $H \subseteq_P G$ is unimodular $\Leftrightarrow G$ contains no odd cycle

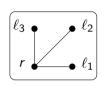
If G contains hyperedges of size \geq 4, forbidding odd cycles is not sufficient for unimodularity¹:



	$\{r,\ell_1\}$	$\{r,\ell_2\}$	$\{r,\ell_3\}$	$\{r,\ell_1,\ell_2,\ell_3\}$
r	1	1	1	1
ℓ_1	1	0	0	1
ℓ_2	0	1	0	1
ℓ_3	1 1 0 0	0	1	1

¹ example from (Schrijver '03)

If G contains hyperedges of size ≥ 4 , forbidding odd cycles is not sufficient for unimodularity¹:

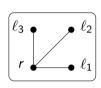


	$\{r,\ell_1\}$			$\{r,\ell_1,\ell_2,\ell_3\}$
r	$\lceil 1 \rceil$	1	1	1
ℓ_1	1	0	0	1
ℓ_2	0	1	0	1
ℓ_3	$\begin{bmatrix} & 1 \\ & 1 \\ & 0 \\ & 0 \end{bmatrix}$	0	1	1

disjoint hypergraph: hyperedges of size \geq 4 are pairwise disjoint ("hypergraph with hyperedges of size \leq 3 + hypermatching")

¹ example from (Schrijver '03)

If G contains hyperedges of size \geq 4, forbidding odd cycles is not sufficient for unimodularity¹:



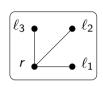
	$\{r,\ell_1\}$	$\{r,\ell_2\}$	$\{r,\ell_3\}$	$\{r,\ell_1,\ell_2,\ell_3\}$
r	$\lceil 1 \rceil$	1	1	1]
ℓ_{1}	1	0	0	1
ℓ_2	0	1	0	1
ℓ_3	$\begin{bmatrix} & 1 \\ & 1 \\ & 0 \\ & 0 \end{bmatrix}$	0	1	1

disjoint hypergraph: hyperedges of size \geq 4 are pairwise disjoint ("hypergraph with hyperedges of size \leq 3 + hypermatching")

Our result: For disjoint hypergraphs, forbidding odd cycles and partial subhypergraphs "similar to the one above" is sufficient to guarantee unimodularity.

¹ example from (Schrijver '03)

If G contains hyperedges of size \geq 4, forbidding odd cycles is not sufficient for unimodularity¹:



	$\{r,\ell_1\}$	$\{r,\ell_2\}$	$\{r,\ell_3\}$	$\{r,\ell_1,\ell_2,\ell_3\}$
r	[1	1	1	1
ℓ_{1}	1	0	0	1
ℓ_2	0	1	0	1
ℓ_3	1 1 0 0	0	1	1

disjoint hypergraph: hyperedges of size \geq 4 are pairwise disjoint ("hypergraph with hyperedges of size \leq 3 + hypermatching")

Our result: For disjoint hypergraphs, forbidding odd cycles and partial subhypergraphs "similar to the one above" is sufficient to guarantee unimodularity.

we call them odd tree houses

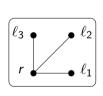
¹ example from (Schrijver '03)

Odd tree houses

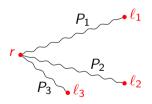
An **odd tree house** is a hypergraph consisting of the following:

- a hyperedge $e = \{r, \ell_1, \ell_2, \ell_3\}$ of size 4
- an odd $r-\ell_i$ -path P_i for $i \in [3]$

The paths $(P_i)_{i \in [3]}$ are pairwise edge-disjoint and do not share any vertex other than r.



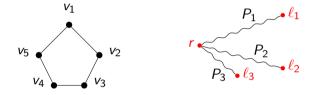
	$\{r,\ell_1\}$	$\{r,\ell_2\}$	$\{r,\ell_3\}$	$\{r,\ell_1,\ell_2,\ell_3\}$
r	1	1	1	1
ℓ_{1}	1	0	0	1
ℓ_2	0	1	0	1
ℓ_3	1 1 0 0	0	1	1



Observation: Let T be an odd tree house. $\Delta(M(T)) = 2$ and M(T) is almost TU.

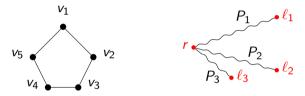
Theorem (Caoduro, N., Paat 25+)

Let G be a disjoint hypergraph. Then G is unimodular if and only if there does not exist $H \subseteq_P G$ that is an odd cycle or an odd tree house.

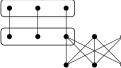


Theorem (Caoduro, N., Paat 25+)

Let G be a disjoint hypergraph. Then G is unimodular if and only if there does not exist $H \subseteq_P G$ that is an odd cycle or an odd tree house.

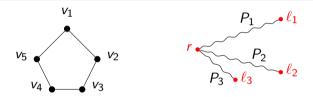


Incidence matrices of unimodular disjoint hypergraphs are, in general, neither network nor co-network matrices.

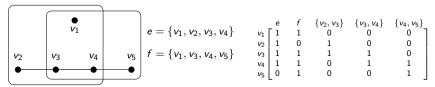


Theorem (Caoduro, N., Paat 25+)

Let G be a disjoint hypergraph. Then G is unimodular if and only if there does not exist $H \subseteq_P G$ that is an odd cycle or an odd tree house.

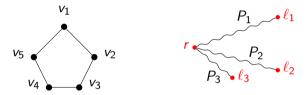


The result does not generalize to non-disjoint hypergraphs. (example from (Cornuéjols & Zuluaga '00))



Theorem (Caoduro, N., Paat 25+)

Let G be a disjoint hypergraph. Then G is unimodular if and only if there does not exist $H \subseteq_P G$ that is an odd cycle or an odd tree house.



The result naturally extends to disjoint directed hypergraphs (more details later).

Disjoint hypergraphs can be used to model **fairness constraints**, e.g., to structure individuals into non-overlapping groups based on protected attributes.

Disjoint hypergraphs can be used to model **fairness constraints**, e.g., to structure individuals into non-overlapping groups based on protected attributes.

Examples of problems that can be modeled as an IP whose constraint matrix is the incidence matrix of a disjoint hypergraph:

Disjoint hypergraphs can be used to model **fairness constraints**, e.g., to structure individuals into non-overlapping groups based on protected attributes.

Examples of problems that can be modeled as an IP whose constraint matrix is the incidence matrix of a disjoint hypergraph:

fixed-cardinality independent set

fixed-cardinality independent set: Given a graph G = (V, E), $w: V \to \mathbb{R}_{\geq 0}$ and $k \in \mathbb{N}$, find an independent set in G of size k of minimum weight or decide that none exists.

Disjoint hypergraphs can be used to model **fairness constraints**, e.g., to structure individuals into non-overlapping groups based on protected attributes.

Examples of problems that can be modeled as an IP whose constraint matrix is the incidence matrix of a disjoint hypergraph:

- fixed-cardinality independent set
- job interval selection

job interval selection: Given sets of intervals $(\mathcal{I}_i)_{i=1}^n$, select $I_i \in \mathcal{I}_i$ ("interval for job i") such that no two of the intervals I_1, \ldots, I_n overlap, or decide that's not possible.

Disjoint hypergraphs can be used to model **fairness constraints**, e.g., to structure individuals into non-overlapping groups based on protected attributes.

Examples of problems that can be modeled as an IP whose constraint matrix is the incidence matrix of a disjoint hypergraph:

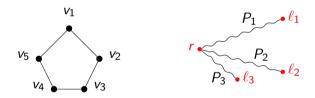
- fixed-cardinality independent set
- job interval selection
- fair representation by independent sets

fair representation by independent sets: Given a graph G=(V,E), a partition $V=V_1\dot{\cup}V_2\dot{\cup}\ldots\dot{\cup}V_k$ and $\alpha\geq 0$, decide whether there exists an independent set S with $|S\cap V_i|\geq \alpha\cdot |V_i|$ for $i\in [k]$.

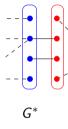
Our main result

Theorem (Caoduro, N., Paat 25+)

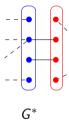
Let G be a disjoint hypergraph. Then G is unimodular if and only if there does not exist $H \subseteq_P G$ that is an odd cycle or an odd tree house.



Assume G^* is a disjoint hypergraph that contains no odd cycle or tree house, but is not unimodular.

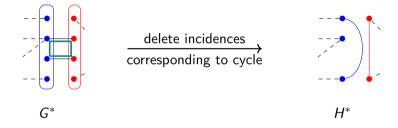


Assume G^* is a disjoint hypergraph that contains no odd cycle or tree house, but is not unimodular.

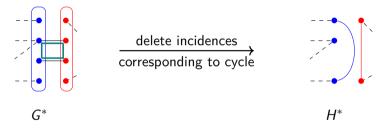


- \rightarrow Among all counterexamples, suppose G^* minimizes $|V(G^*)| + |E(G^*)|$.
- \rightarrow By Camion's theorem, G^* is Eulerian and $|\operatorname{supp}(\boldsymbol{M}(G^*))| \not\equiv 0 \mod 4$.

We try to make G^* smaller by 'removing' an even cycle to obtain H^* .



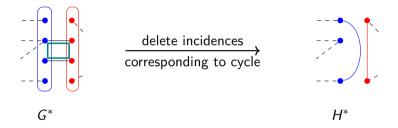
We try to make G^* smaller by 'removing' an even cycle to obtain H^* .



Then
$$H^*$$
 is Eulerian, $|\sup(M(H^*))| \not\equiv 0 \mod 4$ and $|V(H^*)| + |E(H^*)| < |V(G^*)| + |E(G^*)|$.

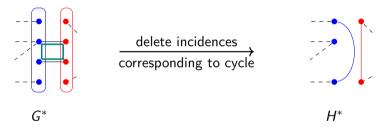
Goal: Show that H^* contains no odd cycle and no odd tree house.

We try to make G^* smaller by 'removing' an even cycle to obtain H^* .



Problem: H^* is **not** necessarily a **partial subhypergraph** of G^* , but only what we call a **quasi-subhypergraph** of G^* . \rightarrow odd cycle/ odd tree house in $H^* \not\Rightarrow$ odd cycle/odd tree house in G^*

We try to make G^* smaller by 'removing' an even cycle to obtain H^* .

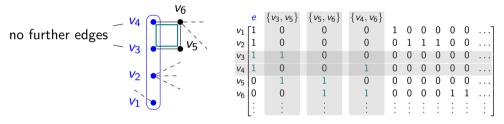


Solution: Remove a very structured even cycle that 'brings H^* as close to being a partial subhypergraph of G^* as possible'

Analyze the structure of **conflicts** to prove that if H^* contains an odd cycle/ odd tree house, then so does G^* .

Nice cycles

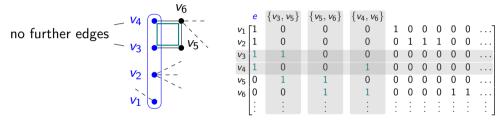
Imagine we could find an even cycle $C = G^*[U, F] \subseteq_P G^*$ with the following property: For each hyperedge $e \in E_{\geq 4}(G^*) \cap F$ and each $v \in e \cap U$, $\delta_{G^*}(v) \subseteq F$.



ightarrow 'removing' C results in a partial subhypergraph of G^*

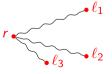
Nice cycles

Imagine we could find an even cycle $C = G^*[U, F] \subseteq_P G^*$ with the following property: For each hyperedge $e \in E_{\geq 4}(G^*) \cap F$ and each $v \in e \cap U$, $\delta_{G^*}(v) \subseteq F$.



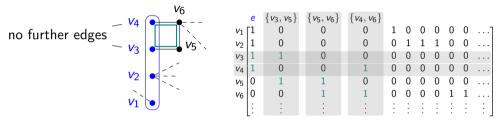
ightarrow 'removing' C results in a partial subhypergraph of G^*

Problem: such a cycle does not always exist



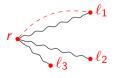
Nice cycles

Imagine we could find an even cycle $C = G^*[U, F] \subseteq_P G^*$ with the following property: For each hyperedge $e \in E_{\geq 4}(G^*) \cap F$ and each $v \in e \cap U$, $\delta_{G^*}(v) \subseteq F$.



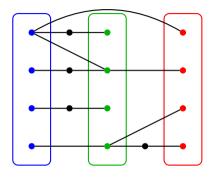
ightarrow 'removing' C results in a partial subhypergraph of G^*

nice cycle: even cycle $C = G^*[U, F] \subseteq_P G^*$ such that: For each hyperedge $e \in E_{\geq 4}(G^*) \cap F \setminus \{f_0\}$ and each $v \in e \cap U$, $\delta_{G^*}(v) \subseteq F$.



Properties of minimal counterexample G^* :

- G* is Eulerian.
- $|V(G^*)| = |E(G^*)|$
- $F^* := (V(G^*), E_2(G^*))$ is a forest.
- F^* has $|E_{\geq 4}(G^*)|$ components.

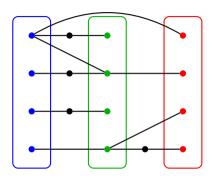


nice cycle: even cycle $G^*[U, F] \subseteq_P G^*$ s.t.: For each hyperedge $e \in E_{\geq 4}(G^*) \cap F \setminus \{f_0\}$ and each $v \in e \cap U$, $\delta_{G^*}(v) \subseteq F$.

Properties of minimal counterexample G^* :

- G^* is Eulerian.
- $|V(G^*)| = |E(G^*)|$
- $F^* := (V(G^*), E_2(G^*))$ is a forest.
- F^* has $|E_{\geq 4}(G^*)|$ components.

Constructing a nice cycle:



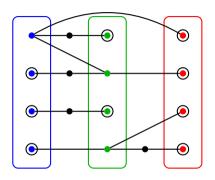
nice cycle: even cycle $G^*[U, F] \subseteq_P G^*$ s.t.: For each hyperedge $e \in E_{\geq 4}(G^*) \cap F \setminus \{f_0\}$ and each $v \in e \cap U$, $\delta_{G^*}(v) \subseteq F$.

Properties of minimal counterexample G^* :

- G^* is Eulerian.
- $|V(G^*)| = |E(G^*)|$
- $F^* := (V(G^*), E_2(G^*))$ is a forest.
- F^* has $|E_{\geq 4}(G^*)|$ components.

Constructing a nice cycle:

• $L := leaves of F^*$.



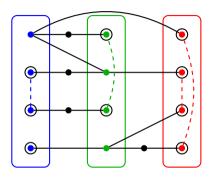
nice cycle: even cycle $G^*[U, F] \subseteq_P G^*$ s.t.: For each hyperedge $e \in E_{\geq 4}(G^*) \cap F \setminus \{f_0\}$ and each $v \in e \cap U$, $\delta_{G^*}(v) \subseteq F$.

Properties of minimal counterexample G^* :

- G* is Eulerian.
- $|V(G^*)| = |E(G^*)|$
- $F^* := (V(G^*), E_2(G^*))$ is a forest.
- F^* has $|E_{\geq 4}(G^*)|$ components.

Constructing a nice cycle:

- $L := \text{leaves of } F^*$.
- Replace each $e \in E_{\geq 4}(G^*)$ by a (near-)perfect matching in $e \cap L$.



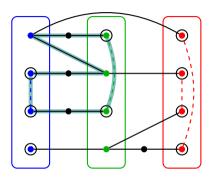
nice cycle: even cycle $G^*[U, F] \subseteq_P G^*$ s.t.: For each hyperedge $e \in E_{\geq 4}(G^*) \cap F \setminus \{f_0\}$ and each $v \in e \cap U$, $\delta_{G^*}(v) \subseteq F$.

Properties of minimal counterexample G^* :

- G* is Eulerian.
- $|V(G^*)| = |E(G^*)|$
- $F^* := (V(G^*), E_2(G^*))$ is a forest.
- F^* has $|E_{\geq 4}(G^*)|$ components.

Constructing a nice cycle:

- $L := \text{leaves of } F^*$.
- Replace each $e \in E_{\geq 4}(G^*)$ by a (near-)perfect matching in $e \cap L$.
- Find cycle \tilde{C} in resulting graph.



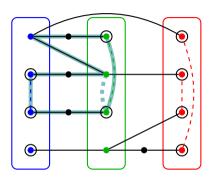
nice cycle: even cycle $G^*[U, F] \subseteq_P G^*$ s.t.: For each hyperedge $e \in E_{\geq 4}(G^*) \cap F \setminus \{f_0\}$ and each $v \in e \cap U$, $\delta_{G^*}(v) \subseteq F$.

Properties of minimal counterexample G^* :

- G^* is Eulerian.
- $|V(G^*)| = |E(G^*)|$
- $F^* := (V(G^*), E_2(G^*))$ is a forest.
- F^* has $|E_{\geq 4}(G^*)|$ components.

Constructing a nice cycle:

- $L := \text{leaves of } F^*$.
- Replace each $e \in E_{\geq 4}(G^*)$ by a (near-)perfect matching in $e \cap L$.
- Find cycle \tilde{C} in resulting graph.
- If \tilde{C} intersects a hyperedge in ≥ 3 vertices: shortcut



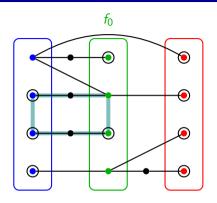
nice cycle: even cycle $G^*[U,F] \subseteq_P G^*$ s.t.: For each hyperedge $e \in E_{\geq 4}(G^*) \cap F \setminus \{f_0\}$ and each $v \in e \cap U$, $\delta_{G^*}(v) \subseteq F$.

Properties of minimal counterexample G^* :

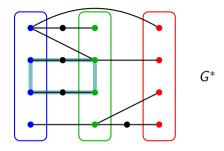
- G^* is Eulerian.
- $|V(G^*)| = |E(G^*)|$
- $F^* := (V(G^*), E_2(G^*))$ is a forest.
- F^* has $|E_{\geq 4}(G^*)|$ components.

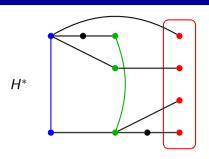
Constructing a nice cycle:

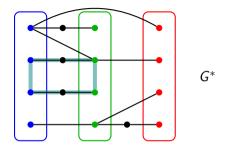
- $L := leaves of F^*$.
- Replace each $e \in E_{\geq 4}(G^*)$ by a (near-)perfect matching in $e \cap L$.
- ullet Find cycle $ilde{C}$ in resulting graph.
- If \tilde{C} intersects a hyperedge in ≥ 3 vertices: shortcut

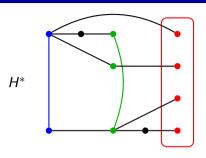


nice cycle: even cycle $G^*[U, F] \subseteq_P G^*$ s.t.: For each hyperedge $e \in E_{\geq 4}(G^*) \cap F \setminus \{f_0\}$ and each $v \in e \cap U$, $\delta_{G^*}(v) \subseteq F$.

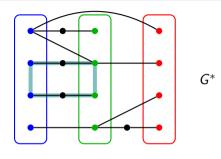


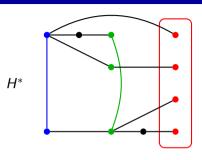






 H^* is not a partial subhypergraph of G^* , but a **quasi-subhypergraph** of G^* .

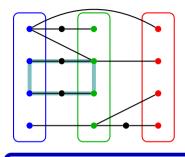




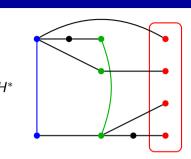
 H^* is not a partial subhypergraph of G^* , but a **quasi-subhypergraph** of G^* .

Quasi-subhypergraphs arise from partial subhypergraphs by the following operations:

- deleting vertices from hyperedges
- splitting a hyperedge into a hypermatching

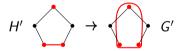


G



 (H, Φ) is a quasi-subhypergraph of G $((H, \Phi) \subseteq_Q G)$ if:

- H is a hypergraph with $V(H) \subseteq V(G)$
- $\Phi \colon E_{\geq 1}(H) \to E(G)$
- $f \subseteq \Phi(f)$ for all $f \in E_{\geq 1}(H)$
- ullet $\Phi^{-1}(e)$ is a hypermatching for all $e \in E(G)$





Goal: Show that H^* neither contains an odd cycle nor an odd tree house

Goal: Show that H^* neither contains an odd cycle nor an odd tree house

Odd cycles or odd tree houses in H^* are **quasi-subhypergraphs** of G^* .

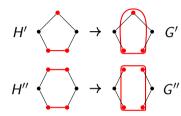
Goal: Show that H^* neither contains an odd cycle nor an odd tree house

Odd cycles or odd tree houses in H^* are quasi-subhypergraphs of G^* .

 \rightarrow To turn them into partial subhypergraphs of G^* , we have to handle conflicts.

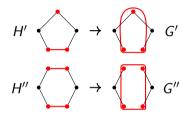
conflict with respect to $(H, \Phi) \subseteq_Q G$:

"hyperedge in G that has been split or from which vertices have been removed to obtain H"



conflict with respect to $(H, \Phi) \subseteq_Q G$: $e \in E(G)$ s.t. there is $f \in E_{\geq 1}(H)$ with $\Phi(f) = e$ and $f \subsetneq e \cap V(H)$.

"hyperedge in G that has been split or from which vertices have been removed to obtain H"



conflict with respect to $(H, \Phi) \subseteq_Q G$: $e \in E(G)$ s.t. there is $f \in E_{\geq 1}(H)$ with $\Phi(f) = e$ and $f \subsetneq e \cap V(H)$.

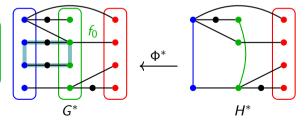
"hyperedge in G that has been split or from which vertices have been removed to obtain H"

$$H' \longleftrightarrow \to \longleftrightarrow G$$

$$H'' \longleftrightarrow \to \longleftrightarrow G'$$

nice cycle: even cycle $G^*[U, F] \subseteq_P G^*$ s.t.: For each hyperedge $e \in E_{\geq 4}(G^*) \cap F \setminus \{f_0\}$ and each $v \in e \cap U$, $\delta_{G^*}(v) \subseteq F$.

 $\rightarrow f_0$ is the only conflict w.r.t. $(H^*, \Phi^*) \subseteq_Q G^*$



Assume $T^* \subseteq_P H^*$ is an odd tree house.

Assume $T^* \subseteq_P H^*$ is an odd tree house.

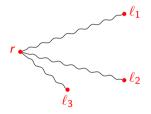
There is at most one conflict w.r.t. $(T^*, \Phi^* \upharpoonright_{T^*})$ (namely, f_0).

Assume $T^* \subseteq_P H^*$ is an odd tree house.

There is at most one conflict w.r.t. $(T^*, \Phi^* \upharpoonright_{T^*})$ (namely, f_0).

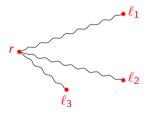
Strategy: Iteratively shortcut T^* until there is no more conflict.

Let $(T,\Phi)\subseteq_Q G^*$ s.t. T is an **odd tree house** with paths $(P_i)_{i\in[3]}$ and hyperedge $h=\{r,\ell_1,\ell_2,\ell_3\}$, there is **at most one conflict** and |E(T)| is **minimum**.



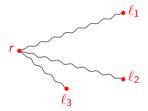
conflict:

Let $(T,\Phi)\subseteq_Q G^*$ s.t. T is an **odd tree house** with paths $(P_i)_{i\in[3]}$ and hyperedge $h=\{r,\ell_1,\ell_2,\ell_3\}$, there is **at most one conflict** and |E(T)| is **minimum**. no conflict \to done



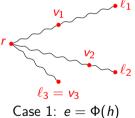
conflict:

Let $(T, \Phi) \subseteq_Q G^*$ s.t. T is an **odd tree house** with paths $(P_i)_{i \in [3]}$ and hyperedge $h = \{r, \ell_1, \ell_2, \ell_3\}$, there is **at most one conflict** and |E(T)| is **minimum**. e := unique conflict



conflict:

Let $(T, \Phi) \subseteq_Q G^*$ s.t. T is an **odd tree house** with paths $(P_i)_{i \in [3]}$ and hyperedge $h = \{r, \ell_1, \ell_2, \ell_3\}$, there is **at most one conflict** and |E(T)| is **minimum**. e := unique conflict

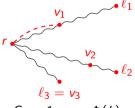


Case 1: $e = \Phi(n)$

 $v_i := \text{next vertex from } e \text{ on } P_i \text{ after } r$

conflict:

Let $(T, \Phi) \subseteq_Q G^*$ s.t. T is an **odd tree house** with paths $(P_i)_{i \in [3]}$ and hyperedge $h = \{r, \ell_1, \ell_2, \ell_3\}$, there is **at most one conflict** and |E(T)| is **minimum**. e := unique conflict



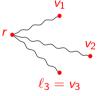
Case 1: $e = \Phi(h)$

 $v_i := \text{next vertex from } e \text{ on } P_i \text{ after } r$

 $P_i[r, v_i]$ is odd: close (conflict-free) cycle using e

conflict:

Let $(T, \Phi) \subseteq_Q G^*$ s.t. T is an **odd tree house** with paths $(P_i)_{i \in [3]}$ and hyperedge $h = \{r, \ell_1, \ell_2, \ell_3\}$, there is **at most one conflict** and |E(T)| is **minimum**. e := unique conflict



Case 1: $e = \Phi(h)$

 $v_i := \text{next vertex from } e \text{ on } P_i \text{ after } r$

 $P_i[r, v_i]$ is odd: close (conflict-free) cycle using e

 \rightarrow shorter odd tree house

conflict:

Let $(T, \Phi) \subseteq_{\mathcal{O}} G^*$ s.t. T is an **odd tree house** with paths $(P_i)_{i \in [3]}$ and hyperedge $h = \{r, \ell_1, \ell_2, \ell_3\}$, there is at most one conflict and |E(T)| is minimum. e := unique conflict

conflict:

 $e \in E(G)$ s.t. there is $f \in E(T)$ with $\Phi(f) = e$ and $f \subseteq e \cap V(T)$.



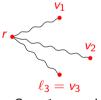
Case 1: $e = \Phi(h)$ Case 2: $\exists i : |e \cap V(P_i)| > 3$

w.l.o.g. $|e \cap V(P_1)| \geq 3$, let v and w be closest to r and ℓ_1

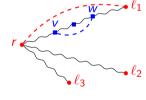
Let $(T, \Phi) \subseteq_{\mathcal{O}} G^*$ s.t. T is an **odd tree house** with paths $(P_i)_{i \in [3]}$ and hyperedge $h = \{r, \ell_1, \ell_2, \ell_3\}$, there is at most one conflict and |E(T)| is minimum. e := unique conflict

conflict:

 $e \in E(G)$ s.t. there is $f \in E(T)$ with $\Phi(f) = e$ and $f \subseteq e \cap V(T)$.



Case 1:
$$e = \Phi(h)$$



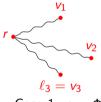
Case 1: $e = \Phi(h)$ Case 2: $\exists i : |e \cap V(P_i)| \geq 3$

w.l.o.g. $|e \cap V(P_1)| \geq 3$, let v and w be closest to r and ℓ_1 $|P_1[r,v]|+|P_1[w,\ell_1]|$ is even: close (conflict-free) cycle using e and $\Phi(h)$

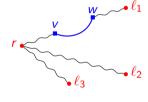
Let $(T, \Phi) \subseteq_{\mathcal{O}} G^*$ s.t. T is an **odd tree house** with paths $(P_i)_{i \in [3]}$ and hyperedge $h = \{r, \ell_1, \ell_2, \ell_3\}$, there is at most one conflict and |E(T)| is minimum. e := unique conflict

conflict:

 $e \in E(G)$ s.t. there is $f \in E(T)$ with $\Phi(f) = e$ and $f \subseteq e \cap V(T)$.



Case 1:
$$e = \Phi(h)$$



Case 1: $e = \Phi(h)$ Case 2: $\exists i : |e \cap V(P_i)| \geq 3$

w.l.o.g. $|e \cap V(P_1)| \ge 3$, let v and w be closest to r and ℓ_1

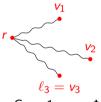
 $|P_1[r,v]|+|P_1[w,\ell_1]|$ is even: close (conflict-free) cycle using e and $\Phi(h)$

 \rightarrow shorter odd tree house

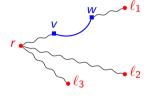
Let $(T, \Phi) \subseteq_{\mathcal{O}} G^*$ s.t. T is an **odd tree house** with paths $(P_i)_{i \in [3]}$ and hyperedge $h = \{r, \ell_1, \ell_2, \ell_3\}$, there is at most one conflict and |E(T)| is minimum. e := unique conflict

conflict:

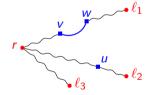
 $e \in E(G)$ s.t. there is $f \in E(T)$ with $\Phi(f) = e$ and $f \subsetneq e \cap V(T)$.



Case 1: $e = \Phi(h)$



Case 2: $\exists i : |e \cap V(P_i)| \ge 3$ Case 3: $\forall i : |e \cap V(P_i)| \le 2$



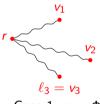
Case 3:
$$\forall i$$
: $|e \cap V(P_i)| \leq 2$

w.l.o.g. $\{v, w\} \in E(P_1)$ with $\Phi(\{v, w\}) = e$; $u \in e \cap V(P_2)$ closest to r

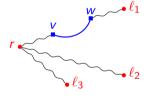
Let $(T, \Phi) \subseteq_{\mathcal{O}} G^*$ s.t. T is an **odd tree house** with paths $(P_i)_{i \in [3]}$ and hyperedge $h = \{r, \ell_1, \ell_2, \ell_3\}$, there is at most one conflict and |E(T)| is minimum. e := unique conflict

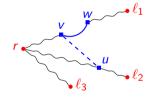
conflict:

 $e \in E(G)$ s.t. there is $f \in E(T)$ with $\Phi(f) = e$ and $f \subsetneq e \cap V(T)$.



Case 1: $e = \Phi(h)$





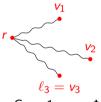
Case 2:
$$\exists i : |e \cap V(P_i)| \ge 3$$
 Case 3: $\forall i : |e \cap V(P_i)| \le 2$

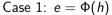
w.l.o.g. $\{v, w\} \in E(P_1)$ with $\Phi(\{v, w\}) = e$; $u \in e \cap V(P_2)$ closest to r $|P_1[r, v]| + |P_2[r, u]|$ is odd:

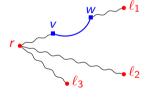
Let $(T, \Phi) \subseteq_{\mathcal{O}} G^*$ s.t. T is an **odd tree house** with paths $(P_i)_{i \in [3]}$ and hyperedge $h = \{r, \ell_1, \ell_2, \ell_3\}$, there is at most one conflict and |E(T)| is minimum. e := unique conflict

conflict:

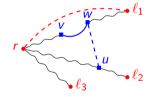
 $e \in E(G)$ s.t. there is $f \in E(T)$ with $\Phi(f) = e$ and $f \subsetneq e \cap V(T)$.







Case 2: $\exists i : |e \cap V(P_i)| \ge 3$ Case 3: $\forall i : |e \cap V(P_i)| \le 2$



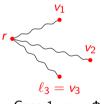
Case 3:
$$\forall i$$
: $|e \cap V(P_i)| \leq 2$

w.l.o.g. $\{v, w\} \in E(P_1)$ with $\Phi(\{v, w\}) = e$; $u \in e \cap V(P_2)$ closest to r $|P_1[r,v]| + |P_2[r,u]|$ is odd; $|P_1[w,\ell_1]| + |P_2[r,u]|$ is even

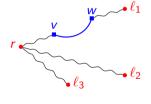
Let $(T, \Phi) \subseteq_{\mathcal{O}} G^*$ s.t. T is an **odd tree house** with paths $(P_i)_{i \in [3]}$ and hyperedge $h = \{r, \ell_1, \ell_2, \ell_3\}$, there is at most one conflict and |E(T)| is minimum. e := unique conflict

conflict:

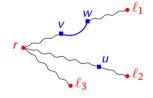
 $e \in E(G)$ s.t. there is $f \in E(T)$ with $\Phi(f) = e$ and $f \subsetneq e \cap V(T)$.



Case 1: $e = \Phi(h)$

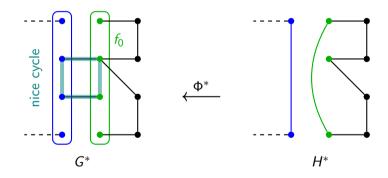


Case 2: $\exists i : |e \cap V(P_i)| \ge 3$ Case 3: $\forall i : |e \cap V(P_i)| \le 2$

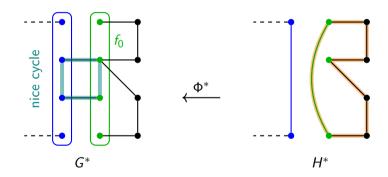


Case 3:
$$\forall i$$
: $|e \cap V(P_i)| \leq 2$

w.l.o.g. $\{v, w\} \in E(P_1)$ with $\Phi(\{v, w\}) = e$; $u \in e \cap V(P_2)$ closest to r $|P_1[r,v]| + |P_2[r,u]|$ is odd; $|P_1[w,\ell_1]| + |P_2[r,u]|$ is even

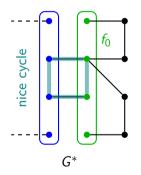


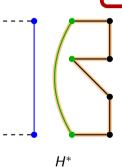
Let $K^* = H^*[U, F] \subseteq_P H^*$ be an odd cycle.



Let $K^* = H^*[U, F] \subseteq_P H^*$ be an odd cycle. \rightarrow conflict w.r.t. $(K^*, \Phi^* \upharpoonright_{K^*})$

conflict:



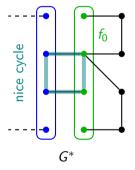


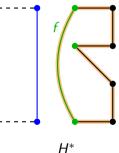
Let $K^* = H^*[U, F] \subseteq_P H^*$ be an odd cycle.

- \rightarrow conflict w.r.t. $(K^*, \Phi^* \upharpoonright_{K^*})$
- $ightarrow \exists \ f \in F \ \text{with} \ \Phi^*(f) = f_0 \ \text{and} \ 3 \leq |f_0 \cap U| \leq 4$

conflict:

 $e \in E(G)$ s.t. there is $f \in E(T)$ with $\Phi(f) = e$ and $f \subsetneq e \cap V(T)$.





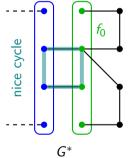
Let $K^* = H^*[U, F] \subseteq_P H^*$ be an odd cycle.

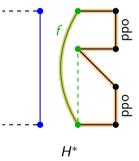
- \rightarrow conflict w.r.t. $(K^*, \Phi^* \upharpoonright_{K^*})$
- ightarrow \exists $f \in F$ with $\Phi^*(f) = f_0$ and $3 \le |f_0 \cap U| \le 4$

consecutive vertices from f_0 have an odd distance on K^*

conflict:

 $e \in E(G)$ s.t. there is $f \in E(T)$ with $\Phi(f) = e$ and $f \subsetneq e \cap V(T)$.



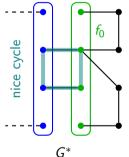


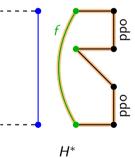
Let $K^* = H^*[U, F] \subseteq_P H^*$ be an odd cycle.

- \rightarrow conflict w.r.t. $(K^*, \Phi^* \upharpoonright_{K^*})$
- $ightarrow \exists f \in F \text{ with } \Phi^*(f) = f_0 \text{ and } \mathbf{3} = |\mathbf{f_0} \cap \mathbf{U}|$

consecutive vertices from f_0 have an odd distance on K^*

 $e \in E(G)$ s.t. there is $f \in E(T)$ with $\Phi(f) = e$ and $f \subsetneq e \cap V(T)$.





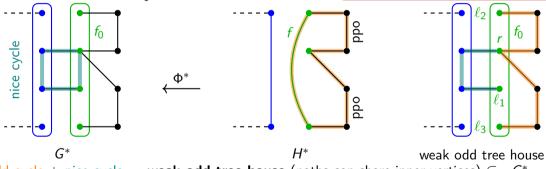
Let $K^* = H^*[U, F] \subseteq_P H^*$ be an odd cycle.

- ightarrow conflict w.r.t. $(K^*, \Phi^* \upharpoonright_{K^*})$
- $ightarrow \exists \ f \in F \ \text{with} \ \Phi^*(f) = f_0 \ \text{and} \ 3 = |f_0 \cap U|$

consecutive vertices from f_0 have an odd distance on K^*

conflict:

 $e \in E(G)$ s.t. there is $f \in E(T)$ with $\Phi(f) = e$ and $f \subsetneq e \cap V(T)$.



odd cycle + nice cycle \rightsquigarrow weak odd tree house (paths can share inner vertices) $\subseteq_Q G^*$

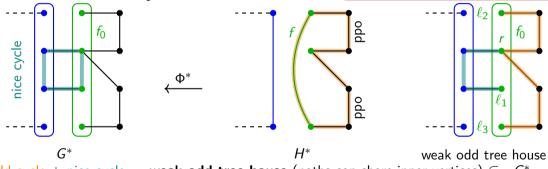
Let $K^* = H^*[U, F] \subseteq_P H^*$ be an odd cycle.

- \rightarrow conflict w.r.t. $(K^*, \Phi^* \upharpoonright_{K^*})$
- ightarrow \exists $f \in F$ with $\Phi^*(f) = f_0$ and $3 = |f_0 \cap U|$

consecutive vertices from f_0 have an odd distance on K^*

conflict:

 $e \in E(G)$ s.t. there is $f \in E(T)$ with $\Phi(f) = e$ and $f \subsetneq e \cap V(T)$.

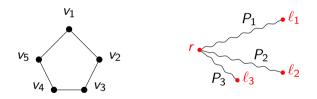


odd cycle + nice cycle \leadsto weak odd tree house (paths can share inner vertices) $\subseteq_Q G^*$ analyze conflicts \leadsto odd cycle or odd tree house $\subseteq_P G^*$

Unimodularity for disjoint hypergraphs

Theorem (Caoduro, N., Paat 25+)

Let G be a disjoint hypergraph. Then G is unimodular if and only if there does not exist $H \subseteq_P G$ that is an odd cycle or an odd tree house.

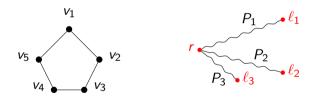


disjoint hypergraph: hyperedges of size \geq 4 are pairwise disjoint

Unimodularity for disjoint hypergraphs

Theorem (Caoduro, N., Paat 25+)

Let G be a disjoint hypergraph. Then G is unimodular if and only if there does not exist $H \subseteq_P G$ that is an odd cycle or an odd tree house.



disjoint hypergraph: hyperedges of size \geq 4 are pairwise disjoint

Next: extension to directed setting

The family of incidence matrices of **directed hypergraphs** corresponds to $\{0,\pm 1\}$ -matrices.

The family of incidence matrices of **directed hypergraphs** corresponds to $\{0,\pm 1\}$ -matrices.

Theorem (Caoduro, N., Paat '25+)

Let D be a disjoint directed hypergraph. Then M(D) is TU if and only if there does not exist $H \subseteq_P D$ that is a directed odd cycle or a directed odd tree house.

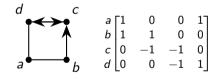
The family of incidence matrices of **directed hypergraphs** corresponds to $\{0,\pm 1\}$ -matrices.

Theorem (Caoduro, N., Paat '25+)

Let D be a disjoint directed hypergraph. Then M(D) is TU if and only if there does not exist $H \subseteq_P D$ that is a directed odd cycle or a directed odd tree house.

directed odd cycle: directed hypergraph *C* s.t.:

- underlying undirected hypergraph is a cycle
- $\Delta(M(C)) = 2$



Incidence matrices of directed odd cycles are called **unbalanced hole matrices**.

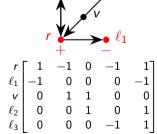
The family of incidence matrices of **directed hypergraphs** corresponds to $\{0,\pm 1\}$ -matrices.

Theorem (Caoduro, N., Paat '25+)

Let D be a disjoint directed hypergraph. Then M(D) is TU if and only if there does not exist $H \subseteq_P D$ that is a directed odd cycle or a directed odd tree house.

directed odd tree house: directed hypergraph \mathcal{T} s.t.:

- underlying undirected hypergraph is a "tree house" $(r-\ell_i$ -path P_i for $i \in [3]$ and $h = \{r, \ell_1, \ell_2, \ell_3\})$
- $\Delta(M(T)) = 2$



Application of our result

Conjecture (Padberg '88; Cornuéjols and Zuluaga '00)

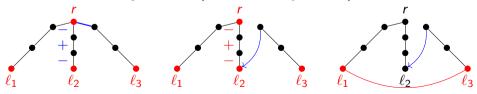
Given an almost TU matrix A, there is a TU matrix R s.t. AR is an unbalanced hole matrix.

almost TU: minimally non-TU unbalanced hole matrix: M(C) for a directed odd cycle C

Corollary (Caoduro, N., Paat '25+)

The conjecture is true if \mathbf{A} or \mathbf{A}^T is the incidence matrix of a disjoint directed hypergraph.

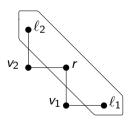
It suffices to check the conjecture for (directed odd cycles and) directed odd tree houses.



Future questions – beyond unimodularity

When is the incidence matrix of a disjoint hypergraph bimodular?

unlike the graph case: $\Delta(\pmb{M(G)}) \geq 3 \not\Rightarrow$ two disjoint non-unimodular partial subhypergraphs



	$\{r, v_1\}$	$\{\textit{v}_1,\ell_1\}$	$\{r, v_2\}$	$\{v_2,\ell_2\}$	e
r	「 1	0	1	0	1
v_1	1	1	0	0	0
ℓ_{1}	0	1	0	0	1
<i>V</i> 2	0	0	1	1	0
ℓ_2	0	0	0	0 0 0 0 1 1	1_

Thank you!

link to our ArXiv paper