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Totally unimodular matrices

The maximum absolute subdeterminant of A ∈ Zm×n is
∆(A) := max{| det(B)| : B is a square submatrix of A}.

If A is TU and b ∈ Zm, the polyhedra {x : Ax ≤ b} and {x : Ax = b, x ≥ 0} are integral.

Seymour’s decomposition theorem (Seymour ’80):
Each TU matrix can be “build up” from (co-)network matrices and two 5 × 5-matrices.

Tutte’s characterization of regular matroids (Tutte ’58):
→ characterization of matrices that can be signed to become TU via forbidden minors

Truemper’s characterization of almost TU matrices (Truemper ’92):
recursive description of the class of almost TU (i.e., minimally non-TU) matrices
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Incidence matrices of graphs
A graph is a pair G = (V , E ) of

a finite set V of vertices and
a finite multiset E ⊆

(V
2
)

of edges.

The incidence matrix M(G) ∈ {0, 1}V ×E of

G is defined by M(G)v ,e

{
1, v ∈ e
0, v /∈ e

.

v1 v2

v3v4

v1

v4 v3

ocp = 1 v1

v2 v3 v4 v5

e = {v1, v2, v3, v4}
f = {v1, v3, v4, v5}

We call G unimodular if M(G) is TU.


{v1, v4} {v1, v3} {v2, v3} {v2, v4} {v3, v4}

v1 1 1 0 0 0
v2 0 0 1 1 0
v3 0 1 1 0 1
v4 1 0 0 1 1


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Theorem (Grossman, Kulkarni, and Schochetman ’95)
For a graph G with odd cycle packing number ocp(G), we have ∆(M(G)) = 2ocp(G).
In particular, G is unimodular if and only if G is bipartite/ contains no odd cycle.

odd cycle packing number: maximum number of pairwise vertex-disjoint odd cycles
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(generalizes to mixed graphs ≜ {0, ±1}-matrices with ≤ 2 non-zeros per column)
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v4 1 0 0 1 1
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Theorem (Grossman, Kulkarni, and Schochetman ’95)
For a graph G with odd cycle packing number ocp(G), we have ∆(M(G)) = 2ocp(G).
In particular, G is unimodular if and only if G is bipartite/ contains no odd cycle.

What about hypergraphs?
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Incidence matrices of hypergraphs
A hypergraph is a pair G = (V , E ) of

a finite set V of vertices and
a finite multiset E ⊆ 2V of hyperedges.

The incidence matrix M(G) ∈ {0, 1}V ×E of

G is defined by M(G)v ,e

{
1, v ∈ e
0, v /∈ e

.

v1 v2

v3v4

v1

v4 v3

ocp = 1

v1

v2 v3 v4 v5

e = {v1, v2, v3, v4}
f = {v1, v3, v4, v5}

We call G unimodular if M(G) is TU.



e f {v2, v3} {v3, v4} {v4, v5}
v1 1 1 0 0 0
v2 1 0 1 0 0
v3 1 1 1 1 0
v4 1 1 0 1 1
v5 0 1 0 0 1


General (directed) hypergraphs correspond to arbitrary {0, 1}-({0, ±1})-matrices.

Research question:
Can we obtain a simple characterization of unimodularity via forbidden subhypergraphs
for a special class of hypergraphs?
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Partial subhypergraphs
A partial subhypergraph H ⊆P G has the form H = G [U, F ] := (U, F [U]),
where U ⊆ V , F ⊆ E , and F [U] := {f ∩ U : f ∈ F}.

r

v1

v2

ℓ1

ℓ2


{r , v1} {v1, ℓ1} {r , v2} {v2, ℓ2} {r , ℓ1, ℓ2}
r 1 0 1 0 1

v1 1 1 0 0 0
ℓ1 0 1 0 0 1
v2 0 0 1 1 0
ℓ2 0 0 0 1 1



Partial subhypergraphs of G correspond to submatrices of M(G).
⇒ If G is unimodular, then G cannot contain an odd cycle as a partial subhypergraph.
Hypergraphs that do not contain an odd cycle are called balanced.

Fact: Balanced hypergraphs with maximum hyperedge size ≤ 3 are unimodular.

→ follows from a characterization of balanced hypergraphs by Berge or a
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Camion’s characterization of TU matrices (phrased in terms of hypergraphs)

A hypergraph is Eulerian if every
vertex has even degree and every
hyperedge has even size.

Eulerian NOT Eulerian
Theorem (Camion ’65)
A hypergraph G is unimodular if and only if for every Eulerian H ⊆P G, | supp(M(H))| is
divisible by 4, where supp(M(H)) := {(v , e) : M(H)v ,e = 1}.

In particular: G is unimodular ⇔ every Eulerian H ⊆P G is unimodular

If every hyperedge in E (G) has size ≤ 3:
G is unimodular ⇔ every graph H ⊆P G is unimodular ⇔ G contains no odd cycle
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Larger hyperedges

If G contains hyperedges of size ≥ 4, forbidding odd cycles is not sufficient for unimodularity1:

r ℓ1

ℓ2ℓ3


{r , ℓ1} {r , ℓ2} {r , ℓ3} {r , ℓ1, ℓ2, ℓ3}
r 1 1 1 1

ℓ1 1 0 0 1
ℓ2 0 1 0 1
ℓ3 0 0 1 1



disjoint hypergraph: hyperedges of size ≥ 4 are pairwise disjoint (“hypergraph with
hyperedges of size ≤ 3 + hypermatching”)

Our result: For disjoint hypergraphs, forbidding odd cycles and partial subhypergraphs is
sufficient to guarantee unimodularity.

1 example from (Schrijver ’03)
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hyperedges of size ≤ 3 + hypermatching”)

Our result: For disjoint hypergraphs, forbidding odd cycles and partial subhypergraphs
“similar to the one above”︸ ︷︷ ︸

we call them odd tree houses

is sufficient to guarantee unimodularity.

1 example from (Schrijver ’03)
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Odd tree houses

An odd tree house is a hypergraph consisting of the following:
a hyperedge e = {r , ℓ1, ℓ2, ℓ3} of size 4
an odd r -ℓi -path Pi for i ∈ [3]

The paths (Pi)i∈[3] are pairwise edge-disjoint and do not share any vertex other than r .

r ℓ1

ℓ2ℓ3


{r , ℓ1} {r , ℓ2} {r , ℓ3} {r , ℓ1, ℓ2, ℓ3}
r 1 1 1 1

ℓ1 1 0 0 1
ℓ2 0 1 0 1
ℓ3 0 0 1 1

 r

ℓ1

ℓ2ℓ3

P1

P2

P3

Observation: Let T be an odd tree house. ∆(M(T )) = 2 and M(T ) is almost TU.
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Our main result

Theorem (Caoduro, N., Paat 25+)
Let G be a disjoint hypergraph. Then G is unimodular if and only if there does not exist
H ⊆P G that is an odd cycle or an odd tree house.

v4 v3

v2v5

v1

r

ℓ1

ℓ2ℓ3

P1

P2

P3
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Incidence matrices of unimodular disjoint hypergraphs are, in general, neither network nor
co-network matrices.
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Theorem (Caoduro, N., Paat 25+)
Let G be a disjoint hypergraph. Then G is unimodular if and only if there does not exist
H ⊆P G that is an odd cycle or an odd tree house.

v4 v3

v2v5

v1

r

ℓ1

ℓ2ℓ3

P1

P2

P3

The result does not generalize to non-disjoint hypergraphs. (example from (Cornuéjols & Zuluaga ’00))

v1

v2 v3 v4 v5

e = {v1, v2, v3, v4}

f = {v1, v3, v4, v5}


e f {v2, v3} {v3, v4} {v4, v5}

v1 1 1 0 0 0
v2 1 0 1 0 0
v3 1 1 1 1 0
v4 1 1 0 1 1
v5 0 1 0 0 1


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v1
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ℓ1
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P3

The result naturally extends to disjoint directed hypergraphs (more details later).
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Why are disjoint hypergraphs interesting?

Disjoint hypergraphs can be used to model fairness constraints, e.g., to structure individuals
into non-overlapping groups based on protected attributes.

Examples of problems that can be modeled as an IP whose constraint matrix is the
incidence matrix of a disjoint hypergraph:

• fixed-cardinality independent set
• job interval selection
• fair representation by independent sets
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Why are disjoint hypergraphs interesting?

Disjoint hypergraphs can be used to model fairness constraints, e.g., to structure individuals
into non-overlapping groups based on protected attributes.

Examples of problems that can be modeled as an IP whose constraint matrix is the
incidence matrix of a disjoint hypergraph:
• fixed-cardinality independent set

• job interval selection
• fair representation by independent sets

fixed-cardinality independent set: Given a graph G = (V , E ), w : V → R≥0 and k ∈ N,
find an independent set in G of size k of minimum weight or decide that none exists.
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Why are disjoint hypergraphs interesting?

Disjoint hypergraphs can be used to model fairness constraints, e.g., to structure individuals
into non-overlapping groups based on protected attributes.

Examples of problems that can be modeled as an IP whose constraint matrix is the
incidence matrix of a disjoint hypergraph:
• fixed-cardinality independent set
• job interval selection

• fair representation by independent sets

job interval selection: Given sets of intervals (Ii)n
i=1, select Ii ∈ Ii (“interval for job i”)

such that no two of the intervals I1, . . . , In overlap, or decide that’s not possible.
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Why are disjoint hypergraphs interesting?

Disjoint hypergraphs can be used to model fairness constraints, e.g., to structure individuals
into non-overlapping groups based on protected attributes.

Examples of problems that can be modeled as an IP whose constraint matrix is the
incidence matrix of a disjoint hypergraph:
• fixed-cardinality independent set
• job interval selection
• fair representation by independent sets

fair representation by independent sets: Given a graph G = (V , E ), a partition
V = V1∪̇V2∪̇ . . . ∪̇Vk and α ≥ 0, decide whether there exists an independent set S with
|S ∩ Vi | ≥ α · |Vi | for i ∈ [k].
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Our main result

Theorem (Caoduro, N., Paat 25+)
Let G be a disjoint hypergraph. Then G is unimodular if and only if there does not exist
H ⊆P G that is an odd cycle or an odd tree house.

v4 v3

v2v5

v1

r

ℓ1

ℓ2ℓ3

P1

P2

P3
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Proof idea: Removing even cycles

Assume G∗ is a disjoint hypergraph that contains no odd cycle or tree house, but is not
unimodular.

G∗

delete incidences
corresponding to cycle

H∗

Marco Caoduro, Meike Neuwohner, Joe Paat Unimodular disjoint hypergraphs MIP Europe 2025 10 / 21



Proof idea: Removing even cycles

Assume G∗ is a disjoint hypergraph that contains no odd cycle or tree house, but is not
unimodular.

G∗

delete incidences
corresponding to cycle

H∗

→ Among all counterexamples, suppose G∗ minimizes |V (G∗)| + |E (G∗)|.
→ By Camion’s theorem, G∗ is Eulerian and | supp(M(G∗))| ̸≡ 0 mod 4.

Marco Caoduro, Meike Neuwohner, Joe Paat Unimodular disjoint hypergraphs MIP Europe 2025 10 / 21



Proof idea: Removing even cycles

We try to make G∗ smaller by ‘removing’ an even cycle to obtain H∗.

G∗

delete incidences
corresponding to cycle

H∗
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Proof idea: Removing even cycles

We try to make G∗ smaller by ‘removing’ an even cycle to obtain H∗.

G∗

delete incidences
corresponding to cycle

H∗

Then H∗ is Eulerian, | supp(M(H∗))| ̸≡ 0 mod 4 and
|V (H∗)| + |E (H∗)| < |V (G∗)| + |E (G∗)|.
Goal: Show that H∗ contains no odd cycle and no odd tree house.
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Proof idea: Removing even cycles

We try to make G∗ smaller by ‘removing’ an even cycle to obtain H∗.

G∗

delete incidences
corresponding to cycle

H∗

Problem: H∗ is not necessarily a partial subhypergraph of G∗,
but only what we call a quasi-subhypergraph of G∗.
→ odd cycle/ odd tree house in H∗ ̸⇒ odd cycle/odd tree house in G∗
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Proof idea: Removing even cycles

We try to make G∗ smaller by ‘removing’ an even cycle to obtain H∗.

G∗

delete incidences
corresponding to cycle

H∗

Solution: Remove a very structured even cycle that ‘brings H∗ as close to being a partial
subhypergraph of G∗ as possible’
Analyze the structure of conflicts to prove that if H∗ contains an odd cycle/
odd tree house, then so does G∗.
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Nice cycles

Imagine we could find an even cycle C = G∗[U, F ] ⊆P G∗ with the following property:
For each hyperedge e ∈ E≥4(G∗) ∩ F and each v ∈ e ∩ U, δG∗(v) ⊆ F .

v1

v2

v3

v4

v5

v6

no further edges


e {v3, v5} {v5, v6} {v4, v6}
v1 1 0 0 0 1 0 0 0 0 0 . . .
v2 1 0 0 0 0 1 1 1 0 0 . . .
v3 1 1 0 0 0 0 0 0 0 0 . . .
v4 1 0 0 1 0 0 0 0 0 0 . . .
v5 0 1 1 0 0 0 0 0 0 0 . . .
v6 0 0 1 1 0 0 0 0 1 1 . . .

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.


→ ‘removing’ C results in a partial subhypergraph of G∗

r

ℓ1

ℓ2ℓ3
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..
.
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.

..
.

..
.

..
.

..
.

..
.

..
.


→ ‘removing’ C results in a partial subhypergraph of G∗

Problem: such a cycle does not always exist r

ℓ1

ℓ2ℓ3
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Nice cycles
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..
.


→ ‘removing’ C results in a partial subhypergraph of G∗

nice cycle: even cycle C = G∗[U, F ] ⊆P G∗ such that:
For each hyperedge e ∈ E≥4(G∗) ∩ F \ {f0} and each v ∈ e ∩ U,
δG∗(v) ⊆ F .

r

ℓ1

ℓ2ℓ3
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Finding a nice cycle

Properties of minimal counterexample G∗:
G∗ is Eulerian.
|V (G∗)| = |E (G∗)|
F ∗ := (V (G∗), E2(G∗)) is a forest.
F ∗ has |E≥4(G∗)| components.

Constructing a nice cycle:

L := leaves of F ∗.
Replace each e ∈ E≥4(G∗) by a
(near-)perfect matching in e ∩ L.
Find cycle C̃ in resulting graph.
If C̃ intersects a hyperedge in ≥ 3
vertices: shortcut

f0

nice cycle: even cycle G∗[U, F ] ⊆P G∗ s.t.:
For each hyperedge e ∈ E≥4(G∗) ∩ F \ {f0}
and each v ∈ e ∩ U, δG∗(v) ⊆ F .
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Removing the nice cycle

G∗

Φ∗

H∗
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Removing the nice cycle

G∗

Φ∗

H∗

H∗ is not a partial subhypergraph of G∗, but a quasi-subhypergraph of G∗.
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Removing the nice cycle

G∗

Φ∗

H∗

H∗ is not a partial subhypergraph of G∗, but a quasi-subhypergraph of G∗.

Quasi-subhypergraphs arise from partial subhypergraphs by the following operations:
deleting vertices from hyperedges
splitting a hyperedge into a hypermatching
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Removing the nice cycle

G∗ Φ∗
H∗

(H, Φ) is a quasi-subhypergraph of G ((H, Φ) ⊆Q G) if:
H is a hypergraph with V (H) ⊆ V (G)
Φ: E≥1(H) → E (G)
f ⊆ Φ(f ) for all f ∈ E≥1(H)
Φ−1(e) is a hypermatching for all e ∈ E (G)

H ′ G ′

H ′′ G ′′
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Showing that H∗ has no odd cycle and no odd tree house

Goal: Show that H∗ neither contains an odd cycle nor an odd tree house

Odd cycles or odd tree houses in H∗ are quasi-subhypergraphs of G∗.

→ To turn them into partial subhypergraphs of G∗, we have to handle conflicts.
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Showing that H∗ has no odd cycle and no odd tree house

conflict with respect to (H, Φ) ⊆Q G:

e ∈ E (G) s.t. there is f ∈ E≥1(H) with
Φ(f ) = e and f ⊊ e ∩ V (H).

“hyperedge in G that has been split or from
which vertices have been removed to obtain H”

H ′ G ′

H ′′ G ′′

nice cycle: even cycle G∗[U, F ] ⊆P G∗ s.t.:
For each hyperedge e ∈ E≥4(G∗) ∩ F \ {f0}
and each v ∈ e ∩ U, δG∗(v) ⊆ F .

→ f0 is the only conflict w.r.t. (H∗, Φ∗) ⊆Q G∗

f0

G∗

Φ∗

H∗
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H∗ does not contain an odd tree house

Assume T ∗ ⊆P H∗ is an odd tree house.

There is at most one conflict w.r.t. (T ∗, Φ∗ ↾T ∗) (namely, f0).

Strategy: Iteratively shortcut T ∗ until there is no more conflict.
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H∗ does not contain an odd tree house

Let (T , Φ) ⊆Q G∗ s.t. T is an odd tree house with
paths (Pi)i∈[3] and hyperedge h = {r , ℓ1, ℓ2, ℓ3}, there is
at most one conflict and |E (T )| is minimum.

no conflict→ done

conflict:
e ∈ E (G) s.t. there is f ∈ E (T )
with Φ(f ) = e and f ⊊ e ∩ V (T ).

r

ℓ1

ℓ2

ℓ3

v1

v2
r

ℓ1

ℓ2
ℓ3

v
w

r

ℓ1

ℓ2
ℓ3

v
w

u

Case 1: e = Φ(h) Case 2: ∃i : |e ∩ V (Pi)| ≥ 3 Case 3: ∀i : |e ∩ V (Pi)| ≤ 2
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at most one conflict and |E (T )| is minimum.
no conflict→ done

conflict:
e ∈ E (G) s.t. there is f ∈ E (T )
with Φ(f ) = e and f ⊊ e ∩ V (T ).
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Case 1: e = Φ(h) Case 2: ∃i : |e ∩ V (Pi)| ≥ 3 Case 3: ∀i : |e ∩ V (Pi)| ≤ 2
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Case 1: e = Φ(h)

Case 2: ∃i : |e ∩ V (Pi)| ≥ 3 Case 3: ∀i : |e ∩ V (Pi)| ≤ 2

vi := next vertex from e on Pi after r
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Pi [r , vi ] is odd: close (conflict-free) cycle using e
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Case 1: e = Φ(h) Case 2: ∃i : |e ∩ V (Pi)| ≥ 3

Case 3: ∀i : |e ∩ V (Pi)| ≤ 2

w.l.o.g. |e ∩ V (P1)| ≥ 3, let v and w be closest to r and ℓ1
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Case 3: ∀i : |e ∩ V (Pi)| ≤ 2

w.l.o.g. |e ∩ V (P1)| ≥ 3, let v and w be closest to r and ℓ1

|P1[r , v ]|+|P1[w , ℓ1]| is even: close (conflict-free) cycle using e and Φ(h)
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Case 1: e = Φ(h) Case 2: ∃i : |e ∩ V (Pi)| ≥ 3 Case 3: ∀i : |e ∩ V (Pi)| ≤ 2
w.l.o.g. {v , w} ∈ E (P1) with Φ({v , w}) = e; u ∈ e ∩ V (P2) closest to r
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Let (T , Φ) ⊆Q G∗ s.t. T is an odd tree house with
paths (Pi)i∈[3] and hyperedge h = {r , ℓ1, ℓ2, ℓ3}, there is
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Case 1: e = Φ(h) Case 2: ∃i : |e ∩ V (Pi)| ≥ 3 Case 3: ∀i : |e ∩ V (Pi)| ≤ 2
w.l.o.g. {v , w} ∈ E (P1) with Φ({v , w}) = e; u ∈ e ∩ V (P2) closest to r
|P1[r , v ]| + |P2[r , u]| is odd;

|P1[w , ℓ1]| + |P2[r , u]| is even
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Let (T , Φ) ⊆Q G∗ s.t. T is an odd tree house with
paths (Pi)i∈[3] and hyperedge h = {r , ℓ1, ℓ2, ℓ3}, there is
at most one conflict and |E (T )| is minimum.
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Case 1: e = Φ(h) Case 2: ∃i : |e ∩ V (Pi)| ≥ 3 Case 3: ∀i : |e ∩ V (Pi)| ≤ 2
w.l.o.g. {v , w} ∈ E (P1) with Φ({v , w}) = e; u ∈ e ∩ V (P2) closest to r
|P1[r , v ]| + |P2[r , u]| is odd; |P1[w , ℓ1]| + |P2[r , u]| is even
→ P1 is even �
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H∗ does not contain an odd cycle

Let K ∗ = H∗[U, F ] ⊆P H∗ be an odd cycle.
→ conflict w.r.t. (K ∗, Φ∗ ↾K∗)
→ ∃ f ∈ F with Φ∗(f ) = f0 and 3 ≤ |f0 ∩ U| ≤ 4
consecutive vertices from f0 have an odd distance on K ∗

conflict:

e ∈ E (G) s.t. there is f ∈ E (T )
with Φ(f ) = e and f ⊊ e ∩ V (T ).

f0
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f

odd
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H∗

f0r

ℓ1

ℓ2

ℓ3

weak odd tree house
odd cycle + nice cycle ⇝ weak odd tree house (paths can share inner vertices) ⊆Q G∗

analyze conflicts ⇝ odd cycle or odd tree house ⊆P G∗

Marco Caoduro, Meike Neuwohner, Joe Paat Unimodular disjoint hypergraphs MIP Europe 2025 16 / 21



H∗ does not contain an odd cycle
Let K ∗ = H∗[U, F ] ⊆P H∗ be an odd cycle.

→ conflict w.r.t. (K ∗, Φ∗ ↾K∗)
→ ∃ f ∈ F with Φ∗(f ) = f0 and 3 ≤ |f0 ∩ U| ≤ 4
consecutive vertices from f0 have an odd distance on K ∗

conflict:

e ∈ E (G) s.t. there is f ∈ E (T )
with Φ(f ) = e and f ⊊ e ∩ V (T ).

f0

ni
ce

cy
cle

G∗

Φ∗

f

odd
odd

H∗

f0r

ℓ1

ℓ2

ℓ3

weak odd tree house
odd cycle + nice cycle ⇝ weak odd tree house (paths can share inner vertices) ⊆Q G∗

analyze conflicts ⇝ odd cycle or odd tree house ⊆P G∗

Marco Caoduro, Meike Neuwohner, Joe Paat Unimodular disjoint hypergraphs MIP Europe 2025 16 / 21



H∗ does not contain an odd cycle
Let K ∗ = H∗[U, F ] ⊆P H∗ be an odd cycle.
→ conflict w.r.t. (K ∗, Φ∗ ↾K∗)

→ ∃ f ∈ F with Φ∗(f ) = f0 and 3 ≤ |f0 ∩ U| ≤ 4
consecutive vertices from f0 have an odd distance on K ∗

conflict:

e ∈ E (G) s.t. there is f ∈ E (T )
with Φ(f ) = e and f ⊊ e ∩ V (T ).

f0

ni
ce

cy
cle

G∗

Φ∗

f

odd
odd

H∗

f0r

ℓ1

ℓ2

ℓ3

weak odd tree house
odd cycle + nice cycle ⇝ weak odd tree house (paths can share inner vertices) ⊆Q G∗

analyze conflicts ⇝ odd cycle or odd tree house ⊆P G∗

Marco Caoduro, Meike Neuwohner, Joe Paat Unimodular disjoint hypergraphs MIP Europe 2025 16 / 21



H∗ does not contain an odd cycle
Let K ∗ = H∗[U, F ] ⊆P H∗ be an odd cycle.
→ conflict w.r.t. (K ∗, Φ∗ ↾K∗)
→ ∃ f ∈ F with Φ∗(f ) = f0 and 3 ≤ |f0 ∩ U| ≤ 4

consecutive vertices from f0 have an odd distance on K ∗

conflict:
e ∈ E (G) s.t. there is f ∈ E (T )
with Φ(f ) = e and f ⊊ e ∩ V (T ).

f0

ni
ce

cy
cle

G∗

Φ∗

f

odd
odd

H∗

f0r

ℓ1

ℓ2

ℓ3

weak odd tree house
odd cycle + nice cycle ⇝ weak odd tree house (paths can share inner vertices) ⊆Q G∗

analyze conflicts ⇝ odd cycle or odd tree house ⊆P G∗

Marco Caoduro, Meike Neuwohner, Joe Paat Unimodular disjoint hypergraphs MIP Europe 2025 16 / 21



H∗ does not contain an odd cycle
Let K ∗ = H∗[U, F ] ⊆P H∗ be an odd cycle.
→ conflict w.r.t. (K ∗, Φ∗ ↾K∗)
→ ∃ f ∈ F with Φ∗(f ) = f0 and 3 ≤ |f0 ∩ U| ≤ 4
consecutive vertices from f0 have an odd distance on K ∗

conflict:
e ∈ E (G) s.t. there is f ∈ E (T )
with Φ(f ) = e and f ⊊ e ∩ V (T ).

f0

ni
ce

cy
cle

G∗

Φ∗

f

odd
odd

H∗

f0r

ℓ1

ℓ2

ℓ3

weak odd tree house
odd cycle + nice cycle ⇝ weak odd tree house (paths can share inner vertices) ⊆Q G∗

analyze conflicts ⇝ odd cycle or odd tree house ⊆P G∗

Marco Caoduro, Meike Neuwohner, Joe Paat Unimodular disjoint hypergraphs MIP Europe 2025 16 / 21



H∗ does not contain an odd cycle
Let K ∗ = H∗[U, F ] ⊆P H∗ be an odd cycle.
→ conflict w.r.t. (K ∗, Φ∗ ↾K∗)
→ ∃ f ∈ F with Φ∗(f ) = f0 and 3 = |f0 ∩ U|
consecutive vertices from f0 have an odd distance on K ∗

conflict:
e ∈ E (G) s.t. there is f ∈ E (T )
with Φ(f ) = e and f ⊊ e ∩ V (T ).

f0

ni
ce

cy
cle

G∗

Φ∗

f

odd
odd

H∗

f0r

ℓ1

ℓ2

ℓ3

weak odd tree house
odd cycle + nice cycle ⇝ weak odd tree house (paths can share inner vertices) ⊆Q G∗

analyze conflicts ⇝ odd cycle or odd tree house ⊆P G∗

Marco Caoduro, Meike Neuwohner, Joe Paat Unimodular disjoint hypergraphs MIP Europe 2025 16 / 21



H∗ does not contain an odd cycle
Let K ∗ = H∗[U, F ] ⊆P H∗ be an odd cycle.
→ conflict w.r.t. (K ∗, Φ∗ ↾K∗)
→ ∃ f ∈ F with Φ∗(f ) = f0 and 3 = |f0 ∩ U|
consecutive vertices from f0 have an odd distance on K ∗

conflict:
e ∈ E (G) s.t. there is f ∈ E (T )
with Φ(f ) = e and f ⊊ e ∩ V (T ).

f0

ni
ce

cy
cle

G∗

Φ∗

f

odd
odd

H∗

f0r

ℓ1

ℓ2

ℓ3

weak odd tree house
odd cycle + nice cycle ⇝ weak odd tree house (paths can share inner vertices) ⊆Q G∗

analyze conflicts ⇝ odd cycle or odd tree house ⊆P G∗

Marco Caoduro, Meike Neuwohner, Joe Paat Unimodular disjoint hypergraphs MIP Europe 2025 16 / 21



H∗ does not contain an odd cycle
Let K ∗ = H∗[U, F ] ⊆P H∗ be an odd cycle.
→ conflict w.r.t. (K ∗, Φ∗ ↾K∗)
→ ∃ f ∈ F with Φ∗(f ) = f0 and 3 = |f0 ∩ U|
consecutive vertices from f0 have an odd distance on K ∗

conflict:
e ∈ E (G) s.t. there is f ∈ E (T )
with Φ(f ) = e and f ⊊ e ∩ V (T ).

f0

ni
ce

cy
cle

G∗

Φ∗

f

odd
odd

H∗

f0r

ℓ1

ℓ2

ℓ3

weak odd tree house
odd cycle + nice cycle ⇝ weak odd tree house (paths can share inner vertices) ⊆Q G∗

analyze conflicts ⇝ odd cycle or odd tree house ⊆P G∗

Marco Caoduro, Meike Neuwohner, Joe Paat Unimodular disjoint hypergraphs MIP Europe 2025 16 / 21



Unimodularity for disjoint hypergraphs

Theorem (Caoduro, N., Paat 25+)
Let G be a disjoint hypergraph. Then G is unimodular if and only if there does not exist
H ⊆P G that is an odd cycle or an odd tree house.
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v2v5
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r

ℓ1

ℓ2ℓ3

P1

P2

P3

disjoint hypergraph: hyperedges of size ≥ 4 are pairwise disjoint

Next: extension to directed setting
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Extension to directed disjoint hypergraphs

The family of incidence matrices of directed hypergraphs corresponds to {0, ±1}-matrices.

Theorem (Caoduro, N., Paat ’25+)
Let D be a disjoint directed hypergraph. Then M(D) is TU if and only if there does not exist
H ⊆P D that is a directed odd cycle or a directed odd tree house.
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Extension to directed disjoint hypergraphs

The family of incidence matrices of directed hypergraphs corresponds to {0, ±1}-matrices.

Theorem (Caoduro, N., Paat ’25+)
Let D be a disjoint directed hypergraph. Then M(D) is TU if and only if there does not exist
H ⊆P D that is a directed odd cycle or a directed odd tree house.

directed odd cycle: directed hypergraph C s.t.:
underlying undirected hypergraph is a cycle
∆(M(C)) = 2 a b

cd a 1 0 0 1
b 1 1 0 0
c 0 −1 −1 0
d 0 0 −1 1



Incidence matrices of directed odd cycles are called unbalanced hole matrices.
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Extension to directed disjoint hypergraphs

The family of incidence matrices of directed hypergraphs corresponds to {0, ±1}-matrices.

Theorem (Caoduro, N., Paat ’25+)
Let D be a disjoint directed hypergraph. Then M(D) is TU if and only if there does not exist
H ⊆P D that is a directed odd cycle or a directed odd tree house.

directed odd tree house: directed hypergraph T s.t.:
underlying undirected hypergraph is a “tree house”
(r -ℓi -path Pi for i ∈ [3] and h = {r , ℓ1, ℓ2, ℓ3})
∆(M(T )) = 2

r
+

ℓ1
−

ℓ2
+

ℓ3
+

v


r 1 −1 0 −1 1

ℓ1 −1 0 0 0 −1
v 0 1 1 0 0
ℓ2 0 0 1 0 1
ℓ3 0 0 0 −1 1


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Application of our result

Conjecture (Padberg ’88; Cornuéjols and Zuluaga ’00)
Given an almost TU matrix A, there is a TU matrix R s.t. AR is an unbalanced hole matrix.

almost TU: minimally non-TU unbalanced hole matrix: M(C) for a directed odd cycle C

Corollary (Caoduro, N., Paat ’25+)
The conjecture is true if A or AT is the incidence matrix of a disjoint directed hypergraph.

It suffices to check the conjecture for (directed odd cycles and) directed odd tree houses.

ℓ1

r

ℓ2 ℓ3

−
+
−

ℓ1

r

ℓ2 ℓ3

−
+
−

ℓ1

r

ℓ2 ℓ3
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Future questions – beyond unimodularity

When is the incidence matrix of a disjoint hypergraph bimodular?

unlike the graph case: ∆(M(G)) ≥ 3 ̸⇒ two disjoint non-unimodular partial subhypergraphs

r

v1

v2

ℓ1

ℓ2


{r , v1} {v1, ℓ1} {r , v2} {v2, ℓ2} e
r 1 0 1 0 1

v1 1 1 0 0 0
ℓ1 0 1 0 0 1
v2 0 0 1 1 0
ℓ2 0 0 0 1 1


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Thank you!

↑
link to our ArXiv paper
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