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Introduction to Bilevel Optimization



General Bilevel Problems

min
x,y

F(x, y)

s.t. G(x, y) ≥ 0,

x ∈ X,

y ∈ S(x),

(UL)

where S(x) is the set of optimal solutions of the x-parameterized problem

min
y

f (x, y)

s.t. g(x, y) ≥ 0,

y ∈ Y.

(LL)
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How to Solve a Bilevel Problem?

Reformulate the bilevel problem as a single-level problem

Common approaches

• Exploit optimality conditions for the lower-level problem (e.g., KKT conditions)

• Exploit strong-duality theorems (if at hand)

• Exploit the optimal value function of the lower-level problem

Which approach to choose?

→ Depends on the problem at hand!
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Linear Bilevel Problems

min
x,y

c>x + d>y

s.t. Ax + By ≥ a,

y ∈ argmin
ȳ

{
f>ȳ : Cx + Dȳ ≥ b

}

• Linear upper- and lower-level problem

• Duality theory available

• KKT conditions are necessary and sufficient
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Linear Bilevel Problems: KKT Approach

Lower-level problem:

min
y

f>y

s.t. Dy ≥ b− Cx.

Lagrangian function:
L(x, y, λ) = f>y − λ>(Cx + Dy − b)

KKT conditions:

∇yL(x, y, λ) = f − D>λ = 0,

Cx + Dy ≥ b,

λ ≥ 0,

λ>(Cx + Dy − b) = 0.
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Linear Bilevel Problems: KKT Approach

min
x,y

c>x + d>y

s.t. Ax + By ≥ a,

y ∈ argmin
ȳ

{
f>ȳ : Cx + Dȳ ≥ b

}
min
x,y,λ

c>x + d>y

s.t. Ax + By ≥ a,

Cx + Dy ≥ b,

D>λ = f , λ ≥ 0,

λ>(Cx + Dy − b) = 0.

• Nonlinear and nonconvex complementarity constraints

• Apply Branch-and-Bound or Big-M reformulation
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A More General Approach?

min
x,y

F(x, y)

s.t. G(x, y) ≥ 0,

x ∈ X,

y ∈ S(x),

(UL)

where S(x) is the set of optimal solutions of the x-parameterized problem

min
y

f (x, y)

s.t. g(x, y) ≥ 0,

y ∈ Y.

(LL)
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Value-Function Reformulation

Lower-level optimal value function:

ϕ(x) := min
y
{f (x, y) : g(x, y) ≥ 0, y ∈ Y}

min
x,y

F(x, y)

s.t. G(x, y) ≥ 0,

x ∈ X,

y ∈ argmin
ȳ
{f (x, ȳ) : g(x, ȳ) ≥ 0, ȳ ∈ Y}

min
x,y

F(x, y)

s.t. G(x, y) ≥ 0,

g(x, y) ≥ 0,

f (x, y) ≤ ϕ(x),

x ∈ X, y ∈ Y.
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Value-Function Reformulation

Benefit

• Applicable to many different problems without further assumptions

Drawbacks

• Evaluating the value function is expensive

• Value function is generally not known in closed form

• Value function is generally nonsmooth (even under strong assumptions)

In practice often problem-specific knowledge is exploited to derive an explicit description of the
optimal value function
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Summary of General Solution Approaches

Linear and convex lower-level problems (under specific constraint qualifications)

• Strong duality approach

• KKT approach

→ Well-known and proven in practice since often straightforward to apply

Nonlinear and nonconvex lower-level problems

• Optimal value-function reformulation

→ Less proven in practice since generally difficult to apply
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Leo Tolstoi: Anna Karenina

“Happy families are all alike; every unhappy family is unhappy in its own way.”

happy = linear or convex

unhappy = nonlinear
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Nonlinear Network Interdiction
Problems



Nonlinear Network Interdiction Problems

• Network G = (V, A) with nodes V and arcs A

• Load flow ` ∈ RV representing injections and withdrawals at the nodes

Leader

• Destroys up to K many arcs of the network to maximize load shed,
i.e., the amount of flow that cannot be served in the interdicted network

Follower

• Minimize load shed and route the flow in the interdicted network

Max-min bilevel problem
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Example: Linear Capacitated Flow Model

u `u = 3

t
`t = 2

w `w = 0

v

`v = 1

q (u
,t
)
=
2

q
(w
,t) =

0 q (w
,v
)
=
0

q
(u,v) =

1

u `u = 2

t
`t = 1

w `w = 0

v

`v = 1

q (u
,t
)
=
0

q
(w
,t) =

1
q (w

,v
)
=
−1

q
(u,v) =

2

Capacitated linear flow model with q−a = −2 < 2 = q+ and K = 1
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Potential-Based Flows

Network modeled as a digraph G = (V, A) with V := V+ ∪ V− ∪ V0

Balanced load flow ` ∈ RV , i.e.,
∑

u∈V+ `u =
∑

u∈V− `u, is feasible if ∃ q, π with

∑
a∈δout(v)

qa −
∑

a∈δin(v)

qa =


`v, if v ∈ V+
−`v, if v ∈ V−,
0, else,

v ∈ V

q−a ≤ qa ≤ q+a , a ∈ A

πu − πv = Λaϕ(qa), a = (u, v) ∈ A

π−
u ≤ πu ≤ π+

u , u ∈ V

We consider potential functions of the form ϕ(qa) = qa|qa|r with r ≥ 0

→ allows to model gas, hydrogen, water, and lossless DC power flow networks
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Bilevel Model

max
x∈{0,1}A

∑
u∈V−

λu`u s.t. x ∈ X, (λ, q, π) ∈ S(x) (UL)

S(x): set of optimal solutions to the x-parameterized problem

min
λ,q,π

∑
u∈V−

λu`u

s.t.
∑

a∈δout(v)

qa −
∑

a∈δin(v)

qa = σv(1− λv)`v, v ∈ V

(1− xa)q−a ≤ qa ≤ (1− xa)q+a , a ∈ A

xaM−
a ≤ πu − πv − Λaϕ(qa) ≤ xaM+

a , a = (u, v) ∈ A

π−
u ≤ πu ≤ π+

u , u ∈ V

0 ≤ λu ≤ 1, u ∈ V−, λ−
u ≤ λu ≤ 1, u ∈ V+

(LL)
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Literature Overview

Linear potential functions, e.g., ϕ(q) = q

→ linear lower-level problem; see Salmeron et al. (2009), Johnson and Dey (2022)

Nonlinear potential functions are a relative new field in the multilevel setting

→ no duality theory applicable; see Mareldi et al. (2021) – restrictive assumptions

see Pfetsch and Schmitt (2022) – resilient networks

AC power flow networks

→ not captured by nonlinear potential-based flows;

see, e.g., Bienstock and Abhinav (2010), Brian et al. (2021)
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Why Potential-Based Flows Are Difficult

u `u = 2 + επu = 3

t
`t = 1 + ε

πt = 1

w `w = 0πw = 2

v

`v = 1

πv = 2q (u
,t
)
=
ε

q
(w
,t) =

1 q (w
,v
)
=
0

q
(u,v) =

1q
(u

,w
)
=

1

ϕ(q) = q|q|, π+
i =∞, π−

i = −∞, i ∈ V , Λa = 1, a ∈ A \ {(u, t)}, Λ(u,t) = 2/ε2,

q−a = −1, q+a = 1, a ∈ A \ {(u, t), (w , v)}, q−(u,t) = q−(w ,v) − ε, q
+
(u,t) = q+w ,v = ε.

u `u = (2 +
√
2)επu = 3

t
`t = ε

πt = 1

w `w = 0πw = 3− ε2

v

`v = (1 +
√
2)ε

πv = 3− 2ε2q (u
,t
)
=
ε

q (w
,v
)
=
ε

q
(u,v) = √

2ε

q
(u

,w
)
=
ε
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Load shed of 2− ε(1+
√
2) > 1

20



General Algorithmic Idea

Initialize φLB ← 0, φUB ←∞, and x∗ ← 0.

While termination criterion is not satisfied

• Compute an upper bound φLUB for the load shed and obtain the interdiction decision x ∈ X.
if φUB > φLUB update upper bound

• Compute a lower bound φFLB w.r.t. x.
if φFLB > φLB update lower bound and best known interdiction x∗

• Add the no-good cut to cut off the current interdiction x∑
a∈A:xa=1

(1− x) +
∑

a∈A:xa=0

x ≥ 1

21
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Computing a Lower Bound

Compute a lower bound for a fixed interdiction decision x ∈ X

• Solve the follower’s problem for fixed interdiction decision x (NLP)

• Obtain lower bound for load shed and “best response” (1− λ) ◦ ` of the follower

The real challenge consists of computing a “good” upper bound

22
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Computing an Upper Bound

Assumption: For fixed x ∈ X, the interdicted network G(x) is weakly connected.

max
x∈X

min
λ,q,π

∑
u∈V−

λu`u

s.t.
∑

a∈δout(v)

qa −
∑

a∈δin(v)

qa = σv(1− λv)`v, v ∈ V

(1− xa)q−a ≤ qa ≤ (1− xa)q+a , a ∈ A

xaM−
a ≤ πu − πv − Λaϕ(qa) ≤ xaM+

a , a = (u, v) ∈ A

π−
u ≤ πu ≤ π+

u , u ∈ V

0 ≤ λu ≤ 1, u ∈ V−, λ−
u ≤ λu ≤ 1, u ∈ V+

Key idea: λu = λv, u, v ∈ V , i.e., replace λ ∈ RV by λ ∈ R

23
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a∈δin(v)

qa = σv(1− λ)`v, v ∈ V

(1− xa)q−a ≤ qa ≤ (1− xa)q+a , a ∈ A

xaM−
a ≤ πu − πv − Λaϕ(qa) ≤ xaM+

a , a = (u, v) ∈ A

π−
u ≤ πu ≤ π+

u , u ∈ V,

0 ≤ λu ≤ 1, u ∈ V−, λ−
u ≤ λu ≤ 1, u ∈ V+

Restrict the follower→ solving this bilevel problem yields an upper bound

Bilevel problem still has a nonlinear and nonconvex follower’s problem
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Properties of Potential-Based Flows

Let a balanced load flow ` ∈ RV be given and let’s ignore potential and flow bounds.

Uniqueness results: Maugis (1977) , Collins et al. (1978)

There exist feasible potentials π ∈ RV and unique flows q ∈ RA so that the set of feasible points is
given by

{(q, π̃) : π̃ = π + τ1, τ ∈ R} .

Positive Homogeneity: Gross et al. (2019)

If (q, π) is feasible w.r.t. load flow `, then for any λ ∈ R the point (λq, λrπ) is feasible w.r.t. λ`.
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Bilevel Reformulation

max
x,q,π

∑
u∈V−

λ`u

s.t.
∑

a∈δout(v)

qa −
∑

a∈δin(v)

qa = σv`v, v ∈ V

xaM−
a ≤ πu − πv − Λaϕ(qa) ≤ xaM+

a , a = (u, v) ∈ A

− (1− xa)Q ≤ qa ≤ (1− xa)Q, a ∈ A

x ∈ X, (λ, τ) ∈ S(x, q, π)

(UL)

S(x, q, π) consists of all optimal solutions of

min
λ∈[0,1],τ∈R

∑
u∈V−

λ`u

s.t. π−
u ≤ (1− λ)rπu + τ ≤ π+

u , u ∈ V

(1− xa)q−a ≤ (1− λ)qa ≤ (1− xa)q+a , a ∈ A

(LL)
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Necessary and Sufficient Optimality Condition

Theorem

For any feasible upper-level decision, the point (λ, τ) is an optimal solution of the follower’s problem
if and only if (λ, τ) is feasible for the follower’s problem and the point (x, q, π, λ, τ) satisfies at least
one of the following conditions.

(i) There are nodes u, v ∈ V such that the corresponding lower and upper potential bound are tight,
i.e.,

(1− λ)rπu + τ = π+
u , (1− λ)rπv + τ = π−

v .

(ii) There is an arc a ∈ A such that the lower or upper flow bound is tight, i.e.,

(1− λ)qa = q−a or (1− λ)qa = q+a .

(iii) There is no load shed, i.e., λ = 0.
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Single-Level Reformulation

max
x,λ,q,π,ε̃+,ε̃−,ε+,

ε−,ȳ,y,ỹ,y′

∑
u∈V−

λ`u

s.t.
∑

a∈δout(v)

qa −
∑

a∈δin(v)

qa = σv`v, v ∈ V

xaM−
a ≤ πu − πv − Λaϕ(qa) ≤ xaM+

a , a = (u, v) ∈ A

− (1− xa)Q ≤ qa ≤ (1− xa)Q, a ∈ A

Necessary and sufficient optimality condition of the follower

→ additional 2 |A|+ 2 |V|+ 1 binary variables

Single-level reformulation: mixed-integer nonlinear optimization problem
→ can be “solved” by state-of-the-art optimization solvers, e.g., SCIP

Further single-level reformulations (R1) and (R2) with less nonlinear terms
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Exact Algorithm

Algorithm 1: Solving potential-based network flow interdiction problems
Input: load flow ` ∈ RV and optimality tolerance ε ≥ 0.

1 Initialize φLB ← 0, φUB ←∞, `∗ ← `, and x∗ ← 0.
2 while (φUB − φLB)/φLB ≥ ε do

3 Solve single-level reformulation (R1) or (R2) w.r.t. `∗ and obtain the interdiction decision x ∈ X and the objective
value φLUB .

4 if Problem (R1) or (R2) w.r.t. `∗ is infeasible then

5 Update φUB ← φLB and return interdiction x∗ ∈ X.

6 if φUB > φLUB + φLB then Update φUB ← φLUB + φLB .
7 Solve the lower-level problem w.r.t. x and `. Obtain solution (λ, q, π) with objective value φFLB .
8 if φFLB > φLB then
9 Update φLB ← φFLB , `

∗ ← (1− λ) ◦ `, and set x∗ = x.

10 Add the no-good cut to X to cut off the current interdiction x.

11 return interdiction x∗ ∈ X
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Computational Results



Computational Results

Computational setup

• Python 3.7 using Pyomo 6.4.2.dev0

• Solver SCIP 8.0.0 with Gurobi 9.0.3 and Ipopt 3.14.4

• Server with XEON_SP_6126 CPU and 16 GB RAM

• Timelimit of 24h

Instances

• GasLib 40 consisting of 40 nodes (3 sources and 29 sinks) and 39 pipes

• ϕ(q) = q|q|

• Different load flows for injections and withdrawals
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Computational Results

Enumeration approach

• Solve a MIP to find a feasible interdiction decision x ∈ X

• Solve the follower’s problem w.r.t. x

• Add no-good cut and find next interdiction decision until no feasible interdiction decision is left
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Runtimes and Number of Iterations

Table 1: Runtimes and number of iterations for GasLib-40 and two different loadflows

K = 1 K = 2 K = 3 K = 4 K = 5

time #iter time #iter time #iter time #iter time #iter

enum. 33.2 26 268.1 270 1760.1 1619 14 237.1 5893 — —
(R1) 57.0 2 172.9 3 1167.8 11 18 202.0 152 — —
(R2) 31.2 2 107.1 3 701.8 11 17 583.6 155 72 505.0 725

K = 1 K = 2 K = 3 K = 4 K = 5

time #iter time #iter time #iter time #iter time #iter

enum. 16.4 26 195.2 270 1673.8 1619 13 883.7 5893 86 125.6 13 221
(R1) 87.6 3 86.7 2 3013.0 24 24 299.6 185 — —
(R2) 46.6 3 108.9 2 1375.3 24 — — — —
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Adapted Algorithm

Solving MINLP to optimality is much harder than solving NLPs

Adapted approach

• Reformulated single-level reformulation
→ each feasible solution leads to an interdiction decision with positive load shed

• Solve only the first and each ith iteration to optimality
→ leads to an upper bound

• Compute only a feasible point in the remaining iterations
→ leads to interdiction decisions that violate current best response of the follower
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Runtimes and Number of Iterations

K = 1 K = 2 K = 3 K = 4 K = 5

time #iter time #iter time #iter time #iter time #iter

enum. 33.2 26 268.1 270 1760.1 1619 14 237.1 5893 — —
(R1) 53.5 2 122.4 3 533.2 11 4938.1 162 36 468.7 784
(R2) 37.8 2 89.4 3 365.3 12 3976.1 161 21 256.1 912

K = 1 K = 2 K = 3 K = 4 K = 5

time #iter time #iter time #iter time #iter time #iter

enum. 16.4 26 195.2 270 1673.8 1619 13 883.7 5893 86 125.6 13 221
(R1) 76.3 3 96.3 2 946.5 24 7922.4 194 46 487.9 855
(R2) 42.6 3 79.3 2 760.7 24 5703.4 194 37 273.9 876
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Convergence of Lower and Upper Bounds: GasLib40 for Budget K = 5
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Single-level reformulations solved to optimality in
each iteration.

First and each 50th iteration is solved to optimality
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Conclusion

An exact method for nonlinear network interdiction problems

• Bilevel approach to compute an upper bound

• Necessary and sufficient optimality condition for a nonlinear and nonconvex lower-level problem

• Promising computational results

Future research

• Include active elements such as compressors

• Drop the assumption that the interdicted network is weakly connected

• Use convex relaxations for computing the upper bound
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BOBILib: Bilevel Optimization (Benchmark) Instance Library

• More than 2600 instances of mixed-integer linear bilevel optimization problems

• Well-curated set of test instances

• Freely available for the research community

• Testing of new methods + comparison with other ones
• Different types of instances

• Interdiction
• Mixed-integer
• Pure integer

• Benchmark sets for all of them

• Extensive numerical results

• New data + solution format

• All best known solutions available

https://bobilib.org
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