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Abstract.

We study network flow interdiction problems with nonlinear and nonconvex flow models. The resulting
model is a max-min bilevel optimization problem in which the followers problem is nontinear and
nonconvex. In this game, the leader attacks a limited number of arcs with the goal of maximizing the
load shed, and the follower aims at minimizing the load shed by solving a transport problem in the
interdicted network. We develop an exact algorithm consisting of lower and upper bounding schemes
that computes an optimal interdiction under the assumption that the interdicted network remains weakly
connected. The main challenge consists of computing valid upper bounds for the maximal load shed,
whereas lower bounds can directly be derived from the follower's problem. To compute an upper bound,
we propose solving a specific bilevel problem, which is derived from restricting the flexibility of the
follower when adjusting the load flow. This bilevel problem still has a nonlinear and nonconvex
follower's problem, for which we then prove necessary and sufficient optimality conditions. Consequently,
we obtain equivalent single-level reformulations of the specific bilevel model to compute upper bounds.
Our numerical results show the applicability of this exact approach using the example of gas networks.
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Introduction to Bilevel Optimization



General Bilevel Problems

min - F(x,y)

st. G(x,y) >0,
XX,
y € S(x),

where S(x) is the set of optimal solutions of the x-parameterized problem
min  f(x,y)
y

st g(x,y) >0,
yevy.
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How to Solve a Bilevel Problem?

Reformulate the bilevel problem as a single-level problem

Common approaches
- Exploit optimality conditions for the lower-level problem (e.g., KKT conditions)
- Exploit strong-duality theorems (if at hand)

- Exploit the optimal value function of the lower-level problem

Which approach to choose?

— Depends on the problem at hand!



Linear Bilevel Problems

min ¢’ x+d'y
X,y
st. Ax+ By >a,
y € argmin {ny: Cx 4 Dy > b}
y

- Linear upper- and lower-level problem
- Duality theory available

- KKT conditions are necessary and sufficient



Linear Bilevel Problems: KKT Approach

Lower-level problem:
min fy
y
st. Dy >b—Cx.

Lagrangian function:
[»(X,)/,)\) :ny - AT(CX—'_ Dy - b)



Linear Bilevel Problems: KKT Approach

Lower-level problem:
min fy
y
st. Dy >b—Cx.

Lagrangian function:
[»(X,)/,)\) :ny - AT(CX—'_ Dy - b)

KKT conditions:

VyL(X,y,\)=f—-D"Xx=0,
Cx+ Dy > b,

A >0,

AT (Cx+Dy —b) = 0.



Linear Bilevel Problems: KKT Approach

min ¢’ x+d"y min cTx+dTy
iy X5\
st. Ax+By > aq, st. Ax+By > aq,
yearg_min{fT)'/: Cx+Dy2b} Cx+ Dy > b,
! D'A=f,A>0,

AT (Cx+ Dy — b) = 0.



Linear Bilevel Problems: KKT Approach

min c'x+d'y
X,y

st. Ax+By >a,
y € argmin {fT)'/: CX+ Dy > b}
y

- Nonlinear and nonconvex complementarity constraints

- Apply Branch-and-Bound or Big-M reformulation

min
PR

st

c'x+d"y

AX+ By > a,

Cx+ Dy > b,
D'A=f,A>0,

AT (Cx 4Dy — b) = 0.



A More General Approach?

min F(x,y)

st. G(x,y) >0,
X € X,

y € 5(x),
where S(x) is the set of optimal solutions of the x-parameterized problem
min f(x,y)
y

st g(x,y) >0,
yevy.

(u)

(LL)



Value-Function Reformulation

Lower-level optimal value function:

P() 1= min {f(x,): 9(x.y) 2 0,y € ¥}



Value-Function Reformulation

Lower-level optimal value function:

P() 1= min {f(x,): 9(x.y) 2 0,y € ¥}

min  F(x,y) miyn F(x,y)
X,y X,
st G(Xay) Z 07 st G(Xay) Z Oa
X €X, g(x,y) =0,
y € argmin{f(x,¥): g(x,¥) >0,y € Y} fx,y) < e(x),
y

XeX,yey.
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Value-Function Reformulation

Benefit

- Applicable to many different problems without further assumptions

Drawbacks
- Evaluating the value function is expensive
- Value function is generally not known in closed form

- Value function is generally nonsmooth (even under strong assumptions)

In practice often problem-specific knowledge is exploited to derive an explicit description of the
optimal value function



Summary of General Solution Approaches

Linear and convex lower-level problems (under specific constraint qualifications)

- Strong duality approach
- KKT approach

— Well-known and proven in practice since often straightforward to apply



Summary of General Solution Approaches

Linear and convex lower-level problems (under specific constraint qualifications)
- Strong duality approach
- KKT approach

— Well-known and proven in practice since often straightforward to apply

Nonlinear and nonconvex lower-level problems
- Optimal value-function reformulation

— Less proven in practice since generally difficult to apply
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Leo Tolstoi: Anna Karenina

“Happy families are all alike; every unhappy family is unhappy in its own way.”

happy = linear or convex
unhappy = nonlinear



Nonlinear Network Interdiction
Problems
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Nonlinear Network Interdiction Problems

- Network G = (V,A) with nodes V and arcs A

- Load flow £ € RY representing injections and withdrawals at the nodes
Leader

- Destroys up to K many arcs of the network to maximize load shed,
i.e., the amount of flow that cannot be served in the interdicted network

Follower
- Minimize load shed and route the flow in the interdicted network

Max-min bilevel problem



Example: Linear Capacitated Flow Model

Capacitated linear flow model with g; = —2<2=g" and K =1
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Example: Linear Capacitated Flow Model

Capacitated linear flow model with g; = —2<2=g" and K =1
Load shed of 1
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Potential-Based Flows

Network modeled as a digraph G = (V,A) with V :=V,_ UV_ UV,

Balanced load flow £ € R, i.e, 2vev, bu =2 cy_ L, is feasible if 3 g, = with

by, ifveVvy
Z Ga — ZQaZ —t,, ifvev., veV
agsout(v) agsin(v) 0. else
q{]_ S CIa S qg—v aec A
m —m = Nap(Ga), a=(u,v) €A

m, <my<wl, UEV

We consider potential functions of the form ¢(ga) = ga|qa|" With r >0

— allows to model gas, hydrogen, water, and lossless DC power flow networks



Bilevel Model

max
x€{0,1}A

> Aby st xeX, (\g,m) € S(x)
eV

(uL)



Bilevel Model

max Aly st xeX, (A g,m) € S(x UL
K 2 Ml (A.q,m) € 5(x) ()

S(x): set of optimal solutions to the x-parameterized problem

min Aol
A.q,m Z e

uev_
st > Go— Y, Ga=o0(1-\)b, veV
aesout(v) aesin(v)

(T—Xa)da <qa<(1— Xa)Qa+7 aecA (LL)

XaMg < 7y — w0 — Aap(Ga) < XaM{, a = (u,v) €A
my <my<m, uev
0<XA <1, ueVe, Af<A<1 ueV,
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Literature Overview

Linear potential functions, e.g,, v(q) = g

— linear lower-level problem; see Salmeron et al. (2009), Johnson and Dey (2022)

Nonlinear potential functions are a relative new field in the multilevel setting
— no duality theory applicable; see Mareldi et al. (2021) - restrictive assumptions

see Pfetsch and Schmitt (2022) - resilient networks

AC power flow networks
— not captured by nonlinear potential-based flows;

see, e.g, Bienstock and Abhinav (2010), Brian et al. (2021)



Why Potential-Based Flows Are Difficult

»(q) = qlq|, 7r,-+ =00, T, =—o0, i€V, N =1acA\{(v,t)}, Nuey = 2/¢e2,

qa_ = —]_7 q: = ]_7 acA \ {(U7 t)7 (W7 V)}, q(il}t) = q(iwﬁv) - &, q(-t,’t) = qx,v =&



Why Potential-Based Flows Are Difficult

»(q) = qlq|, 7r,-+ =00, T, =—o0, i€V, N =1acA\{(v,t)}, Nuey = 2/¢e2,

qa_ = —]_7 q: = ]_7 acA \ {(U7 t)7 (W7 V)}, q(il}t) = q(iwﬁv) - &, q(-t,’t) = qx,v =&

Load shed of 2 — (14 v/2) > 1
20
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General Algorithmic Idea

Initialize ¢1g + 0, pus + oo, and x* + 0.

While termination criterion is not satisfied

- Compute an upper bound ¢k for the load shed and obtain the interdiction decision x € X.
if pup > Pijp update upper bound

- Compute a lower bound ¢ w.rt. x.
if ¢T3 > é1s update lower bound and best known interdiction x*

- Add the no-good cut to cut off the current interdiction x

=+ D> x=1

acAxg=1 aceAxqg=0

21



Computing a Lower Bound

Compute a lower bound for a fixed interdiction decision x € X

22



Computing a Lower Bound

Compute a lower bound for a fixed interdiction decision x € X
- Solve the follower’s problem for fixed interdiction decision x (NLP)

- Obtain lower bound for load shed and “best response” (1 — A) o ¢ of the follower
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Computing a Lower Bound

Compute a lower bound for a fixed interdiction decision x € X
- Solve the follower’s problem for fixed interdiction decision x (NLP)

- Obtain lower bound for load shed and “best response” (1 — A) o ¢ of the follower

The real challenge consists of computing a “good” upper bound

22



Computing an Upper Bound

Assumption: For fixed x € X, the interdicted network G(x) is weakly connected.

23



Computing an Upper Bound

Assumption: For fixed x € X, the interdicted network G(x) is weakly connected.

max min
xeX Aq,m

st

Z Aol

uev_
> Ga= D Ge=a1=M),
agsout(v) agsin(v)

(1-X)da <Go<(1-X)qa, a€A
XaMyg < 7y — my — Naw(qa) < XM,
my <my<m, Uev

0<MA<1, uevV., A\ <A<,

veVv

a=(u,v)eA

uevy

23



Computing an Upper Bound

Assumption: For fixed x € X, the interdicted network G(x) is weakly connected.

max min
xeX Aq,m

st

Z Aol

uev_
> = > G=o(1-A)b, veV
agsout(v) agsin(v)

(1=X)Ga <Ga < (1—X)qa, aEA
XaMyg < 7y — my — NAap(Ga) < XeME, a=(u,v) €A
my <my<m, Uev

0< XA <1, UEV_, AN <AN<1, UEV,

Keyidea: Ay = Ay, U,v €V, ie, replaceAe R by A e R

23



Computing an Upper Bound

max min
XEX A,q,7m

st

Z A

uev_
Y qa— > G=oa(1=Mb, veV
agsout(v) agsin(v)

(1= xa)3s <Ga < (1-X)da, a€A

XaMg < 7y — my — Naw(Ga) < XaMd, a=(u,v) €A
mp <m <7, uev,

0<A<TUueEV., A/ <AN<T U€EV;

Restrict the follower — solving this bilevel problem yields an upper bound

24



Computing an Upper Bound

max min
XEX A,q,7m

st

Z A

uev_
Y qa— > G=oa(1=Mb, veV
agsout(v) agsin(v)

(1= xa)3s <Ga < (1-X)da, a€A

XaMg < 7y — my — Naw(Ga) < XaMd, a=(u,v) €A
mp <m <7, uev,

0<A<TUueEV., A/ <AN<T U€EV;

Restrict the follower — solving this bilevel problem yields an upper bound

Bilevel problem still has a nonlinear and nonconvex follower’s problem

24



Properties of Potential-Based Flows

Let a balanced load flow £ € R” be given and let's ignore potential and flow bounds.
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given by
{(g,7) : T =m+71L, 7 € R}.
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Properties of Potential-Based Flows

Let a balanced load flow £ € R” be given and let's ignore potential and flow bounds.
Uniqueness results: Maugis (1977) , Collins et al. (1978)

There exist feasible potentials 7 € R” and unique flows g € R” so that the set of feasible points is

given by
{(g,7) : T =m+71L, 7 € R}.

Positive Homogeneity: Gross et al. (2019)
If (g, ) is feasible w.rt. load flow ¢, then for any A € R the point (Ag, A'w) is feasible w.rt. AL.

25



Bilevel Reformulation

max pV4
max > A

uev_
st Y Ga— Y Ga=ovly, VEV
agsout(v) aesin(v) (uL)

XaMyg < 7wy — my — Na(Ga) < XM, a=(u,v) €A
—(1-x)Q<ga<(1-x)Q, acA
xeX, (A\71)€eS(x,q,m)

S(x, g, ) consists of all optimal solutions of

min E My
A€[0,1],7€R
uev_

st m <(0=Nm+7<nl, ueVv
(1=X)qa <(1-=MNqa < (1—xa)qs, acA

26



Necessary and Sufficient Optimality Condition

Theorem

For any feasible upper-level decision, the point (X, 7) is an optimal solution of the follower’s problem
if and only if (X, ) is feasible for the follower’s problem and the point (x, g, m, X, 7) satisfies at least
one of the following conditions.

(i) There are nodes u,v € V such that the corresponding lower and upper potential bound are tight,
ie,
O-Nm4+r=n, 0=Nm+7=m.

(i) There is an arc a € A such that the lower or upper flow bound is tight, i.e,
(1=XN)Ga =qa or (1-X)ga=qg-

(iii) There is no load shed, i.e, A = 0.

27



Single-Level Reformulation

Z A

uev_
Z Qa — Z ga =ovly, VEV
aesout(v) aes"(v)

XaMg < 7y — my — Na(Ga) < XaME, a=(u,v) €A
—(1-X%)Q< g <(1—x)Q, a€A

Necessary and sufficient optimality condition of the follower
— additional 2 |A| + 2|V| + 1 binary variables
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uev_
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Single-Level Reformulation

Z A

uev_
Z Qa — Z ga =ovly, VEV
aesout(v) aes"(v)

XaMg < 7y — my — Na(Ga) < XaME, a=(u,v) €A
—(1-X%)0<q <(1—X)Q, a€A

Necessary and sufficient optimality condition of the follower
— additional 2 |A| + 2|V| + 1 binary variables

Single-level reformulation: mixed-integer nonlinear optimization problem
— can be “solved” by state-of-the-art optimization solvers, e.g., SCIP

Further single-level reformulations (R1) and (R2) with less nonlinear terms

28



Exact Algorithm

1
2

3

Algorithm 1: Solving potential-based network flow interdiction problems

Input: load flow £ € R” and optimality tolerance & > 0.
Initialize ¢p < 0, pup <+ 00, £* < £, and x* < 0.
while (¢us — i) /P > = do
Solve single-level reformulation (R1) or (R2) w.rt. £* and obtain the interdiction decision x € X and the objective
value ¢g.
if Problem (R1) or (R2) w.rt. £ is infeasible then
Update ¢y < ¢1s and return interdiction x* € X.
if pus > ¢l + ¢e then Update dus < g + dis.
Solve the lower-level problem w.rt. x and £. Obtain solution (X, g, ) with objective value qb[B.
if (')TB > ¢.p then
L Update ¢ ¢ éig, £* < (1 — A) o £, and set x* = x.

Add the no-good cut to X to cut off the current interdiction x.

return interdiction x* € X

29



Computational Results




Computational Results

Computational setup

- Python 3.7 using Pyomo 6.4.2.dev0
- Solver SCIP 8.0.0 with Gurobi 9.0.3 and Ipopt 314.4
- Server with XEON_SP_6126 CPU and 16 GB RAM

- Timelimit of 24h

Instances

- GasLib 40 consisting of 40 nodes (3 sources and 29 sinks) and 39 pipes

- »(q) =qlq|
- Different load flows for injections and withdrawals

30



Computational Results

Enumeration approach

- Solve a MIP to find a feasible interdiction decision x € X
- Solve the follower’s problem w.rt. x

- Add no-good cut and find next interdiction decision until no feasible interdiction decision is left

31



Runtimes and Number of Iterations

Table 1: Runtimes and number of iterations for GasLib-40 and two different loadflows

K=1 K=2 K=3 K =4 K=5
time #iter time Hiter time Hiter time titer time Hiter
enum. 33.2 26 268.1 270 1760.1 1619 14237.1 5893 — —
(Rl) 57.0 2 172.9 3 1167.8 1 18202.0 152 — —
(R2) 312 2 107.1 3 701.8 1 17583.6 155 72505.0 725
K=1 K=2 K=3 K =4 K=5
time f#iter time  f#iter time Hiter time fiter time H#iter
5893 86125.6 13221

195.2 270 1673.8 1619 13883.7

enum. 16.4 26
3013.0 24 24299.6 185 —

(R1) 876 3 867 2
(R2) 46.6 3 1089 2 13753 24




Adapted Algorithm

Solving MINLP to optimality is much harder than solving NLPs
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— each feasible solution leads to an interdiction decision with positive load shed
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Adapted Algorithm

Solving MINLP to optimality is much harder than solving NLPs
Adapted approach

- Reformulated single-level reformulation
— each feasible solution leads to an interdiction decision with positive load shed

- Solve only the first and each ith iteration to optimality
— leads to an upper bound

- Compute only a feasible point in the remaining iterations
— leads to interdiction decisions that violate current best response of the follower

33



Runtimes and Number of Iterations

K=1 K=2 K=3 K=4 K=5
time #iter time #iter time #iter time titer time f#iter
enum. 33.2 26 268.1 270 1760.1 1619 14237.1 5893 — —
(R1) 535 2 122.4 3 533.2 1 4938.1 162 36 468.7 784
(R2) 37.8 2 89.4 3 365.3 12 3976.1 161 21256.1 912
K=1 K=2 K=3 K=4 K=5
time #iter time  #iter time #iter time titer time tHiter
enum. 16.4 26 195.2 270 1673.8 1619 13883.7 5893 86125.6 13221
(R1) 763 3 96.3 2 946.5 24 7922.4 194 46 487.9 855
760.7 24 5703.4 194 37273.9 876

(R2) 42.6 3 793 2

34



Convergence of Lower and Upper Bounds: GasLib40 for Budget K = 5

300 — @ || 300 L ey — ®nLo ||
~ h (R1) Ub _ ' (R1) Ub
[ 1] === (R2)Lb ] 1 === (R2)Lb
o ' === (R2)Ub @ ' === (R2)Ub
< “ enum. Lb = : enum. Lb
S 2001 S 200 i
o A el [ ]
° | S 9 |
[ [ L]
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5 100 B 5 100 + B
1%2] w
© o
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0 o0
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Lol Lol Lol Lol L Lol Lol Lol Lol L
10° 10! 10? 10° 10* 10° 10! 10? 10° 10*
Iterations Iterations

Single-level reformulations solved to optimality in

: . First and each 50th iteration is solved to optimality
each iteration.



Conclusion

An exact method for nonlinear network interdiction problems

- Bilevel approach to compute an upper bound
- Necessary and sufficient optimality condition for a nonlinear and nonconvex lower-level problem

- Promising computational results
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Conclusion

An exact method for nonlinear network interdiction problems

- Bilevel approach to compute an upper bound
- Necessary and sufficient optimality condition for a nonlinear and nonconvex lower-level problem

- Promising computational results

Future research

- Include active elements such as compressors
- Drop the assumption that the interdicted network is weakly connected

- Use convex relaxations for computing the upper bound

36



BOBILib: Bilevel Optimization (Benchmark) Instance Library

- More than 2600 instances of mixed-integer linear bilevel optimization problems
- Well-curated set of test instances
- Freely available for the research community

- Testing of new methods + comparison with other ones
- Different types of instances

- Interdiction
- Mixed-integer
- Pure integer

- Benchmark sets for all of them
- Extensive numerical results
- New data + solution format

- All best known solutions available

https://bobilib.org
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