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Adjustable Robust Nonlinear Network Design

Task
Compute a network design taking into account demand uncertainties
Consider an accurate nonconvex transport model

— Adjustable robust MINLP

Challenges

Discrete decisions and nonlinear constraints

Key Components of the Solution Approach

Exploit the underlying network and structural properties of potential-based flows
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Potential-Based Flows

Network modeled as a digraph G = (V,A) with V :=V, UV_U V,
Balanced load flow £ € RY, i.e, Y,y fu = Y ey_ fu, is feasible if 3 g, x with

by, ifveVvy

Z Ga — Z Ga =1 -4, ifvev_, veV

OUt n
A€o (v) acs™(v) 0, else

Gg <Ga<qs, a€A
mu — 7y = Na(Ga), a=(u,v) €A
T, <my <7, UEV
We consider potential functions of the form ¢(gq) = qal|ga|” with r >0

— allows to model gas, hydrogen, water, and lossless DC power flow networks 6
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Properties of Potential-Based Flows

Let a balanced load flow £ € RV be given and let’s ignore potential and flow

bounds.
Uniqueness results: Maugis (1977) , Collins et al. (1978)

There exist feasible potentials 7 € RY and unique flows g € R” so that the set of
feasible points is given by

{(g,7) : *=n+71, T € R}.
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+ _

" =00, m, = —00, i€V
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Network Expansion

Expansion variables xq € {0,1} for a € A

GaXa < Qa < qiXa, Q€A

(1 - Xa)Mi S Ty — Ty — /\a%@(qa) S (1 - Xa)M+, ac Aca

b, ifvevy

Y G- > Ga=S -4, ifvev., veV

ag(v) a€s(v) 0, else
)

G; <Ga<qf, acAh
Ty — vy = Naw(qa), a=(u,v) €A
a, <my<mf, uev



Nominal Network Design: Model

Mixed-integer nonconvex optimization problem

st. xeXC{0,1}a
massflow conservation(g; ¢), ue€V
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potential-based flows expansion(g,7), a € Aa
potential and flow bounds(g,n), ueV, ae€A
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Modeling Demand Uncertainty

Robust optimization approach
— Protect against all demand fluctuations within the uncertainty set

Ui=SleRxo: Y Lu= > Ly, ly=0VueVypnZ

ueVvy uev_

with Z being a compact set

General form of the uncertainty set: polyhedral, ellipsoidal, ...
— covers different situations of demand uncertainties
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Robust Network Design

Adjustable robust nonconvex optimization problem:

st. xeXC{0,1}A=
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massflow conservation(qe; ¢), u €V
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Robust Network Design

Adjustable robust nonconvex optimization problem:

st. xeXC{0,1}a
V¢ € U 3 g, that satisfy
massflow conservation(qe; ¢), u €V
potential-based flows(qge, m¢), a € Aca
potential-based flows expansion(qe, 7¢), a € Aca

potential and flow bounds(qgg, 7)), ue€V,acA

How can we solve this challenging problem?
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Literature Overview: Robust Network Design

Static routing

- Ben-Ameur et al. 2005, Koster et al. 2013 uncertain traffic demand
Dynamic linear routing

- Atamturk and Zhang 2007, Cacchiani et al. 2016

Comparison static and dynamic routing: Poss and Raack 2013

Adjustable robust network design with nonlinear flows

- Gas networks: Sundar et al. 2021 only uncertain sinks and unlimited sources
- Tree-shaped networks: Robinius et al. 2019
- Arc failures Pfetsch and Schmitt 2023
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Characterizing Worst-Case Scenarios




Finding Worst-Case Scenarios

Three types of “worst-case” scenarios

- Unbalanced demands between different connected components
- Violating flow bounds

- Violating potential bounds

15
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Worst-Case Scenarios: Unbalanced Demands

Fixed network expansion x € X and the expanded graph G(x) = (V,A(x))
Connected component G' = (V/, A’

Find unbalanced demands

i = t = f - E ) f U
i (X) m?X|Y| sty Z u Z u, £ €

uevinvy uevinv_

pei(X) > 0 — x is robust infeasible

— At most |V| many worst-case scenarios



Visualization Unbalanced Demands

5 —4
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i

Surplus 3 units Deficit 3 units
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Worst-Case Scenarios: Flow Bounds

Fixed network expansion x € X and the expanded graph G(x) = (V,A(x))
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Worst-Case Scenarios: Flow Bounds

Fixed network expansion x € X and the expanded graph G(x) = (V,A(x))

Maximum arc flow in U

Gqu(x) :=max g st. massflow conservation, ueV
b 771- .
‘ potential-based flows, a=(u,v) €A

¢ e U, nobounds

Minimum arc flow in U

qa(x) = ?]in gq St massflow conservation, ueV
- 7q7 .
" potential-based flows, a=(u,v) €A

¢e U, nobounds

— At most 2|A(x)| many worst-case flow scenarios for fixed x 1o



Worst-Case Scenarios:; Potential Bounds

Maximum potential difference between pair (u,v) of nodes
wuv(X) =max m, —m st massflow conservation, ueV

4,q,m .
‘ potential-based flows, a = (u,v) €A

¢e U, nobounds
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Worst-Case Scenarios:; Potential Bounds

Maximum potential difference between pair (u,v) of nodes
wuv(X) =max m, —m st massflow conservation, ueV

4,q,m .
‘ potential-based flows, a = (u,v) €A

¢e U, nobounds

<>

— At most |V|?> many worst-case scenarios for the potential bounds
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Main Result: Characterization of Robust Feasibility

Theorem

Let x € X be fixed and G'(x) = (V,Aex U {a € Aca: Xa = 1}) be the expanded graph.
Let G'(x) := {G,...,G"} with G' = (V/,A’) be the set of connected components
of G'(x). Then, expansion x is adjustable robust feasible if and only if

pe(x) =0 forall G e g'(x)
euv(X) <mt —my  forall (u,v)e (VY% G ed'(x)
q,()>q; forall acA, G ed(x)
Ga(x) < qf forall aeA, G ed(x)
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Main Result: Characterization of Robust Feasibility

Theorem

Let x € X be fixed and G'(x) = (V,Aex U {a € Aca: Xa = 1}) be the expanded graph.
Let G'(x) := {G,...,G"} with G' = (V/,A’) be the set of connected components
of G'(x). Then, expansion x is adjustable robust feasible if and only if

pe(x) =0 forall G e g'(x)

euv(X) <mt —my  forall (u,v)e (VY% G ed'(x)
q,()>q; forall acA, G ed(x)
Ga(x) < qf forall aeA, G ed(x)

— At most |V| + |V|? + 2|A] many “worst-case” scenarios

Result holds for general compact uncertainty sets U .



General Algorithmic Idea

Determine a set of finitely many scenarios S C U

Solve robust network design problem w.rt. S instead of U « (x,q, )

If no violating demand scenario exists — network design x is optimal
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Variant: Add at most one violating scenario per iteration
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General Algorithmic Idea

Determine a set of finitely many scenarios S C U

Solve robust network design problem w.rt. S instead of U « (x,q, )

If no violating demand scenario exists — network design x is optimal
else add violating demand scenario S = SU {u}
and compute new network design w.rt. S

Variant: Add at most one violating scenario per iteration

Theorem

Algorithm terminates after a finite number of iterations with a global optimal

solution or proves infeasibility. .
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How Many Scenarios Do We Need?

- Source u
0 - Inner node 0
1
g - Sinks 1,...,n

- Parallel expansion candidates

- Box uncertainty set

U={twe0,2lweV, b=0}Nqly=> 4

veV_
¢a(Ga) = NaGa |qal - First iteration
Ng=1 - Worst-Case demand: d, = d; = 2, remaining
[ro, 7] = [1,5] nodes demand 0
wo w - )

- Expansion decision Xy 1 = Xo,1 =1 23



How Many Scenarios Do We Need?

- After n iterations
. - |V4| x |V_| worst-case scenarios

S={,=0,=2,L,=0,weV_\{v}forallveV_}
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How Many Scenarios Do We Need?

- After n iterations
. - |V4| x |V_| worst-case scenarios

S={,=0,=2,L,=0,weV_\{v}forallveV_}

Why do we need “so many” worst-case scenarios?
— Limited supply capacity of the source

2%
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How Many Scenarios Do We Need?

- Same network with larger supply capacity

U={t,€[0,2l,veV_, lo=0, £, <2|V_|}
N{t=>_ &}

vev_

" - First iteration
,di=2,i€[n]

- Algorithm terminates after a single iteration

- Worst-case scenario d, = 2|V_

- Real-world networks: sources can supply many
sinks
— very few worst-case scenarios in practice
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Computational Setup

Implemented in Python 3.7 and Pyomo 6.7.0
Solving MINLPs with Gurobi 10.0.3

Time limit of 24 hours per instance

Gas networks ¢q = AqGalqal

Expansion candidates are in parallel with up to four different diameters

instance  #nodes #sources #sinks #pipes #short pipes

GasLib-40 40 3 29 39 6
GasLib-60 60 3 39 61 18
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Computational Results

Consider four different polyhedral uncertainty sets
— with and without correlations between sinks

Add to the plain algorithm

- Acyclic inequalities (Habeck and Pfetsch 2022)

- Mixed-integer convex relaxation — lower bounds for the MINLPs

— only used for computing lower bounds

27



Robustifying Existing Networks
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Robustifying Existing Networks

Plain Approach (Left: GasLib-40, Right: GasLib-60)

#Solved 4 of 4 #Solved 4 of 4

Min Median Max Min Median Max
#Scenarios 1 2 2 #Scenarios 1 1 1
Runtime (s)  807.65 139533  1578.68 Runtime (s)  1117.37 1175.83  3009.57

Approach with lower bound strengthening

#Solved 4 of 4 #Solved 4 of 4

Min Median Max Min Median Max
#Scenarios 1 2 2 #Scenarios 1 1 1
Runtime (s)  332.21 1149.98  2042.90 Runtime (s)  564.06  995.62 1037.74

28



Greenfield Approach
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Greenfield Approach

Plain Approach (Left: GasLib-40, Right: GasLib-60)

#Solved 1lof4 #Solved 1of4
Min Median Max Min Median Max
#Scenarios 1 1 1 #Scenarios 2 2 2
Runtime (s)  7320.85  7320.85  7320.85 Runtime (s)  81895.84  81895.84  81895.84
Approach with lower bound strengthening
#Solved 3of4 #Solved 1of4
Min Median Max Min Median Max
#Scenarios 1 3 3 #Scenarios 2 2 2
Runtime (s)  4066.79 39963.87 50183.53 Runtime (s) 51290.35 51290.35 51290.35
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Summary and Outlook

An algorithm to compute adjustable robust network designs for nonlinear flows
- Finitely many “worst-case scenarios”
- Finite termination for arbitrary compact uncertainty sets

- Approach performs well in practice
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Summary and Outlook

An algorithm to compute adjustable robust network designs for nonlinear flows
- Finitely many “worst-case scenarios”
- Finite termination for arbitrary compact uncertainty sets

- Approach performs well in practice

Future research
- Extension to active elements

- Valid inequalities for network design problems with potential-based flows
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