Adjustable Robust Mixed-Integer Nonlinear Network Design

Johannes Thürauf, Julia Grübel, Martin Schmidt Mixed Integer Programming European Workshop 2025 July 1, 2025

Two expansion options

- Large capacity arc (expensive)
- Small capacity arc (cheap)

Design cost-efficient resilient network

0] [0, 1

Two expansion options

- Large capacity arc (expensive)
- Small capacity arc (cheap)

Design cost-efficient resilient network

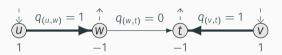
Easy \rightarrow maximal injections and withdrawals is the worst-case?

Two expansion options

- Large capacity arc (expensive)
- Small capacity arc (cheap)

Design cost-efficient resilient network

Easy \rightarrow maximal injections and withdrawals is the worst-case?



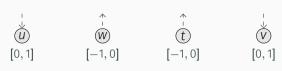
Two expansion options

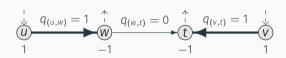
- Large capacity arc (expensive)
- Small capacity arc (cheap)

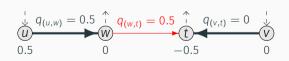
Design cost-efficient resilient network

Easy \rightarrow maximal injections and withdrawals is the worst-case?

Wrong!







Adjustable Robust Nonlinear Network Design

Task

Compute a network design taking into account demand uncertainties

Consider an accurate nonconvex transport model

ightarrow Adjustable robust MINLP

Adjustable Robust Nonlinear Network Design

Task

Compute a network design taking into account demand uncertainties

Consider an accurate nonconvex transport model

ightarrow Adjustable robust MINLP

Challenges

Discrete decisions and nonlinear constraints

Adjustable Robust Nonlinear Network Design

Task

Compute a network design taking into account demand uncertainties

Consider an accurate nonconvex transport model

→ Adjustable robust MINLP

Challenges

Discrete decisions and nonlinear constraints

Key Components of the Solution Approach

Exploit the underlying network and structural properties of potential-based flows

Overview

Potential-Based Flows

Robust Network Design Model

Characterizing Worst-Case Scenarios

Computational Results

Potential-Based Flows

Network modeled as a digraph G = (V, A) with $V := V_+ \cup V_- \cup V_0$

Balanced load flow $\ell \in \mathbb{R}^V$, i.e., $\sum_{u \in V_+} \ell_u = \sum_{u \in V_-} \ell_u$, is feasible if $\exists \ q, \pi$ with

Potential-Based Flows

Network modeled as a digraph G = (V, A) with $V := V_+ \cup V_- \cup V_0$

Balanced load flow $\ell \in \mathbb{R}^V$, i.e., $\sum_{u \in V_+} \ell_u = \sum_{u \in V_-} \ell_u$, is feasible if $\exists \ q, \pi$ with

$$\sum_{a \in \delta^{\text{out}}(v)} q_a - \sum_{a \in \delta^{\text{in}}(v)} q_a = \begin{cases} \ell_v, & \text{if } v \in V_+ \\ -\ell_v, & \text{if } v \in V_-, \\ 0, & \text{else} \end{cases}$$

$$q_a^- \le q_a \le q_a^+, \quad a \in A$$

$$\pi_u - \pi_v = \Lambda_a \varphi(q_a), \quad a = (u, v) \in A$$

$$\pi_u^- \le \pi_u \le \pi_u^+, \quad u \in V$$

6

Potential-Based Flows

Network modeled as a digraph G = (V, A) with $V := V_+ \cup V_- \cup V_0$

Balanced load flow $\ell \in \mathbb{R}^V$, i.e., $\sum_{u \in V_+} \ell_u = \sum_{u \in V_-} \ell_u$, is feasible if $\exists q, \pi$ with

$$\sum_{a \in \delta^{\text{out}}(v)} q_a - \sum_{a \in \delta^{\text{in}}(v)} q_a = \begin{cases} \ell_v, & \text{if } v \in V_+ \\ -\ell_v, & \text{if } v \in V_-, \\ 0, & \text{else} \end{cases}$$

$$q_a^- \le q_a \le q_a^+, \quad a \in A$$

$$\pi_u - \pi_v = \Lambda_a \varphi(q_a), \quad a = (u, v) \in A$$

$$\pi_u^- \le \pi_u \le \pi_u^+, \quad u \in V$$

We consider potential functions of the form $\varphi(q_a)=q_a|q_a|^r$ with $r\geq 0$

ightarrow allows to model gas, hydrogen, water, and lossless DC power flow networks

Properties of Potential-Based Flows

Let a balanced load flow $\ell \in \mathbb{R}^V$ be given and let's ignore potential and flow bounds.

Properties of Potential-Based Flows

Let a balanced load flow $\ell \in \mathbb{R}^V$ be given and let's ignore potential and flow bounds.

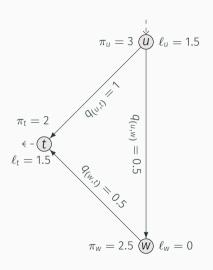
Uniqueness results: Maugis (1977) , Collins et al. (1978)

There exist feasible potentials $\pi \in \mathbb{R}^V$ and unique flows $q \in \mathbb{R}^A$ so that the set of feasible points is given by

$$\{(q, \tilde{\pi}) : \tilde{\pi} = \pi + \tau \mathbb{1}, \ \tau \in \mathbb{R}\}.$$

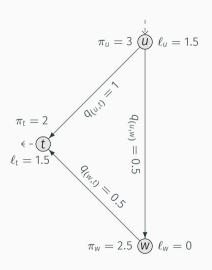
7

Why Potential-Based Flows Are Difficult



$$\varphi(q) = q, \quad \Lambda_a = 1, \ a \in A$$
$$q_a^- = -3, \ q_a^+ = 3, \ a \in A$$
$$\pi_i^+ = \infty, \ \pi_i^- = -\infty, \ i \in V$$

Why Potential-Based Flows Are Difficult



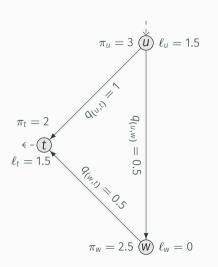
$$\varphi(q) = q, \quad \Lambda_a = 1, \ a \in A$$

$$q_a^- = -3, \ q_a^+ = 3, \ a \in A$$

$$\pi_i^+ = \infty, \ \pi_i^- = -\infty, \ i \in V$$

$$\pi_u - \pi_t = 1q_{u,t}$$

Why Potential-Based Flows Are Difficult



$$\varphi(q) = q, \quad \Lambda_a = 1, \ a \in A$$

$$q_a^- = -3, \ q_a^+ = 3, \ a \in A$$

$$\pi_i^+ = \infty, \ \pi_i^- = -\infty, \ i \in V$$

$$\pi_u - \pi_t = 1q_{u,t}$$

$$\pi_u - \pi_t = \pi_u - \pi_w + \pi_w - \pi_t = q_{u,t} = q_{u,t} = q_{u,w} + q_{t,w}$$

Robust Network Design Model

Network Expansion

Expansion variables $x_a \in \{0,1\}$ for $a \in A_{ca}$

Network Expansion

Expansion variables $x_a \in \{0, 1\}$ for $a \in A_{ca}$

$$q_a^- x_a \le q_a \le q_a^+ x_a, \quad a \in A_{ca}$$

 $(1 - x_a)M^- \le \pi_u - \pi_v - \Lambda_a \varphi(q_a) \le (1 - x_a)M^+, \quad a \in A_{ca}$

Network Expansion

Expansion variables $x_a \in \{0,1\}$ for $a \in A_{ca}$

$$q_a^- x_a \le q_a \le q_a^+ x_a, \quad a \in A_{ca}$$

$$(1 - x_a)M^- \le \pi_u - \pi_v - \Lambda_a \varphi(q_a) \le (1 - x_a)M^+, \quad a \in A_{ca}$$

$$\sum_{a \in \delta^{\text{out}}(v)} q_a - \sum_{a \in \delta^{\text{in}}(v)} q_a = \begin{cases} \ell_v, & \text{if } v \in V_+ \\ -\ell_v, & \text{if } v \in V_-, \\ 0, & \text{else} \end{cases}$$

$$q_a^- \le q_a \le q_a^+, \quad a \in A$$

$$\pi_u - \pi_v = \Lambda_a \varphi(q_a), \quad a = (u, v) \in A$$

$$\pi_u^- \le \pi_u \le \pi_u^+, \quad u \in V$$

Nominal Network Design: Model

Mixed-integer nonconvex optimization problem

$$\begin{aligned} & \underset{x,q,\pi}{\min} & & \sum_{a \in A_{\operatorname{ca}}} c_a x_a \\ & \text{s.t.} & & x \in X \subseteq \{0,1\}^{A_{\operatorname{ca}}} \\ & & \text{massflow conservation}(q;\ell), \quad u \in V \\ & & \text{potential-based flows}(q,\pi), \quad a \in A \\ & & \text{potential-based flows expansion}(q,\pi), \quad a \in A_{\operatorname{ca}} \\ & & \text{potential and flow bounds}(q,\pi), \quad u \in V, \ a \in A \end{aligned}$$

Nominal Network Design: Model

Mixed-integer nonconvex optimization problem

$$\begin{split} \min_{\mathbf{x},q,\pi} & \sum_{a \in A_{\mathrm{ca}}} c_a \mathbf{x}_a \\ \text{s.t.} & \mathbf{x} \in \mathbf{X} \subseteq \{0,1\}^{A_{\mathrm{ca}}} \\ & \text{massflow conservation}(q;\ell), \quad u \in \mathbf{V} \\ & \text{potential-based flows}(q,\pi), \quad a \in \mathbf{A} \\ & \text{potential-based flows expansion}(q,\pi), \quad a \in A_{\mathrm{ca}} \\ & \text{potential and flow bounds}(q,\pi), \quad u \in \mathbf{V}, \ a \in \mathbf{A} \end{split}$$

Demand fluctuations can lead to infeasibility of the computed network design!

Nominal Network Design: Model

Mixed-integer nonconvex optimization problem

$$\begin{split} \min_{\mathbf{x},q,\pi} & \sum_{a \in A_{\mathrm{ca}}} c_a \mathbf{x}_a \\ \text{s.t.} & \mathbf{x} \in \mathbf{X} \subseteq \{0,1\}^{A_{\mathrm{ca}}} \\ & \text{massflow conservation}(q;\ell), \quad u \in \mathbf{V} \\ & \text{potential-based flows}(q,\pi), \quad a \in \mathbf{A} \\ & \text{potential-based flows expansion}(q,\pi), \quad a \in A_{\mathrm{ca}} \\ & \text{potential and flow bounds}(q,\pi), \quad u \in \mathbf{V}, \ a \in \mathbf{A} \end{split}$$

Demand fluctuations can lead to infeasibility of the computed network design! \rightarrow consider demand uncertainties

Modeling Demand Uncertainty

Robust optimization approach

ightarrow Protect against all demand fluctuations within the uncertainty set

$$U := \left\{ \ell \in \mathbb{R}_{\geq 0} : \sum_{u \in V_+} \ell_u = \sum_{u \in V_-} \ell_u, \ \ell_u = 0 \ \forall u \in V_0 \right\} \cap Z$$

with Z being a compact set

11

Modeling Demand Uncertainty

Robust optimization approach

 \rightarrow Protect against all demand fluctuations within the uncertainty set

$$U := \left\{ \ell \in \mathbb{R}_{\geq 0} : \sum_{u \in V_+} \ell_u = \sum_{u \in V_-} \ell_u, \ \ell_u = 0 \ \forall u \in V_0 \right\} \cap Z$$

with Z being a compact set

General form of the uncertainty set: polyhedral, ellipsoidal, ...

→ covers different situations of demand uncertainties

Robust Network Design

Adjustable robust nonconvex optimization problem:

```
\min_{x,q,\pi} \sum c_a x_a
       a∈Aca
 s.t. x \in X \subset \{0,1\}^{A_{ca}}
         \forall \ell \in U \exists q, \pi \text{ that satisfy}
               massflow conservation(a_{\ell}: \ell). u \in V
               potential-based flows(q_{\ell}, \pi_{\ell}), a \in A_{ca}
               potential-based flows expansion(q_{\ell}, \pi_{\ell}), a \in A_{ca}
               potential and flow bounds(q_{\ell}, \pi_{\ell}), u \in V, a \in A
```

Robust Network Design

Adjustable robust nonconvex optimization problem:

```
\min_{x,q,\pi} \sum c_a x_a
        a \in A_{ca}
 s.t. x \in X \subseteq \{0, 1\}^{A_{ca}}
         \forall \ell \in U \exists q, \pi \text{ that satisfy}
                massflow conservation(a_{\ell}: \ell). u \in V
                potential-based flows(q_{\ell}, \pi_{\ell}), a \in A_{ca}
                potential-based flows expansion(q_{\ell}, \pi_{\ell}), a \in A_{ca}
                potential and flow bounds(q_{\ell}, \pi_{\ell}), u \in V, a \in A
```

How can we solve this challenging problem?

Static routing

· Ben-Ameur et al. 2005, Koster et al. 2013 uncertain traffic demand

Static routing

· Ben-Ameur et al. 2005, Koster et al. 2013 uncertain traffic demand

Dynamic linear routing

· Atamtürk and Zhang 2007, Cacchiani et al. 2016

Static routing

· Ben-Ameur et al. 2005, Koster et al. 2013 uncertain traffic demand

Dynamic linear routing

· Atamtürk and Zhang 2007, Cacchiani et al. 2016

Comparison static and dynamic routing: Poss and Raack 2013

Static routing

· Ben-Ameur et al. 2005, Koster et al. 2013 uncertain traffic demand

Dynamic linear routing

· Atamtürk and Zhang 2007, Cacchiani et al. 2016

Comparison static and dynamic routing: Poss and Raack 2013

Adjustable robust network design with nonlinear flows

Static routing

· Ben-Ameur et al. 2005, Koster et al. 2013 uncertain traffic demand

Dynamic linear routing

· Atamtürk and Zhang 2007, Cacchiani et al. 2016

Comparison static and dynamic routing: Poss and Raack 2013

Adjustable robust network design with nonlinear flows

- · Gas networks: Sundar et al. 2021 only uncertain sinks and unlimited sources
- Tree-shaped networks: Robinius et al. 2019
- Arc failures Pfetsch and Schmitt 2023

Adversarial Solution Approach

Determine a set of finitely many scenarios $S \subseteq U$

Determine a set of finitely many scenarios $S \subseteq U$

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

Determine a set of finitely many scenarios $S \subseteq U$

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

Fix the network design x and search for a violating demand scenario in U

Determine a set of finitely many scenarios $S \subseteq U$

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

Fix the network design x and search for a violating demand scenario in U

If no violating demand scenario exists \rightarrow network design x is optimal else add violating demand scenario $S = S \cup \{u\}$ and compute new network design w.r.t. S

Determine a set of finitely many scenarios $S \subseteq U$

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

Fix the network design x and search for a violating demand scenario in U

If no violating demand scenario exists \rightarrow network design x is optimal else add violating demand scenario $S = S \cup \{u\}$ and compute new network design w.r.t. S

Well known approach in strictly robust optimization; see e.g., Yanıkoğlu et al. 2019

Determine a set of finitely many scenarios $S \subseteq U$

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

Fix the network design x and search for a violating demand scenario in U

If no violating demand scenario exists \rightarrow network design x is optimal else add violating demand scenario $S = S \cup \{u\}$ and compute new network design w.r.t. S

Well known approach in strictly robust optimization; see e.g., Yanıkoğlu et al. 2019

How can we find violating scenarios for the adjustable robust nonconvex problem? Can we guarantee finite termination? Characterizing Worst-Case Scenarios

Finding Worst-Case Scenarios

Three types of "worst-case" scenarios

- · Unbalanced demands between different connected components
- Violating flow bounds
- Violating potential bounds

Worst-Case Scenarios: Unbalanced Demands

Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))Connected component $G^i = (V^i, A^i)$

Worst-Case Scenarios: Unbalanced Demands

Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))

Connected component $G^i = (V^i, A^i)$

Find unbalanced demands

$$\mu_{G^i}(x) := \max_{\ell} |y|$$
 s.t. $y = \sum_{u \in V^i \cap V_+} \ell_u - \sum_{u \in V^i \cap V_-} \ell_u, \ \ell \in U$

Worst-Case Scenarios: Unbalanced Demands

Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))

Connected component $G^i = (V^i, A^i)$

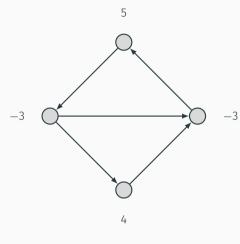
Find unbalanced demands

$$\mu_{G^i}(\mathbf{X}) := \max_{\ell} |\mathbf{y}| \quad \text{s.t.} \quad \mathbf{y} = \sum_{u \in V^i \cap V_+} \ell_u - \sum_{u \in V^i \cap V_-} \ell_u, \ \ell \in U$$

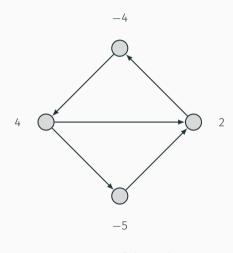
 $\mu_{G^i}(x) > 0 \rightarrow x$ is robust infeasible

 \rightarrow At most |V| many worst-case scenarios

Visualization Unbalanced Demands



Surplus 3 units



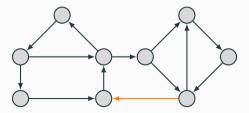
Deficit 3 units

Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))

Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))

Maximum arc flow in U

$$\overline{q}_a(x) := \max_{\ell,q,\pi} \quad q_a \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V$$
 potential-based flows, $\quad a = (u,v) \in A$ $\quad \ell \in U, \quad \text{no bounds}$



Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))

Maximum arc flow in U

$$\overline{q}_a(x) := \max_{\ell,q,\pi} \quad q_a \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V$$
 potential-based flows, $\quad a = (u,v) \in A$ $\quad \ell \in U, \quad \text{no bounds}$

Minimum arc flow in U

$$\underline{q}_a(x) := \min_{\ell,q,\pi} \quad q_a \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V$$
 potential-based flows, $\quad a = (u,v) \in A$ $\quad \ell \in U, \quad \text{no bounds}$

Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))

Maximum arc flow in U

$$\overline{q}_a(x) := \max_{\ell,q,\pi} \quad q_a \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V$$
 potential-based flows, $\quad a = (u,v) \in A$ $\quad \ell \in U, \quad \text{no bounds}$

Minimum arc flow in U

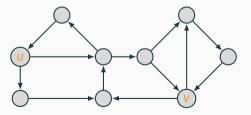
$$\underline{q}_a(x) := \min_{\ell,q,\pi} \quad q_a \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V$$
 potential-based flows, $\quad a = (u,v) \in A$ $\quad \ell \in U, \quad \text{no bounds}$

 \rightarrow At most 2|A(x)| many worst-case flow scenarios for fixed x

Worst-Case Scenarios: Potential Bounds

Maximum potential difference between pair (u, v) of nodes

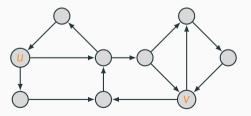
$$\varphi_{u,v}(x) := \max_{\ell,q,\pi} \quad \pi_u - \pi_v \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V$$
 potential-based flows, $\quad a = (u,v) \in A$ $\quad \ell \in U, \quad \text{no bounds}$



Worst-Case Scenarios: Potential Bounds

Maximum potential difference between pair (u, v) of nodes

$$\varphi_{u,v}(x) := \max_{\ell,q,\pi} \quad \pi_u - \pi_v \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V$$
 potential-based flows, $\quad a = (u,v) \in A$ $\quad \ell \in U, \quad \text{no bounds}$



 \rightarrow At most $|V|^2$ many worst-case scenarios for the potential bounds

Main Result: Characterization of Robust Feasibility

Theorem

Let $x \in X$ be fixed and $G'(x) = (V, A_{ex} \cup \{a \in A_{ca} : x_a = 1\})$ be the expanded graph. Let $G'(x) := \{G^1, \dots, G^n\}$ with $G^i = (V^i, A^i)$ be the set of connected components of G'(x). Then, expansion x is adjustable robust feasible if and only if

$$\mu_{G^{i}}(x) = 0 \quad \text{for all} \quad G^{i} \in \mathcal{G}'(x)$$

$$\varphi_{u,v}(x) \leq \pi_{u}^{+} - \pi_{v}^{-} \quad \text{for all} \quad (u,v) \in (V^{i})^{2}, \ G^{i} \in \mathcal{G}'(x)$$

$$\underline{q}_{a}(x) \geq q_{a}^{-} \quad \text{for all} \quad a \in A^{i}, \ G^{i} \in \mathcal{G}'(x)$$

$$\bar{q}_{a}(x) \leq q_{a}^{+} \quad \text{for all} \quad a \in A^{i}, \ G^{i} \in \mathcal{G}'(x)$$

Main Result: Characterization of Robust Feasibility

Theorem

Let $x \in X$ be fixed and $G'(x) = (V, A_{ex} \cup \{a \in A_{ca} : x_a = 1\})$ be the expanded graph. Let $G'(x) := \{G^1, \dots, G^n\}$ with $G^i = (V^i, A^i)$ be the set of connected components of G'(x). Then, expansion x is adjustable robust feasible if and only if

$$\mu_{G^{i}}(x) = 0 \quad \text{for all} \quad G^{i} \in \mathcal{G}'(x)$$

$$\varphi_{u,v}(x) \leq \pi_{u}^{+} - \pi_{v}^{-} \quad \text{for all} \quad (u,v) \in (V^{i})^{2}, \ G^{i} \in \mathcal{G}'(x)$$

$$\underline{q}_{a}(x) \geq q_{a}^{-} \quad \text{for all} \quad a \in A^{i}, \ G^{i} \in \mathcal{G}'(x)$$

$$\bar{q}_{a}(x) \leq q_{a}^{+} \quad \text{for all} \quad a \in A^{i}, \ G^{i} \in \mathcal{G}'(x)$$

 \rightarrow At most $|V| + |V|^2 + 2|A|$ many "worst-case" scenarios

Result holds for general compact uncertainty sets U

Determine a set of finitely many scenarios $S \subseteq U$

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

Compute the finitely many "worst-case" scenarios w.r.t. fixed x

If no violating demand scenario exists \rightarrow network design x is optimal else add violating demand scenario $S = S \cup \{u\}$ and compute new network design w.r.t. S

Variant: Add at most one violating scenario per iteration

Determine a set of finitely many scenarios $S \subseteq U$

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

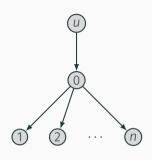
Compute the finitely many "worst-case" scenarios w.r.t. fixed x

If no violating demand scenario exists \rightarrow network design x is optimal else add violating demand scenario $S = S \cup \{u\}$ and compute new network design w.r.t. S

Variant: Add at most one violating scenario per iteration

Theorem

Algorithm terminates after a finite number of iterations with a global optimal solution or proves infeasibility.

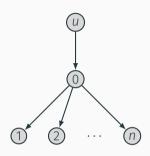


- · Inner node 0
- Sinks 1, . . . , *n*

$$\varphi_a(q_a) = \Lambda_a q_a |q_a|$$

$$\Lambda_a = 1$$

$$[\pi_w^-, \pi_w^+] = [1, 5]$$



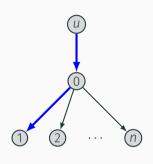
- · Inner node 0
- Sinks 1, . . . , *n*
- Parallel expansion candidates
- Box uncertainty set

$$U = \{\ell_W \in [0, 2], W \in V, \ \ell_0 = 0\} \cap \left\{\ell_U = \sum_{v \in V_-} \ell_v\right\}$$

$$\varphi_a(q_a) = \Lambda_a q_a |q_a|$$

$$\Lambda_a = 1$$

$$[\pi_w^-, \pi_w^+] = [1, 5]$$



$$\varphi_a(q_a) = \Lambda_a q_a |q_a|$$

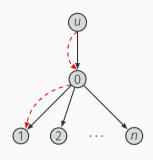
$$\Lambda_a = 1$$

$$[\pi_{u}^-, \pi_{u}^+] = [1, 5]$$

- · Source u
- · Inner node 0
- Sinks 1, . . . , *n*
- · Parallel expansion candidates
- Box uncertainty set

$$U = \{\ell_W \in [0, 2], W \in V, \ \ell_0 = 0\} \cap \left\{\ell_U = \sum_{v \in V_-} \ell_v\right\}$$

- First iteration
 - Worst-Case demand: $d_u = d_1 = 2$, remaining nodes demand 0



$$\varphi_a(q_a) = \Lambda_a q_a |q_a|$$

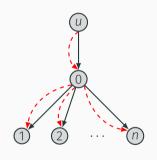
$$\Lambda_a = 1$$

$$[\pi_w^-, \pi_w^+] = [1, 5]$$

- · Source u
- · Inner node 0
- Sinks 1, . . . , n
- · Parallel expansion candidates
- Box uncertainty set

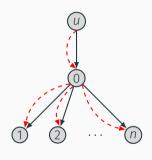
$$U = \{\ell_W \in [0, 2], W \in V, \ \ell_0 = 0\} \cap \left\{\ell_U = \sum_{v \in V_-} \ell_v\right\}$$

- First iteration
 - Worst-Case demand: $d_u = d_1 = 2$, remaining nodes demand 0
 - Expansion decision $x_{u,1} = x_{0,1} = 1$



- After *n* iterations
- $|V_+| \times |V_-|$ worst-case scenarios

$$S = \{\ell_u = \ell_v = 2, \ \ell_w = 0, w \in V_- \setminus \{v\} \text{ for all } v \in V_-\}$$

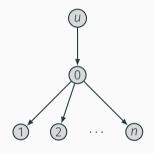


- After n iterations
- $|V_+| \times |V_-|$ worst-case scenarios

$$S = \{\ell_u = \ell_v = 2, \; \ell_w = 0, w \in V_- \setminus \{v\} \text{ for all } v \in V_-\}$$

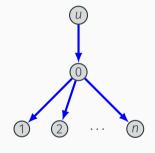
Why do we need "so many" worst-case scenarios?

 \rightarrow Limited supply capacity of the source



· Same network with larger supply capacity

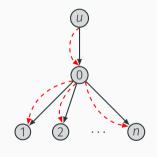
$$\begin{split} \tilde{U} &= \{\ell_v \in [0,2], v \in V_-, \ \ell_0 = 0, \ \ell_u \leq 2 \, |V_-| \} \\ &\cap \{\ell_u = \sum_{v \in V_-} \ell_v \} \end{split}$$



Same network with larger supply capacity

$$\tilde{U} = \{ \ell_v \in [0, 2], v \in V_-, \ \ell_0 = 0, \ \ell_u \le 2 |V_-| \}$$
$$\cap \{ \ell_u = \sum_{v \in V_-} \ell_v \}$$

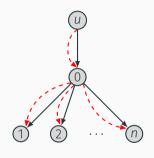
- First iteration
- Worst-case scenario $d_u = 2|V_-|, d_i = 2, i \in [n]$



Same network with larger supply capacity

$$\tilde{U} = \{ \ell_v \in [0, 2], v \in V_-, \ \ell_0 = 0, \ \ell_u \le 2 |V_-| \}$$
$$\cap \{ \ell_u = \sum_{v \in V_-} \ell_v \}$$

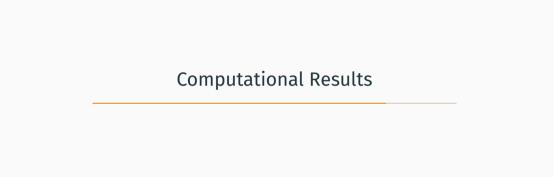
- First iteration
- Worst-case scenario $d_u = 2|V_-|, d_i = 2, i \in [n]$
- · Algorithm terminates after a single iteration



· Same network with larger supply capacity

$$\begin{split} \tilde{U} &= \{\ell_v \in [0,2], v \in V_-, \ \ell_0 = 0, \ \ell_u \leq 2 \, |V_-| \} \\ &\cap \{\ell_u = \sum_{v \in V_-} \ell_v \} \end{split}$$

- First iteration
- Worst-case scenario $d_u = 2|V_-|, d_i = 2, i \in [n]$
- · Algorithm terminates after a single iteration
- Real-world networks: sources can supply many sinks
 - \rightarrow very few worst-case scenarios in practice



Computational Setup

Implemented in Python 3.7 and Pyomo 6.7.0

Solving MINLPs with Gurobi 10.0.3

Time limit of 24 hours per instance

Gas networks $\varphi_a = \Lambda_a q_a |q_a|$

Expansion candidates are in parallel with up to four different diameters

instance	#nodes	#sources	#sinks	#pipes	#short pipes
GasLib-40	40	3	29	39	6
GasLib-60	60	3	39	61	18

Computational Results

Consider four different polyhedral uncertainty sets

→ with and without correlations between sinks

Add to the plain algorithm

- Acyclic inequalities (Habeck and Pfetsch 2022)
- \cdot Mixed-integer convex relaxation \rightarrow lower bounds for the MINLPs
- ightarrow only used for computing lower bounds

General approach is exact

Robustifying Existing Networks

Robustifying Existing Networks

Plain Approach (Left: GasLib-40, Right: GasLib-60)

#Solved	4 of 4		
	Min	Median	Max
#Scenarios	1	2	2
Runtime (s)	807.65	1395.33	1578.68

#Solved	4 of 4		
	Min	Median	Max
#Scenarios	1	1	1
Runtime (s)	1117.37	1175.83	3009.57

Approach with lower bound strengthening

#Solved	4 of 4		
	Min	Median	Max
#Scenarios Runtime (s)	1 332.21	2 1149.98	2 2042.90

#Solved	4 of 4		
	Min	Median	Max
#Scenarios	1	1	1
Runtime (s)	564.06	995.62	1037.74

Greenfield Approach

Greenfield Approach

Plain Approach (Left: GasLib-40, Right: GasLib-60)

#Solved	1 of 4		
	Min	Median	Max
#Scenarios	1	1	1
Runtime (s)	7320.85	7320.85	7320.85

#Solved	1 of 4		
	Min	Median	Max
#Scenarios Runtime (s)	2 81 895.84	2 81 895.84	2 81 895.84

Approach with lower bound strengthening

#Solved	3 of 4		
	Min	Median	Max
#Scenarios	1	3	3
Runtime (s)	4066.79	39 963.87	50 183.53

#Solved	1 of 4		
	Min	Median	Max
#Scenarios Runtime (s)	2 51 290.35	2 51 290.35	2 51 290.35

Summary and Outlook

An algorithm to compute adjustable robust network designs for nonlinear flows

- Finitely many "worst-case scenarios"
- Finite termination for arbitrary compact uncertainty sets
- Approach performs well in practice

Summary and Outlook

An algorithm to compute adjustable robust network designs for nonlinear flows

- Finitely many "worst-case scenarios"
- Finite termination for arbitrary compact uncertainty sets
- Approach performs well in practice

Future research

- · Extension to active elements
- · Valid inequalities for network design problems with potential-based flows

Main Source

Scan me!