
Engineering the simplex method

1



0. Context

2



Linear programming

    (LP)
min
s.t.

c xT

A x

x

=
≥

b

0

3



Linear programming (with tolerances)

    (LP)
min
s.t.

c xT

A x

x

=
≥

b

−ε

4



How do we solve (LP)?

Simplex methods Interior-point methods First-order methods

combinatorial algorithm
(active set / basis)

converging algorithm
(point on central path)

converging algorithm
(primal-dual iterate)

exponentially many iterations
(worst case, as far as we know)

superlinear convergence
weakly polynomial

linear convergence
exponentially many iters

5



In practice

simplex 7.43x

interior 1x

 

first order* 31.55x

 (on GPU)* 4.49x

6



About first-order methods

FOM are more useful than numbers suggest:

they are factorization-free

when factorization exhausts memory, other methods will

crash, or

page to storage and become >100x slower

FOM are less useful than those numbers suggest:

convergence is much slower than interior-point methods

to compensate, they use different notions for “feasibility” and “optimality”

7



0 10 20 30 40 50 60
10 -10

10 -09

10 -08

10 -07

10 -06

10 -05

10 -04

10 -03

10 -02

10 -01

1000

1001

1002

1003

1004

1005

Absolute primal violation at termination with cuOPT H100
Mittelmann “lpfeas” benchmarks 2025-06-22

8



In practice (2)

simplex 7.43x

interior 1x

 

first order* 31.55x

 (on GPU)* 4.49x

9



Why the simplex method then?

Accuracy

Warm-start

10



Accuracy: 64-bit floating-point arithmetic

± 1 . mmm... × 2±xxx..

±                  1 sign bit: + or -

mmm...     52 “mantissa” bits

±xxx..     11 “exponent” bits (-1022..1023)

total           64 bits

Hardware implements (8-, 16-, 32- and) 64-bit arithmetic natively.

Software 128-bit arithmetic is ~60x slower than 64-bit arithmetic

11



Accuracy: how the simplex method helps

The simplex method provides a combinatorial data structure: a basis.

Even if the whole algorithm runs with inaccurate arithmetic,

at the end we can use the output basis to carefully recompute

a basic solution, and

reduced costs.

In practice, the output basis is optimal in almost all cases [Koch, 2003]

12



Warm-start

interior-point methods cannot warm-start (they need a solution on the central path)

warm-start enables

branch and bound (SCIP devs report 6 avg. iter per node)

column generation

cutting planes (incl. exponential formulations like TSP)

13



Note: best of both worlds

Given the output of an interior-point method

we can identify a corresponding (but not necessarily optimal) basis

and perform simplex-like pivots to get an optimal basis

This is “crossover”    (strongly poly-time [Megiddo, 1991])

14



In practice (3)

simplex 7.43x

interior 1x

first order* 31.55x

 (on GPU)* 4.49x

 (+ crossover) 1.73x

15



1. The implementation

16



How much work is it?

component lines of C code

sys, memory, etc. 23k

file format 8k

presolve 18k

linear algebra 14k

simplex logic 21k

total 84k

For reference,

solver lines of code remarks

HiGHS 163k, C++ (incl. MIP & IPM)

coin-clp 359k, C++

SoPlex 54k, C++ (no presolve)

GLPK 122k, C (incl. MIP)
17



Simplex performance

*Gurobi 9.5 1.00x

*HiGHS 1.1 14.66x

new code 4.35x

*Numbers extracted from (4 year old) Mittelmann simplex benchmarks, 2021-12-15

18



Ingredients

Few iterations

Fast iterations 

Numerical stability

Strong presolve

  ←   today

19



2. The simplex method is WEIRD

20



Experiment

Take an instance (pds-40) for which computing the tableau pivot row is the main bottleneck.

 =Āi e  B A =i
T −1 v AT

 

 := 0Āi

for i : v  = 0i 

for j : A  = 0ij 

z := v  A  i ij

 :=  + sign(z)  Āij Āij z2

21



perf stat -d -d ./solve pds-40.mps.gz

 Performance counter stats for './solve pds-40.mps.gz':

          7,705.83 msec task-clock                #    1.012 CPUs utilized
               780      context-switches          #  101.222 /sec
                 8      cpu-migrations            #    1.038 /sec
            98,148      page-faults               #   12.737 K/sec
    23,550,072,100      cycles                    #    3.056 GHz
    27,369,781,800      instructions              #    1.16  insn per cycle
     4,639,369,202      branches                  #  602.060 M/sec
       197,304,728      branch-misses             #    4.25% of all branches
     6,203,991,788      L1-dcache-loads           #  805.104 M/sec
     1,244,920,759      L1-dcache-load-misses     #   20.07% of all L1-dcache accesses
       370,725,987      LLC-loads                 #   48.110 M/sec
       109,968,335      LLC-load-misses           #   29.66% of all LL-cache accesses
   <not supported>      L1-icache-loads
        30,602,848      L1-icache-load-misses
     6,094,141,741      dTLB-loads                #  790.848 M/sec
        13,956,784      dTLB-load-misses          #    0.23% of all dTLB cache accesses
            70,242      iTLB-loads                #    9.115 K/sec
           334,678      iTLB-load-misses          #  476.46% of all iTLB cache accesses

22



1.16 insn per cycle!!

theoretical peak is 4

CPU backend idle 71% of the time!

    23,550,072,100      cycles                    #    3.056 GHz
    27,369,781,800      instructions              #    1.16  insn per cycle

23



DRAM cache latency: >80 cycles

24



Compare an LP solve:

1.16 insn per cycle

Memory accesses:

→ 80 % L1 cache

→ 14 % L2 cache

→ 4 % L3 cache

→ 2 % DRAM

    23,550,072,100      cycles                    #    3.056 GHz
    27,369,781,800      instructions              #    1.16  insn per cycle
     4,639,369,202      branches                  #  602.060 M/sec
       197,304,728      branch-misses             #    4.25% of all branches
     6,203,991,788      L1-dcache-loads           #  805.104 M/sec
     1,244,920,759      L1-dcache-load-misses     #   20.07% of all L1-dcache accesses
       370,725,987      LLC-loads                 #   48.110 M/sec
       109,968,335      LLC-load-misses           #   29.66% of all LL-cache accesses

With a heap sort:

3.31 insn per cycle

Memory accesses:

→ 99.99462 % L1 cache

→ 0.00508 % L2 cache

→ 0.00028 % L3 cache

→ 0.00001 % DRAM

     8,243,723,656      cycles                    #    3.077 GHz
    27,308,190,832      instructions              #    3.31  insn per cycle
     4,188,096,890      branches                  #    1.563 G/sec
        73,279,441      branch-misses             #    1.75% of all branches
     7,743,516,824      L1-dcache-loads           #    2.891 G/sec
           416,347      L1-dcache-load-misses     #    0.01% of all L1-dcache accesses
            22,855      LLC-loads                 #    8.532 K/sec
               812      LLC-load-misses           #    3.55% of all LL-cache accesses

1 / 50 1 / 10 M

25



The simplex method is heavily bottlenecked on memory latency

(bandwidth is fine, <1GB/s in the above example, out of around 20 GB/s)

26



3. Implementation choices

27



Standard form

where

    (LP)
min
s.t.

c xT

A x

l ≤ x

=
≤

0
u

c =T [ c  ∣ 0 ], A =0
T T [ A  ∣ I ]0

Implications:

 is always full row rank

phase-1 artificial variables are always available

we can always “repair” a singular “basis” by inserting identity columns

A

28



Primal superbasics

Assuming ,

so

A = [ B ∣ N ]

Bx  +B Nx  =N 0

x  =B B (0 −−1 Nx  ).N

For , we generally assume .j ∈ N x  =j l  or x  =j j u  j

But  can also take any constant value  with   .x  j  x~j l  <j  x~j < u  j

It is then said to be primal superbasic.

29



Dual superbasics

Similarly we generally assume reduced costs  to be such that :c̄  =c̄B 0

=c̄T c −T c  B A i.e.,  B
T −1 {

= c  − c  B B = 0c̄B
T

B
T

B
T −1

 = c  − c  B Nc̄N
T

N
T

B
T −1

but we can compute instead:

=c̄T c −T (c  −B
T

 )B A i.e.,  c~B
T −1 {

 =  c̄B
T c~B

T

 = c  − (c  −  )B Nc̄N
T

N
T

B
T c~B

T −1

Whenever  for some , we say that  is . =c~j  0 j ∈ B x  j dual superbasic

30



Why superbasics?

Allowing superbasics generalizes (essentially for free) the primal and dual simplex methods.

With superbasics, any basis can represent any feasible point.

With a few additional types of pivot operations, the simplex method can remove those

superbasics.

Useful for:

repairing singular “bases” without losing (primal or dual) feasibility

numerical difficulties in crossover

postsolve

31


