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What?

▶ Large-scale discrete optimisation:
Applications where branch-and-price
is a very successful method

▶ Large Neighbourhood Search (LNS):
Improve computational performance of
branch-and-price for difficult instances,
i.e. when root-node gap is large
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Why?

▶ LNS heuristics are vital
components in generic MIP solvers

▶ Challenging to extend them to
settings where columns are generated

▶ ”Standard column generation only cares
about LP” → unexplored potential
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How?

LNS of destroy-repair type
▶ Destroy method:

Remove columns from current solution
▶ Repair method:

Generate columns that benefit the
integer program

Key question:
How can we price with integer solutions in mind?
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Dantzig-Wolfe decomposition

A reformulation of an original compact formulation of a MIP to an
extended formulation in a higher dimensional space

▶ New model has better properties
▶ Sometimes much much better properties

▶ The number of variables increases
▶ Typically the number of variables explodes →

solution space cannot be explicitly represented

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Dantzig-Wolfe decomposition

A reformulation of an original compact formulation of a MIP to an
extended formulation in a higher dimensional space

▶ New model has better properties

▶ Sometimes much much better properties

▶ The number of variables increases
▶ Typically the number of variables explodes →

solution space cannot be explicitly represented

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Dantzig-Wolfe decomposition

A reformulation of an original compact formulation of a MIP to an
extended formulation in a higher dimensional space

▶ New model has better properties
▶ Sometimes much much better properties

▶ The number of variables increases
▶ Typically the number of variables explodes →

solution space cannot be explicitly represented

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Dantzig-Wolfe decomposition

A reformulation of an original compact formulation of a MIP to an
extended formulation in a higher dimensional space

▶ New model has better properties
▶ Sometimes much much better properties

▶ The number of variables increases

▶ Typically the number of variables explodes →
solution space cannot be explicitly represented

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Dantzig-Wolfe decomposition

A reformulation of an original compact formulation of a MIP to an
extended formulation in a higher dimensional space

▶ New model has better properties
▶ Sometimes much much better properties

▶ The number of variables increases
▶ Typically the number of variables explodes →

solution space cannot be explicitly represented

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Dantzig-Wolfe decomposition

A reformulation of an original compact formulation of a MIP to an
extended formulation in a higher dimensional space

▶ New model has better properties
▶ Sometimes much much better properties

▶ The number of variables increases
▶ Typically the number of variables explodes →

solution space cannot be explicitly represented

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Textbook example: Vehicle Routing Problems (VRP)

Problem formulation

Use these three vehicles
Visit all customers
Minimise total travel time

Typically not reasonable to enumerate all routes—
but for now, assume it is!
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Textbook example: Vehicle Routing Problems (VRP)

Compact formulation

Decision variables:

xqk =


1 if vehicle q

uses arc k ,
0 otherwise

Constraints:
Feasible routes for all vehicles
Vehicles cover all customers

Typically not reasonable to enumerate all routes—
but for now, assume it is!
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Textbook example: Vehicle Routing Problems (VRP)

Extended formulation

Enumerate all routes,
specify by parameter:

aij =


1 if route j

visits customer i
0 otherwise.

Constraints:
Feasible routes for all vehicles

Typically not reasonable to enumerate all routes—
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Extended formulation

Decision variables:
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Constraints:
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Why make a reformulation?

In a MIP, the strength of the formulation matters

z∗IP = min cTx

s.t. Ax = b

x ∈ {0, 1}n

z∗LP = min cTx

s.t. Ax = b

x ∈ [0, 1]n
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Convexification

Let the LP-polytope originate from two groups of constraints
A(1)x = b(1) and A(2)x = b(2)

Knowing the convex hull wrt one group may improve strength
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The reformulation [Skipping some math steps and details]

One way to know the convex hull wrt A(2)x = b(2), x ∈ {0, 1}n
is to enumerate all its feasible integer solutions: aj , j ∈ J

For λ ∈ {0, 1}|J |:
∑
j∈J

λj = 1,

solutions wrt A(2)x = b(2), x ∈ {0, 1}n,
can be expressed as x =

∑
j∈J

ajλj ,

and then, feasibility wrt Ax = b
can be expressed as

A(1)
∑
j∈J

ajλj = b(1)

[Since x ∈ {0, 1}n, the set is boun-
ded and convexification coincides
with discretisation]
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Strength of the reformulated model

Extended formulation is at least as strong as compact formulation

If integrality property
wrt green constraints:
Nothing to gain

If not integrality property wrt to the green constraints (NP-hard
problem), the extended formulation might be stronger
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Common type of problem structure [Several variations exists]

For our vehicle routing problem

Separate enumeration of solutions for each vehicle type
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Dantzig-Wolfe decomposition

A reformulation of an original compact formulation of a MIP to an
extended formulation in a higher dimensional space
▶ New model has better properties

▶ Sometimes

Practical impact or ”just theory”?

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Dantzig-Wolfe decomposition

A reformulation of an original compact formulation of a MIP to an
extended formulation in a higher dimensional space
▶ New model is at least as strong

▶ Sometimes

Practical impact or ”just theory”?

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Dantzig-Wolfe decomposition

A reformulation of an original compact formulation of a MIP to an
extended formulation in a higher dimensional space
▶ New model is at least as strong
▶ Sometimes much much better properties

Practical impact or ”just theory”?

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Dantzig-Wolfe decomposition

A reformulation of an original compact formulation of a MIP to an
extended formulation in a higher dimensional space
▶ New model is at least as strong
▶ Sometimes much much stronger and structure to exploit

Practical impact or ”just theory”?

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Dantzig-Wolfe decomposition

A reformulation of an original compact formulation of a MIP to an
extended formulation in a higher dimensional space
▶ New model is at least as strong
▶ Sometimes much much stronger and structure to exploit

Practical impact or ”just theory”?

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Air Traffic Management

Problem formulation
In the space around an airport, aircraft
▶ arrive at entry points in space,
▶ follow a path to the runway that is
▶ prescribed by an arrival tree

Design arrival tree wrt
technical requirements on descent operation,
energy efficiency, collision avoidance, and
complexity for air traffic controllers, ...
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Air Traffic Management

Joint project
▶ PI Christiane Schmidt (computational geometry),

Department of Science and Technology, LiU
▶ They are experts in modelling of routes and regulations

to include all practical aspects of the problem

▶ Bottleneck: Solving optimisation problem
▶ Postdoc project for Roghayeh Hajizadeh in my group

Previous work: arc formulation over a
discretisation of space. Can we do better?
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Decomposition of Air traffic management problem

It has this ”common type of problem structure” ...

... and the possible paths are few enough to be enumerated

For Arlanda runway: Preliminary results, solution time
∼ 40 hours to < 10 minutes
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Dantzig-Wolfe decomposition

A reformulation of an original compact formulation of a MIP to an
extended formulation in a higher dimensional space
▶ New model is at least as strong
▶ Sometimes much much stronger and structure to exploit

▶ The number of variables increases
▶ Typically the number of variables explodes →

solution space cannot be explicitly represented

How do we handle this?
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General method idea

Extended formulation: Route ↔ λ-variable ↔ column

Instead of all columns:
Generate only the columns needed
for finding and verifying optimality

Column generation: for solving the LP relaxation
(Simplex method but find variable with negative reduced cost by
solving a pricing problem = generate a column)
Branch-price-and-cut: for finding integer solutions
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Notation for common structure [Several variations exists]

For our vehicle routing problem

Set of pricing problems Q = {1, 2} providing routes for vehicles
in Kq, q ∈ Q, with K1 = {’Red’, ’Blue’} and K2 = {’Green’}
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Models for the common structure [Skipping some math steps and details]

Master problem

[MP] min
∑
j∈J

cjλj ,

s.t. A(1)
∑
j∈J

aijλj = b(1),

(λj)j∈J ∈ L ⊆ {0, 1}|J |,

L = {λj ∈ {0, 1}, j ∈ J :∑
j∈Jq

λj = |Kq|, q ∈ Q}

Pricing problem

[CG]q min c

−
∑
i∈I

ūiai

s.t. (c, a) ∈ Aq

where

Aq contains feasible solutions
wrt A

(2)
q x = b

(2)
q , x ∈ {0, 1}n

and their costs and

ui , i ∈ I , are dual variables
wrt the constraints of [MP-LP]
i.e. the LP relaxation of [MP]

Elina Rönnberg
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Models for the common structure [Skipping some math steps and details]

Master problem—LP relaxation

min
∑
j∈J

cjλj ,

s.t. A(1)
∑
j∈J

aijλj = b(1),

(λj)j∈J ∈ L ⊆ [0, 1]|J |,

L = {λj ∈ [0, 1], j ∈ J :∑
j∈Jq

λj = |Kq|, q ∈ Q}

Pricing problem

[CG]q min c −
∑
i∈I
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where

Aq contains feasible solutions
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(2)
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Column generation: for solving the LP relaxation of [MP]

Restricted master problem

[MP-LP] min
∑
j∈J

cjλj ,

s.t. A(1)
∑
j∈J

aijλj = b(1),

(λj)j∈J ∈ L ⊆ [0, 1]|J|,

L = {λj ∈ [0, 1], j ∈ J :∑
j∈Jq

λj = |Kq|, q ∈ Q}

Build restricted master problem
with J ⊆ J iteratively
▶ Add λ-variable with

minimum reduced cost:
pivot into the basis ⇔
simplex-method iteration

▶ Negative reduced cost
sufficient for improvement

▶ Stop when no negative
reduced cost is returned
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Column generation: integer solutions?

▶ LP column generation:
Generated subspace is sufficient for solving the LP relaxation

▶ It may or may not include high-quality integer solutions

▶ Restricted master heuristic / price-and-branch:
solve an integer program over this subspace

▶ To obtain integer optimality:
− Perform branching and add cuts
− Generate columns for LP relaxations involved

→ Branch-price-and-cut

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Column generation: integer solutions?

▶ LP column generation:
Generated subspace is sufficient for solving the LP relaxation

▶ It may or may not include high-quality integer solutions

▶ Restricted master heuristic / price-and-branch:
solve an integer program over this subspace

▶ To obtain integer optimality:
− Perform branching and add cuts
− Generate columns for LP relaxations involved

→ Branch-price-and-cut

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Column generation: integer solutions?

▶ LP column generation:
Generated subspace is sufficient for solving the LP relaxation

▶ It may or may not include high-quality integer solutions

▶ Restricted master heuristic / price-and-branch:
solve an integer program over this subspace

▶ To obtain integer optimality:
− Perform branching and add cuts
− Generate columns for LP relaxations involved

→ Branch-price-and-cut

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

Branch-price-and-cut

Relies on what is known from branching and cutting in MIP—
but adaptations are required and caution is advised

▶ Complete solution space not available
▶ Need to ”play well” with both [MP] and pricing
▶ Common with customised branching schemes and cuts

Extensive literature and knowledge, often problem specific

No time for details today: let’s zoom in on a specific topic ...
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Optimality conditions

LP column generation: Follows directly from LP theory

Restricted master problem solved to optimality &
no negative reduced costs found in pricing

Subspace sufficient for solving the integer program?

Some answers, but there is more to be understood
R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the
vehicle routing problem based on the set partitioning formulation with
additional cuts. Mathematical Programming, 115(2):351–385, 2008.
E. Rönnberg and T. Larsson. An integer optimality condition for column
generation on zero-one linear programs. Discrete Optimization, 31:79–92, 2019.
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Heuristics—based on LP pricing

Possible to apply any heuristic on the restricted master problem–
BUT this limits you to the solutions in the generated subspace

Beyond that, e.g diving heuristics, feasibility pump, crossover, ...
R. Sadykov, F. Vanderbeck, A. Pessoa, I. Tahiri, and E. Uchoa. Primal
heuristics for branch and price: The assets of diving methods. INFORMS
Journal on Computing, 31(2):251–267, 2019.

P. Pesneau, R. Sadykov, and F. Vanderbeck. Feasibility pump heuristics for
column generation approaches. In International Symposium on Experimental
Algorithms, pages 332–343. Springer, 2012.

M. Lübbecke and C. Puchert. Primal heuristics for branch-and-price algorithms.
In Operations Research Proceedings 2011, pages 65–70. Springer, 2012.
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Heuristics—pricing for integrality

Use the quasi-integrality property [also as exact method]

▶ Initial contributions by E. Rönnberg and T. Larsson, 2×EJOR
▶ Much more mature line of work by the Montreal group,

including F. Soumis, I. El Hallaoui, G. Desaulniers, ...

In a more general sense:
Is it possible to directly generate columns that make the restricted
master problem include improved integer solutions?
Can we price for integrality?
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Large Neighbourhood Search (LNS) heuristics

Important component in branch-and-bound-based MIP solvers
(diving, feasibility pump, local branching, ...)
▶ Solve an auxiliary problem to find an improved integer solution
▶ Also known as sub-MIPing

LNS heuristics & branch-price-and-cut?
▶ Destroy method: Remove columns from a current solution

▶ Repair method: Generate new useful ones to complement

As before: ”Adaptation is required and caution is advised”
Can we make an LNS price for integrality?
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Illustrations and VRP interpretations

Column = binary vector (aij)i∈I

Example: feasible solution

Decision variables:

λj =

{
1 if column j ∈ Jq of pricing problem q ∈ Q is used,
0 otherwise
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Notation

[MP] min
∑
j∈J

cjλj ,

s.t.
∑
j∈J

aijλj ≥ 1, i ∈ I c,

∑
j∈J

aijλj ≤ 1, i ∈ I p,

(λj)j∈J ∈ L ⊆ {0, 1}|J |,

L = {λj ∈ {0, 1}, j ∈ J :
∑
j∈Jq

λj = |Kq|, q ∈ Q}.
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LNS – Destroy method

Columns in RMP:
Jq, q ∈ Q

Current solution =
active columns:
J IP
q , q ∈ Q

Destroy method =
Remove active columns

Let the set of remaining columns Ĵ be fixed:
What is the best possible way to repair the solution?
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What is the best possible way to repair the solution?

Elina Rönnberg



Introduction Dantzig-Wolfe Branch-and-price Pricing for integrality Results and conclusions

LNS – Destroy method

Columns in RMP:
Jq, q ∈ Q

Current solution =
active columns:
J IP
q , q ∈ Q

Destroy method =
Remove active columns

Let the set of remaining columns Ĵ be fixed:
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LNS – ”Ideal” repair method

Solve [REP] over the set JR = J (all possible columns)

[REP] min
∑
j∈JR

cjλj ,

s.t.
∑
j∈JR

aijλj ≥ 1 −
∑
j∈Ĵ

aij , i ∈ I c,

∑
j∈JR

aijλj ≤ 1 −
∑
j∈Ĵ

aij , i ∈ I p,

∑
j∈JR

q

λj = |Kq| − |Ĵq|, q ∈ Q,

λj ∈ {0, 1}, j ∈ JR ∪ J.

NOT reasonable in practice!
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aij , i ∈ I c,

∑
j∈JR

aijλj ≤ 1 −
∑
j∈Ĵ
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Properties of JR∗
and desired properties of JR

→ Aim for these properties when generating JR
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Desired properties translated to the pricing problem

▶ ”Anything ok” ⇒ no change in the pricing problem

▶ ”All = 0” ⇒ Big-M penalty on corresponding ai

▶ ”Together ≥ 1 or ≤ 1” ⇒
In iteration l , aim at complying with

∑
j∈JR∗

∑
j ′∈L̂jl

aij ′

{
≥ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î c0,

≤ 1
|JR∗ |

∑
j∈JR∗ |L̂jl |, i ∈ Î p0.

Just simple calculations and comparisons in each iteration –
adjust penalties on the corresponding ai :s dynamically
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Repair pricing

Pricing problem q in iteration l

[REP-CGql ] min c −
∑
i∈I c

γ

ūiai +
∑
i∈Ip

γ

ūiai

+

+
∑
i∈Îp1

Mai −
∑
i∈Î c0

βilai +
∑
i∈Îp0

βilai

s.t. (c , a) ∈ Aq.

▶ Static Big-M penalties and dynamic penalties βil

▶ Adjust the reduced costs with the parameter γ ∈ [0, 1]
to heuristically price for integrality

—why?
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γūiai +
∑
i∈Ip
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γūiai +
∑
i∈Ip
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In pursuit of γ: Detour via Lagrangian relaxation

z∗ = min
∑
j∈J

cjxj

s.t.
∑
j∈J

Ajxj ≥ b

xj ∈ {0, 1}, j ∈ J

Lagrangian function:

L(x , u) =
∑
j∈J

cjxj +uT

b −
∑
j∈J

Ajxj


Lagrangian dual function:
h(u) = min

x
L(x , u)

Duality gap:
Γ = z∗ − h∗, with h∗ = max

u
h(u)
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In pursuit of γ: Lagrangian relaxation—optimality conditions

Equivalent statements:
▶ x solves the primal problem

u solves the dual problem
the duality gap Γ = 0

▶ Lagrangian optimality: L(x , u) ≤ h(u)

Primal feasibility:
∑
j∈J

Ajxj ≥ b

Complementarity: uT

b −
∑
j∈J

Ajxj

 = 0
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In pursuit of γ: Lagrangian relaxation—discrete problems

Optimality conditions are for problems with no duality gap:
But discrete problems typically have a positive duality gap

Use generalised optimality conditions by Larsson and Patriksson:
[T. Larsson, M. Patriksson. Global optimality conditions for discrete and nonconvex optimization –
with applications to Lagrangian heuristics and column generation. Operations Research (2006)]

For a binary x and a u ≥ 0 introduce:

▶ ε-optimality in the Lagrangian problem

ε(x , u) = uTb +
∑
j∈J

(
cj − uTAj

)
xj − h(u)

▶ δ-complementarity

δ(x , u) = uT

∑
j∈J

Ajxj − b


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In pursuit of γ: Optimality conditions—discrete problems

Equivalent statements:
▶ x solves the primal problem and u solves the dual problem

▶ Lagrangian optimality: L(x , u) ≤ h(u)+ε(x , u)

Primal feasibility:
∑
j∈J

Ajxj ≥ b

Complementarity: uT

b −
∑
j∈J

Ajxj

≥ −δ(x , u)

ε(x , u) + δ(x , u) ≤ Γ, and ε(x , u), δ(x , u) ≥ 0
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In pursuit of γ: Pricing with respect to ε and δ

▶ Traditional pricing = minimise wrt ε
▶ Optimality conditions suggest minimising wrt ε and δ

New column wrt minimising αε+ (1 − α) δ, α ∈ [0, 1/2] ⇔

min
j∈J

cj − γuTAj , γ ∈ [0, 1]

[Y. Zhao, T. Larsson, E. Rönnberg. An integer programming column generation principle for heuristic
search methods. International Transactions in Operational Research, 27:665–695, 2020.]
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Heuristic pricing for integrality

LNS heuristics of destroy-repair type
▶ Destroy method: Remove columns from a current solution

▶ Repair method: Generate a set of columns ”with profitable properties”

Two implementations
▶ IPColGen as part of the B&P&C scheme in GCG (SCIP)

[S. J. Maher and E. Rönnberg. Integer programming column generation:
accelerating branch-and-price using ...
Mathemathical Programming Computation, (15):509–548, 2023.]

▶ Problem-specific implementation for an EVRP
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IPColGen in GCG module of SCIP

Implemented as part of the B&P&C scheme in GCG
▶ Apply in root node

when
− when tailing-off for the LP-relaxation begins

− optimality gap is large (= expected to be of most use)

▶ Apply for a subset of the nodes in the B&P tree
(too expensive to use in all nodes)

Evaluated when used in addition to all other heuristics in
GCG/SCIP to compare to its state of the art
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Evaluation measures

▶ All results as a function of first call gap

▶ Primal integral
− Common way to measure

progress of heuristics
− Each point in time: integral over

primal gap as function of time

▶ Primal / optimality gap after 3,600s

▶ Diverse test set:
Shifted geometric mean

▶ Display ratio with/without IPColGen
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Instances with known block diagonal structures

Results for about 700 instances
▶ Bin packing
▶ Capacitated p-median
▶ Generalised assignment
▶ Vertex coloring
▶ Optimal interval scheduling

Instance characteristics
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Show results for some parameter settings γ and β
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Results: Instances with known block diagonal structures

Final optimality gap
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▶ better primal solutions + better final gap for all instances
▶ better primal integral only for instances with large initial gap
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Instances from MIPLIB 2017

Results for about 160 instances with known solution and tags
▶ Decomposition
▶ Set covering
▶ Set packing
▶ Set partitioning

Automatic structure detection & D-W decomposition in GCG:
Same type of results as for the structured instances
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EVRPTW with Charging Time Slots

▶ Homogenous vehicles
− Capacity
− Linear charging rate

▶ Customers
− Capacity
− Service time
− Time window

▶ Bookable charging slots

PhD student Lukas Eveborn
Preliminary results at VeRoLog2025
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EVRPTW with Charging Time Slots

Part of customised implementation in GCG:

Heuristic pricing for integrality closes 1/3 of root node gap
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Concluding comments

Branch-price-and-cut relies on LP-pricing to find a subspace that
contains an optimal integer solution.

Room for improvements?
▶ Optimality conditions
▶ Pricing for integrality

Today:
Some contributions in this direction—but more to be understood!
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Final notes ...
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