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Graph disconnection problems

Graph disconnection optimization problems belong to the broader family of
Critical Node Detection Problems, which arise in several real-world
applications:

I Network Resilience
I Identify critical nodes whose

failure would fragment the
network.

I Infrastructure Protection
I Prevent cascading failures in

power grids or transportation
systems.

I Containment Strategies
I Block the spread of disease or

misinformation by fragmenting
social networks.

I Security and Surveillance
I Strategically disconnect regions

in adversarial scenarios.
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The k -vertex cut problem

I Given a graph G = (V ,E), a subgraph is a graph G′ = (V ′,E ′) such that
V ′ ⊆ V (subset of vertices) and E ′ ⊆ E (subset of edges), where every
edge e ∈ E ′ has both endpoints in V ′. A connected component is a
connected subgraph.

I A vertex cut is a set of vertices whose removal disconnects the graph
into several connected components. If the number of resulting connected
components is at least k , the vertex cut is called a k -vertex cut.

Definition
Given a graph G = (V ,E), a positive weight wv for each vertex v ∈ V , and an
integer k ≥ 2, the k -vertex cut problem (k -VCP) asks to find a k -vertex cut of
minimum total weight.

I By reduction from the vertex k -multiclique problem(1) on the complement
graph, the k -VCP is NP-hard for any fixed k ≥ 3.

I For k = 2, the problem is solvable in polynomial time (2).

1A vertex k -multiclique is a subset of vertices that can be partitioned into k non-empty subsets
such that every pair of vertices belonging to different subsets is adjacent.

2Since it is equivalent to calculating the vertex-connectivity of the graph.
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Example of k -vertex cuts (1/2)

I Let’s consider the following graph with 10 vertices and 15 edges, all
having unit weight, and let k = 3.
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I An optimal 3-vertex cut (shown on the right) is represented by the black
subset of vertices {1, 2, 5}.



Problem definition and classical ILP models Bilevel Optimization and new ILP Models Computational results Conclusions

Another important application

I Beyond network analysis, the k -vertex cut problem also arises in matrix
decomposition for solving systems of equations/constraints via parallel
computing.

I Given a system of equations with coefficient matrix A, we define its
intersection graph:

I One vertex per column/variable,
I An edge between two vertices if and only if there exists a row in which both

variables have a nonzero coefficient.

I To solve the system in parallel, the equations are partitioned into k
subsystems.

I These subsystems are solved separately,
I Their solutions must then be merged consistently.

I Goal: Minimize the number of variables shared across subsystems.

I This problem is the k -vertex cut problem on the intersection graph.
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Detecting matrix decomposition

I Constraint matrices of MIPlib instances:

(a) original 10teams instance (b) original fiber instance (c) original timtab1 instance

(d) 10teams, detected structure (e) fiber, detected structure (f) timtab1, detected structure
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Connected components, subsets of vertices and k -vertex cuts

Observation
A subset of vertices V0 ⊆ V is a k-vertex cut, if and only if the remaining
vertices V \ V0 can be partitioned into k non-empty pairwise disconnected (3)

subsets of vertices, denoted

V1,V2, . . . ,Vk

I Accordingly, there is a one-to-one correspondence between feasible
solutions of the k -vertex cut problem and k -vertex-disjoint subsets of
vertices that are pairwise disconnected.

I A generic subset of vertices may induce multiple connected components.

Observation
A graph G admits a k-vertex cut if and only if α(G) ≥ k , where α(G) is the
stability number of the graph.

3 i.e., there is no edge between any two subsets



Problem definition and classical ILP models Bilevel Optimization and new ILP Models Computational results Conclusions

Example of k -vertex cuts (2/2)

I Let’s consider the following graph with 10 vertices and 15 egdes, all
having unit weight, and let k = 3.
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I In this case the number of subsets coincides with the number of
connected components. We have:

V0 = {1, 2, 5} and V1 = {3, 4, 6, 7, 10},V2 = {9},V3 = {8}
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A first ILP model (1/2)

Using the binary variables:

yvi =

1 if vertex v is in subset i ,

0 otherwise,
v ∈ V , i ∈ {1, 2, . . . , k}︸ ︷︷ ︸

=K

,

the compact ILP model for k -vertex cut problem (called COMP) is:

∑
v∈V

wv −max
∑
i∈K

∑
v∈V

wv yvi (0.1)

∑
i∈K

yvi ≤ 1, v ∈ V , (0.2)

yui +
∑

j∈K\{i}

yvj ≤ 1, i, j ∈ K , {u, v} ∈ E , (0.3)

∑
v∈V

yvi ≥ 1, i ∈ K , (0.4)

yvi ∈ {0, 1}, i ∈ K , v ∈ V . (0.5)
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A first ILP model (2/2)

I The COMP model has two principal drawbacks:

I It suffers from a weak LP relaxation: an optimal LP solution with objective
value zero can be obtained by setting

yvi =
1
k
, v ∈ V , i ∈ K .

I It also exhibits symmetries: permutations of the k subsets yield equivalent
LP and ILP solutions.
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A Bilevel Optimization point of view (1/5)
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A Bilevel Optimization point of view (2/5)

I A Bilevel Optimization is a hierarchical
decision-making framework involving two levels:

I The leader (upper level) makes a decision, which
defines the feasible region and objective of the
follower

I The follower (lower level) who then solves an
optimization problem in response.

I We consider the special case where:

I The leader (upper level) anticipates the optimal
response of the follower (lower level), and selects
a strategy that induces this optimal reaction

I The leader (upper level) then solve the overall
problem by accounting for the follower’s best
reply (lower level).
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A Bilevel Optimization point of view (3/5)

We now present a bilevel optimization Perspective for the k -vertex cut
problem, which enables a valid ILP formulation in the natural space of the
variables associated to the vertices.

Bilevel Optimization Interpretation:

I Leader (Upper Level):

I Chooses a set of vertices to delete from the graph (called a strategy).

I Follower (Lower Level):

I Computes a maximum-size acyclic subgraph (i.e., a forest) in the remaining
graph.

I The solution is feasible for the leader if and only if the subgraph has at least
k connected components.

The leader seeks a minimum-weight set of deleted vertices such that the
follower’s optimal response satisfies the component components
requirement.
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Related properties of graphs (1/4)

I A graph G = (V ,E) is connected if and only if it contains a spanning
tree, i.e., a spanning(4) acyclic subgraph of G with |V | − 1 edges.
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I The spanning tree has |V | − 1 = 10− 1 = 9. This property admits the
following generalization

4 including all vertices of the original graph
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Related properties of graphs (2/4)

Observation
A graph G = (V ,E) has at least k connected components if and only if every
acyclic subgraph of G contains at most |V | − k edges.
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I Let k = 3, the graph on the right has |V | = 8 and
|E | = 8 > |V | − 3 = 8− 3 = 5. It does not contain 3 connected
components.
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Related properties of graphs (3/4)

Observation
A graph G = (V ,E) has at least k connected components if and only if every
acyclic subgraph of G contains at most |V | − k edges.
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I Let k = 3, the graph on the right has |V | = 7 and
|E | = 4 ≤ |V | − 3 = 7− 3 = 4. It contains 3 connected components.
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Related properties of graphs (4/4)

Observation
A graph G = (V ,E) has at least k connected components if and only if every
acyclic subgraph of G contains at most |V | − k edges.

I This yields a Bilevel Optimization interpretation of the k -vertex cut
problem:

I The leader chooses a subset of vertices V0 ⊆ V to delete.

I The follower builds a maximum acyclic subgraph (i.e., a forest) on the
remaining graph G[V \ V0].

I The leader’s solution is feasible if the resulting subgraph has at most
|V | − |V0| − k edges.

Observation
A subset of V0 ⊆ V is a k-vertex cut, if and only if the maximum number of
edges of every acyclic subgraph of the remaining graph G[V \ V0] is at most
|V | − |V0| − k.
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A Bilevel Optimization point of view (4/5)

The BILEVEL ILP model for the k -vertex cut problem (called BILP) is:

min

{ ∑
v∈V

wv xv : Φ(x) ≤ |V | −
∑
v∈V

xv − k , xv ∈ {0, 1}, v ∈ V

}
. (0.1)

Using the binary variables:

yuv =

{
1 if edge {u, v} is in the acyclic subgraph,
0 otherwise,

{u, v} ∈ E ,

and, given a leader strategy x̃ ∈ {0, 1}|V |, the follower’s subproblem is:

Φ(x̃) = max
∑
uv∈E

yuv (0.2)

∑
{u,v}∈E :

u,v∈S

yuv ≤ |S| − 1, S ⊆ V , |S| ≥ 3, (0.3)

yuv ≤ 1− x̃u, yuv ≤ 1− x̃v , {u, v} ∈ E , (0.4)

yuv ∈ {0, 1}, {u, v} ∈ E . (0.5)
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A Bilevel Optimization point of view (5/5)

I The follower’s subproblem is reformulated so that its feasible region is
independent of the leader.

Observation
The follower subproblem can be equivalently restated as

Φ(x̃) = max
∑
{u,v}∈E

yuv
(
1− x̃u − x̃v

)
(0.6)

∑
{u,v}∈E :

u,v∈S

yuv ≤ |S| − 1, S ⊆ V , |S| ≥ 3 (0.7)

yuv ∈ {0, 1}, {u, v} ∈ E . (0.8)

I A single-level reformulation is derived with an exponential number of
constraints, each associated with an extreme point of the follower’s
polytope.
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A second ILP model (1/2)

I Let AS(G) denote the set of all acyclic subgraphs of G corresponding to
extreme points of follower polytope.

I The non-linear constraints of the BILP model can be then replaced by
the following exponential family of linear constraints:

∑
{u,v}∈E(G)

(
1− xu − xv

)
≤ |V | −

∑
v∈V

xv − k , G ∈ AS(G), (0.9)

where E(G) is the set of edges of the acyclic subgraph G.

I Since every vertex v ∈ V (G) is counted degG(v) many times in the
above constraints , they can also be restated as:

∑
v∈V

(
degG(v)− 1

)
xv ≥ k + |E(G)| − |V |, G ∈ AS(G). (0.10)
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A second ILP model (1/2)
I Let SAS(G) denote the set of all spanning acyclic subgraphs of G

corresponding to extreme points of follower polytope.
I Recalling that:

xv =

{
1 if vertex v is in the k -vertex cut,
0 otherwise,

v ∈ V ,

Proposition
The following natural ILP model is a valid formulation (called (NAT )) for the
k-vertex cut problem:

min
∑
v∈V

wv xv (0.11)

∑
v∈V

(
degG(v)− 1

)
xv ≥ k + |E(G)| − |V |︸ ︷︷ ︸

constant term

, G ∈ SAS(G), (0.12)

xv ∈ {0, 1}, v ∈ V . (0.13)
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Example of the Subgraph Constraints (1/2)

Infeasible solution for k = 3, the set black vertices {1, 2} represent a leader
strategy and the remaining vertices form one connected component:
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Example of the Subgraph Constraints (2/2)
I For a given (spanning) acyclic subgraph G, we have the (spanning)

acyclic subgraph constrain:∑
v∈V

(
degG(v)− 1

)
xv ≥ k + |E(G)| − |V |
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−x1 − x2 + 2x3 + x4 + 3x5 ≥ 0 3x3 + 2x4 + 3x5 ≥ 2
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Separation of the Subgraph Constraints

Let x∗ be the current solution. We define edge-weights as

w∗uv = 1− x∗u − x∗v , uv ∈ E

and search for the maximum-weighted cycle-free subgraph in G. Let W ∗

denote the weight of the obtained subgraph; if W ∗ > |V | − k −
∑

v∈V x∗v , we
have detected a violated inequality.

The separation procedure can be performed in polynomial time:
I adaptation of Kruskal’s algorithm for minimum-spanning trees (fractional

points), or
I BFS (integer points) on the graph from which xv = 1 vertices are

removed. Extended to spanning subgraphs (dominating cuts).

Observation
Separation of the Subgraph Constraints can be performed in polynomial time.
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A third ILP model (1/4)

I The key idea:

I Use a representative vertex for each subset of vertices.

I Ensure that the representative vertices are pairwise disconnected.

I Connected components that are disconnected from any representative can
be assigned to any subset.

I This is modeled using:

I Two binary variables for each vertex:

I Is the vertex a representative vertex?
I Is the vertex in the k -vertex cut?

I An exponential number of Path Constraints, ensuring no path exists
between any two representatives.

Paths of the graph
Let P denotes a simple path in G, V (P) are the vertices connected by P, and
let Πuv be the set of all simple paths between vertices u and v .
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A third ILP model (2/4)

Using the binary variables:

zv =

{
1 if vertex v is the representative of a subset,
0 otherwise,

v ∈ V ,

xv =

{
1 if vertex v is in the k -vertex cut,
0 otherwise,

v ∈ V ,

the representative ILP model (called REP) for k -vertex cut problem is:

min
∑
v∈V

wv xv (0.14)

∑
v∈V

zv = k , v ∈ V , (0.15)

zu + zv ≤ 1, {u, v} ∈ E , (0.16)∑
w∈V (P)\{u,v}

xw ≥ zu + zv − 1, u, v ∈ V ,P ∈ Πuv , (0.17)

xv , zv ∈ {0, 1}, v ∈ V . (0.18)
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Example of the Path Constraints (1/2)

I For a given pair of vertices u, v ∈ V and a path P ∈ Πuv , we have the
path inequality: ∑

w∈V (P)\{u,v}

xw ≥ zu + zv − 1
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u = 7 and v = 8

P  7→ 1→ 4→ 5→ 8︸ ︷︷ ︸
V (P)

x1 + x4 + x5 ≥ z7 + z8 − 1
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Example of the Path Constraints (2/2)

I For a given pair of vertices u, v ∈ V and a path P ∈ Πuv , we have the
path inequality: ∑

w∈V (P)\{u,v}

xw ≥ zu + zv − 1
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u = 7 and v = 8

P  7→ 3→ 10→ 4→ 6→ 2→ 8︸ ︷︷ ︸
=V (P)

x3 + x10 + x4 + x6 + x2 ≥ z7 + z8−1
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Separation of the Path Constraints

Given a solution x∗, z∗ ∈ [0, 1]V , the separation problem asks for finding a
pair of vertices u, v such that there is a path P∗ ∈ Πuv with

zu + zv >
∑

w∈V (P∗)\{u,v}

xw − 1.

We can search for such a path in polynomial time by solving a shortest path
problem (for each pair of not adjacent vertices) on graph G, where we define
the length of each edge (u, v) ∈ E as:

luv =
x∗u + x∗v

2

Observation
Separation of the Path Constraints can be performed in polynomial time.
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A third ILP model (3/4)

I The REP model has one principal drawbacks:

I It suffers from a weak LP relaxation: if k ≤ n/2, an optimal LP solution with
objective value zero can be obtained by setting:

xv = zv = 0, v ∈ V .
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A third ILP model (4/4)

I Valid inequalities in polynomial number:

xu + zu ≤ 1, u ∈ V ,

zu +
∑

v∈N(u)

zv ≤ 1 + (deg(u)− 1)xu u ∈ V .

I Strengthened Path Constraints:

∑
w∈V (P)\{u,v}

xw ≥ zu + zv +
∑

w∈V (P)\{u,v}

zw − 1, u, v ∈ V ,P ∈ Πuv .

each time a path in Πuv includes a representative vertex, an additional
vertex of the path must be in the vertex-cut.

I Clique-Path Constraints... Each z on the RHS is replaced by a clique...
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Additional results

Proposition
If k ≤ n/2, the bound for the k-vertex cut problem provided by the optimal
solution value of the LP relaxation of NAT model strictly dominates the
corresponding bound provided by the REP model.

Proposition
Path Constraints derived from spanning trees only are not sufficient to ensure
a valid formulation for the k-vertex cut problem.

x̃1 = 0 x̃2 = 0 x̃3 = 1 x̃4 = 1 x̃5 = 0

Let k = 3. There is a single spanning tree in G, and the associated cut,
which is x2 + x3 + x4 ≥ 2, does not cut off the infeasible point (one two
connected components).
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Computational results
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Experimental Settings and Benchmark Instances (1/3)

I We want to assess the computational performance of the branch-and-cut
algorithms to solve:

1. the NAT model

2. the REP model

3. the HYB model (both models together)

by comparison with:

1. the COMP model

2. the state-of-the-art branch-and-price algorithm proposed in the literature.

I The source code of our branch-and-cut algorithms can be downloaded
at:

https://github.com/paoloparonuzzi/k-Vertex-Cut-Problem/

I A time limit of one hour is set for each tested instance and CPLEX
12.7.1

https://github.com/paoloparonuzzi/k-Vertex-Cut-Problem/
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Experimental Settings and Benchmark Instances (2/2)

Branch-and-cut Algorithms Settings:
I REP: separates path constraints via shortest paths in graphs with

positive edge weights.
I REPlp: uses a heuristic to separate path constraints by exploring long

paths in graphs with both positive and negative weights.
I NAT : includes base connectivity constraints, lifted when enforcing

spanning properties.
I NATs: connectivity constraints are always made spanning for integer

solutions and then lifted.

Cut Separation Settings:
I Absolute violation tolerance set to 0.5.
I Cuts are separated:

I at all integer solutions;
I every 100 nodes for REP/REPlp ,
I every node for NAT /NATs .
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Experimental Settings and Benchmark Instances (3/3)

I We evaluate our methods on two benchmark sets of instances, with both
unit and random vertex weights.

I First Set:

I instances from DIMACS Vertex Coloring problems (up to 200 vertices) and
Graph Partitioning problems (up to 300 vertices), all with α(G) ≥ 5.

I Second Set:

I instances from the literature, based on the intersection graphs of coefficient
matrices from linear systems.

I For each value of k ∈ {5, 10, 15, 20}, we exclude infeasible and trivially
solved instances from the analysis.
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Performance comparison between the MIP models

I Performance comparison for different configurations of the
Representative, Natural and Hybrid Formulations on the first set of
instances (Vertex Coloring and DIMACS).

REP REPlp NAT NATs HYB

Total Opt. (out of 166) 89 96 126 128 132

Total Avg Time 146.75 194.04 121.10 66.20 2.55

Total Avg Nodes 50656 23169 45 43 15

Total Avg LP Gap 73.19 51.69 18.11 18.07 18.11

Total Avg LP Time 0.04 34.98 0.25 0.24 0.41
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Vertex Coloring, DIMACS and Intersection graphs

k COMP BP HYB

Opt. (out of 107) 92 60 71
5 Avg Time 31.84 59.93 84.78

Avg Nodes 10768 30 106

Opt. (out of 80) 37 43 51
10 Avg Time 105.64 52.19 1.39

Avg Nodes 67123 7 26

Opt. (out of 65) 29 36 46
15 Avg Time 219.33 23.38 2.81

Avg Nodes 41750 19 25

Opt. (out of 52) 19 29 38
20 Avg Time 196.06 169.52 0.39

Avg Nodes 58673 16 6

Total Opt. (out of 304) 177 168 206
Total Avg Time 98.66 61.78 43.66
Total Avg Nodes 33040 22 64
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Vertex Coloring, DIMACS and Intersection graphs – weighted

k COMP BP HYB

Opt. (out of 107) 92 60 71
5 Avg Time 35.99 67.55 210.67

Avg Nodes 11350 77 217

Opt. (out of 80) 37 43 51
10 Avg Time 69.61 174.96 2.30

Avg Nodes 22872 21 26

Opt. (out of 65) 29 37 47
15 Avg Time 343.26 36.61 21.76

Avg Nodes 109726 180 86

Opt. (out of 52) 19 30 39
20 Avg Time 559.17 300.40 1.15

Avg Nodes 180529 31 15

Total Opt. (out of 304) 177 170 208
Total Avg Time 151.21 112.23 106.13
Total Avg Nodes 48594 77 127
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Performance profiles (1/4)
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Performance profiles (2/4)

 0

 20

 40

 60

 80

 100

1 10 102 103 104

�(�)

� (k=10)

COMP
BP

HYB



Problem definition and classical ILP models Bilevel Optimization and new ILP Models Computational results Conclusions

Performance profiles (3/4)
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Performance profiles (4/4)
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Conclusions
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Conclusions (1/2) – Main Contributions

I Many graph disconnection problems naturally exhibit a bilevel structure.

I We reveal this structure in two key problems:

I k -Vertex Cut

I Capacitated Vertex Separator

I Both problems are modeled as Bilevel Optimization Problems:

I Leader deletes nodes;

I Follower optimizes connectivity/reactive behavior.

I We introduce new bilevel integer programming formulations,
capturing this interaction.

I Our models are strengthened through:

I Families of valid inequalities

I Polynomial-time separation procedures
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Conclusions (2/2) – Outlook and Perspectives

I Our computational results show that the bilevel approach:

I Improves solution quality on benchmark instances

I Achieves faster convergence compared to the state-of-the-art

I The bilevel modeling perspective offers a unified framework for:

I Graph partitioning and separator problems

I Network interdiction and security

I Clustering, community detection, and more

I Future work includes:

I Extending bilevel models to edge deletion and dynamic settings

I Integrating these formulations into other exact methods (e.g.,
branch-and-cut-and-price algorithms)

I Designing approximation and heuristic algorithms leveraging the bilevel
structure
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