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OR-tools
Open source library for discrete optimization

 https://github.com/google/or-tools

● Small utilities / algorithms
● Graph algorithms (symmetry, max-flow, min-cost-flow, perfect matching, …)
● LP solver (Glop for simplex, PDLP for first order)
● Common MIP interface (to SCIP, GUROBI, CP-SAT, etc…)
● Vehicle routing solver
● CP-SAT

https://github.com/google/or-tools


A Breakthrough: CP vs CP-SAT
Exploiting SAT solvers recent progress: Conflict Directed Clause Learning (CDLC)
Inspired by Chuffed and by Peter Stuckey's “Search is dead, long live proof”

https://people.eng.unimelb.edu.au/pstuckey/PPDP2013.pdf


Now more like CP-SAT-LP-…
Constraint Programming:
● Rich modeling layer (structure is not lost in the solver)
● Advanced deduction algorithms (mainly for scheduling and routing)

SAT & MaxSAT:
● Core based search
● Model reductions
● Clause Learning

Linear Integer Programming: 
● Linear Relaxation + Cuts
● Presolve

Primal heuristics:
● Large Neighborhood Search (LNS)
● Violation based Local Search (from MIP feasibility jump)



Model + blackbox solver
Input: “CpModel” protocol buffer
https://github.com/google/or-tools/blob/stable/ortools/sat/cp_model.proto

Integer variables:              X
i
 ∈ [lb

i
, ub

i
], X

i
 ∈ int64

Constraints:
● Boolean constraints (on variable are in [0, 1]).
● Linear constraints (with half-reification aka indicator constraints)
● Min/Max, Product, Division, Modulo, Boolean XOR
● Routing: Circuit/Route
● Scheduling: No-Overlap (1d/2d) and cumulative

https://github.com/google/or-tools/blob/stable/ortools/sat/cp_model.proto


Difference vs MIP
Main one: Only bounded Integer variables.

Linear constraint and objective with integer coefficients.

Scaling floating point constraint/objective is “easy”:
● CP-SAT can do that automatically given a primal-tolerance
● It is done at the beginning, with clear errors if precision cannot be reached 

using int64_t coefficients.

Scaling variables automatically not so much…
You can just assume integrality and get feasible solution though. 



A simple presolve example



Coefficient strengthening
A  ∈ [0,10]      B  ∈ [0,10]     C   ∈ [0,1]

● Given a linear constraint                 3 A + 7 B + 5 C   >=  4



Coefficient strengthening
A  ∈ [0,10]      B  ∈ [0,10]     C   ∈ [0,1]

● Given a linear constraint                 3 A + 7 B + 5 C   >=  4
● Because all variables >=0               3 A + 4 B + 4 C   >=  4          

This helps make the LP relaxation stronger

“Big-M” coefficient reduction.



Coefficient strengthening
A  ∈ [0,10]      B  ∈ [0,10]     C   ∈ [0,1]

● Given a linear constraint                 3 A + 7 B + 5 C   >=  4
● Because all variables >=0               3 A + 4 B + 4 C   >=  4          
● We can go further                            1 A + 2 B + 2 C   >=  2

       LP Relaxation even stronger.

Harder to code/explain the algo, related to cuts… but need equivalence



Coefficient strengthening
A  ∈ [0,10]      B  ∈ [0,10]     C   ∈ [0,1]

● Given a linear constraint                 3 A + 7 B + 5 C   >=  4
● Because all variables >=0               3 A + 4 B + 4 C   >=  4          
● We can go further                            1 A + 2 B + 2 C   >=  2
● In CP-SAT we like Booleans          !C     =>   A  + 2 B >=  2

        Indicator constraint in MIP
        or “enforced constraint” and “enforcement literal” in CP-SAT jargon



Coefficient strengthening
A  ∈ [0,10]      B  ∈ [0,10]     C   ∈ [0,1]

● Given a linear constraint                 3 A + 7 B + 5 C   >=  4
● Because all variables >=0               3 A + 4 B + 4 C   >=  4          
● We can go further                            1 A + 2 B + 2 C   >=  2
● In CP-SAT we like Booleans          !C     =>   A  + 2 B >=  2
● If we have in the model D ∈ [0,1],  D ⇔ B == 0

                 !C  &   D  =>   A  >=  2 

(In our internal LP, this will be later re-linearized to A + 2B + 2(1-D) >=2)



Exact LP propagation



CP-SAT is an EXACT solver
Even though LP solver is inexact, we just use its output as a “hint”.

● We use only int64/int128 arithmetic. 
● No epsilon! But have to deal with integer overflow.
● vs MIP: simplify the code & complexity a lot.

Same for the cuts, we compute everything with integers.



Ingredient 1 : Integer LP
Bounded integer variables:      X

i
 ∈ [lb

i
, ub

i
]      X

i
 ∈ int64

Integer linear objective:           minimize  ∑
i 
obj

i
 X

i      
obj

i
∈ int64

valid integer linear constraints (initial linearization or cuts) :

                 lhs <= ∑
i
 coeff

i
 X

i
 <= rhs     lhs,rhs,coeff

i
∈ int64

Compared to a MIP solver: 
● Everything is integer (int64) and bounded. 
● integer-overflow precondition: min/max constraint activity fit on int64.
● The constraints do not need to describe the full problem.



Ingredient 2 : Linear combination of constraints
Given any set of floating point constraint multipliers λ

i

Scale them to integer M
i
 = round(s * λ

i
) with a factor s (we use a power of 2) 

as large as possible and compute exactly:

      ∑
{positive Mi}

   M
i
 * (constraint

i
 <= rhs

i
)  

  + ∑
{negative Mi}

   M
i
 * (constraint

i
 >= lhs

i
)  

    =  new_linear_terms  <=  new_rhs

Details:
● We compute the new_rhs using int128
● s chosen so that all other coefficients fit on an int64



Ingredient 3: Propagating an integer linear constraint
Canonicalize to:   ∑

i
 coeff64

i
 X’

i
 <= rhs128     coeff64

i 
> 0

Compute: min_activity128 = ∑
i
 coeff64

i
 lb64(X’

i
)

                   slack128 = rhs128 - min_activity128

slack128 < 0: conflict!
slack128 >= int64max: no propagation.

Otherwise, ∀i, new_ub64(X’
i
) = lb64(X’

i
) + ⎣slack64 / coeff64

i
⎦



Propagating dual-infeasible LP
● Take dual ray (aka infeasibility proof) as constraint multipliers

● New constraint should give rise to a conflict (i.e. min_activity > rhs).

Note: Even if not conflicting, it will likely have small slack (rhs - min_activity), and 
can thus propagates bounds...



Propagating dual-feasible LP
Take negated dual LP values (scaled by s) as constraint multipliers:

                                new_linear_terms <= new_rhs                 [from multipliers]
                     s * objective_linear_term <= s * objective_var    [objective definition]

                 terms  + s * minus_objective_var  <=  new_rhs

Normal CP-SAT propagation of this new constraint:
● Push LP lower bound of objective var
● Or is infeasible if new objective lb > best_known_solution_objective.
● Push upper (or lower) bound of variables (i.e. reduced cost fixing !)



Generic LP Cuts



Goal
Given:
● Integer LP 
● Current LP solution for each variables

Derive a new and valid integer linear constraint (linear terms <= rhs) that is 
● violated by the current LP solution (LP solution activity > rhs)
● Has good efficacy = violation / ǁconstraintǁ

2

Note that only generic MIP cut here: No TSP, scheduling cuts, etc…



Example: clique cut
X, Y, Z integer variable in [0,1], current LP solution 0.5 for each.

Constraints:      
             X + Y <= 1,  

             X + Z <= 1,  

             Y + Z <= 1

This could be the optimal to maximize X + Y + Z for instance.

But, given the integrality constraint (ignored by the LP), we can derive

X + Y + Z <= 1, this is a violated cut (violation = 0.5).



General MIP cut framework
Almost all cuts (gomory, MIR, zero half, cover, flow, …) follow this:

1. Aggregate many constraints from the integer lp into one (terms <= rhs) 

2. From such single constraint, rewrite it slightly with complementation, implied 
bounds, and using positive variables. 

3. Apply a super-additive function f() to get the cut.

4. Rewrite everything in term of the original variables (i.e. undo step 2).

 



Aggregation
Same as for explanation, take linear-combination of constraints, but use slacks

lhs <= ∑
i
 coeff

i
 X

i
 <= rhs     =>      ∑

i
 coeff

i
 X

i 
- S = 0

new slack integer variable S ∈ [lhs, rhs]

Why slacks?

● Final constraint is always tight for LP
● After all steps, it is possible slack still there, it will be substituted back, and 

that can lead to stronger cut.

 



Different aggregation heuristics
● No aggregations ! try each cut heuristic on row or -row.

● MIR heuristic: combine small number (<= 6) of constraints to eliminate 
fractional variables.

● Chvatal-Gomory (get multipliers λ
i 

from B-1.ej)
Should lead to single variables not at its bound in aggregated equation!

● Zero-half cuts (only use +1/-1 multipliers, heuristic mod 2)
Idea is to get odd rhs, but even coeff for important variables.

● Clique (Weighted Bron Kerbosch max-clique enumeration)

 



Linear equality rewriting (heuristics too)

Propagate/presolve:  minor impact but still useful.

rewrite using positive variables:    X’ = X
 
- lb      X’∈ [0, range = ub

 
- lb]

Maybe complement some variables:   X = range - Xc

Maybe use some implied bounds (Bool => X >= v):

X = v * B + (X - v * B) = v * B + S,  S ∈ [0, range]

This is especially powerful if B already in the constraint!

Make term more “integral”:  1 * X[0, 10’000]   → 100 * Y[0, 100]  → 10’000 * Z[0, 1]



Super-additive function f()

● f: 𝕫 → 𝕫
● f(x) + f(y) <= f(x + y)

This is nice, because:

              ∑
i 
coeff64

i
 X

i
 = rhs128,         X

i 
positive    

        f(∑
i 
coeff64

i
 X

i
) = f(rhs128)    [ <= works too]

        ∑
i 
f(coeff64

i
 X

i
) <= f(rhs128)   [ super-additivity ]

        ∑
i 
f(coeff64

i
) X

i
 <= f(rhs128)   [ X

i 
positive integer ]

This is the step that goes from “tight constraint” to “violated constraint”

    



Clique exemple revisited  (a bit artificial)
● Recall  X + Y <= 1,  

               X + Z <= 1,  
               Y + Z <= 1

● We can sum them all:   2X + 2Y + 2Z <= 3
● And apply f(x) = ⎣x / 2⎦   (this is super-additive)
● We get  X + Y + Z <= 1

Note that this is the same f() used by zero-half cuts.

    



Cover cut (or Knapsack cut) example
6X + 4Y + 10Z <= 9        (X=1.0, Y=0.5, Z=0.2, all in [0,1])

X and Y form a “cover” (i.e. 6 + 4 > 9)

Lets complement the cover:   -6Xc -4Yc + 10Z <= -1

Apply f(x) = ⎣x/6⎦

we get:    -Xc -Yc + Z <= -1      (note the lifting of Z)

substituting back:   X + Y + Z <= 1   (violation = 0.7 !)

    



Various choices for f()



Various choices for f()



MIR cuts
For cover, we complement so that all coeff positive.

For MIR, we complement so that lp value of each term is smallest.

Then, try to take as divisor for f(), coefficients of terms with large lp values

We define remainder = rhs % divisor  and scale = divisor - remainder

We use MIR super-additive function:
             f(x) = scale * ⎣x/div⎦ + max(0, (x % div) - remainder)

    



Various other tricks
● When choosing f() we want final coeff to be small. So we use slightly more 

complex MIR function so that     f(divisor) = scale    stay small.

● Once f() chosen, we can try other possible complementation

● We can drop small terms rather than applying f() to them.

● We can also try to use different implied bounds once f() is chosen.

● …

Probably still a lot of room for improvement in that code !!
And still other heuristic to write (path mixing cuts)

    



Real example from log on beasleyC2.mps
INPUT:
coeff=    1454428938435252 lp=0.888889 range=9
coeff=   11635431507481974 lp=0.888889 range=9
coeff=    1454428938435255 lp=0.496158 range=1
coeff=    1454428938435254 lp=0.503842 range=1
coeff=    1454428938435254 lp=0.496158 range=1
coeff=    1454428938435255 lp=0.547352 range=1
coeff=    1454428938435254 lp=0.315313 range=1
coeff=    1454428938435254 lp=0.728197 range=1
coeff=  -11635431507481978 lp=0.111111 range=1
coeff=  -93083452059856042 lp=0.111111 range=1
coeff=-1060278696119297370 lp=0.098765 range=1
coeff=    2908857876870509 lp=0.95649  range=1
…
coeff=  -34906294522445990 lp=0        range=9
coeff=                 -16 lp=0        range=9
…
<=      -97446738875161748

f():  Div    1060278696119297370
      Rem     962831957244135622
      scale                    8

CUT:  coeff=-1 lp=0.111111 range=1
      coeff=-7 lp=0.111111 range=1
      coeff=-8 lp=0.098765 range=1
      …
      coeff=-3 lp=0        range=9
      coeff=-1 lp=0        range=9
      …
      <= -8



Questions?


