
Integer Programs meet
Fixed-Parameter Tractability
Alexandra Lassota (TU/e)

Integer Programming

, Ax ≤ b x ∈ ℤn

Integer Programming

, Ax ≤ b x ∈ ℤn

Introduction and Relevance

•

Integer Programming

, Ax ≤ b x ∈ ℤn

Introduction and Relevance

•

Integer Programming

Integer Programming

NP-hard -> exponential blow-up in runtime

How do we deal the NP-hardness

How do we deal the NP-hardness

• work on solvers

• heuristics

• approximation algorithms

• focussing on sub-classes of the problem

• fixed-parameter tractability

How do we deal the NP-hardness

• work on solvers

• heuristics

• approximation algorithms

• focussing on sub-classes of the problem

• fixed-parameter tractability

How do we deal the NP-hardness

• work on solvers

• heuristics

• approximation algorithms

• focussing on sub-classes of the problem

• fixed-parameter tractability

How do we deal the NP-hardness

• work on solvers

• heuristics

• approximation algorithms

• focussing on sub-classes of the problem

• fixed-parameter tractability

How do we deal the NP-hardness

• work on solvers

• heuristics

• approximation algorithms

• focussing on sub-classes of the problem

• fixed-parameter tractability

How do we deal the NP-hardness

• work on solvers

• heuristics

• approximation algorithms

• focussing on sub-classes of the problem

• fixed-parameter tractability

Fixed-Parameter Tractability

Given: Problem P with parameter

If we can solve any instance of P in time

then P is in FPT/ P is fixed-parameter tractable w.r.t.

k

k

Fixed-Parameter Tractability

Given: Problem P with parameter

If we can solve any instance of P in time

then P is in FPT/ P is fixed-parameter tractable w.r.t.

k

k

f(k) ⋅ poly(| I |)

Fixed-Parameter Tractability - Example

Given: , with parameter

Instance size:

Algorithm:

x ∈ {0,1}n n

O(nm log(mΔ))

2n ⋅ O(nm)

Fixed-Parameter Tractability - Example

Given: , with parameter

Instance size:

Algorithm:

x ∈ {0,1}n n

O(nm log(mΔ))

2n ⋅ O(nm)

Fixed-Parameter Tractability - Example

Given: , with parameter

Instance size:

Algorithm: Guess and test solution;

x ∈ {0,1}n n

O(nm log(mΔ))

2n ⋅ O(nm)

Integer Programming meets FPT

Integer Programming meets FPT

Integer Programming meets FPT

Integer Programming meets FPT

Integer Programming meets FPT

Integer Programming meets FPT

Integer Programming meets FPT

Integer Programming meets FPT

Integer Programming meets FPT

Integer Programming meets FPT

Integer Programming meets FPT

1

2

Integer Programming meets FPT - Agenda

1

2-stage stochastic IPs

2-stage stochastic IPs

2-stage stochastic IPs

neural networks, worker scheduling, project planning, routing, facility
location planning, …

The Integer Hull

The Integer Hull

The Integer Hull

The Integer Hull

The Integer Hull

The Integer Hull

2-stage stochastic IPs

“A parameterized linear formulation of the integer hull” by F. Eisenbrand and T. Rothvoss, 2025 

2-stage stochastic IPs

“A parameterized linear formulation of the integer hull” by F. Eisenbrand and T. Rothvoss, 2025 

2-stage stochastic IPs

“A parameterized linear formulation of the integer hull” by F. Eisenbrand and T. Rothvoss, 2025 

2-stage stochastic IPs

“A parameterized linear formulation of the integer hull” by F. Eisenbrand and T. Rothvoss, 2025 

The Algorithm

1. Compute and guess
remainder for all

2. Compute integer hull
description of each and
replace them

3. Solve the MIP

R
r Di

Di

The Algorithm

1. Compute and guess
remainder for all

2. Compute integer hull
description of each and
replace them

3. Solve the MIP

R
r Di

Di

The Algorithm

1. Compute and guess
remainder for all

2. Compute integer hull
description of each and
replace them

3. Solve the MIP

R
r Di

Di

The Algorithm

1. Compute and guess
remainder for all

2. Compute integer hull
description of each and
replace them

3. Solve the MIP

R
r Di

Di

2

n-fold IPs

n-fold IPs

n-fold IPs

scheduling, knapsack-like problems, string problems,

social choice, …

n-fold IPs

n-fold IPs

If dimension is small, we are done

If it is large, there are only few types of diagonal blocks

n-fold IPs

If dimension is small, we are done

If it is large, there are only few types of diagonal blocks

n-fold IPs

 sign-compatible to s.t. and with

 there exist with 1. 2. 3.

∃b′ , b′ ′ b b = b′ + b′ ′ ∀v ∈ ℤy
≥0

Div = b v′ , v′ ′ v = v′ + v′ ′ Div′ = b′ Div′ ′ = b′ ′

n-fold IPs

 sign-compatible to s.t. and with

 there exist with 1. 2. 3.

∃b′ , b′ ′ b b = b′ + b′ ′ ∀v ∈ ℤy
≥0

Div = b v′ , v′ ′ v = v′ + v′ ′ Div′ = b′ Div′ ′ = b′ ′

n-fold IPs

 sign-compatible to s.t. and with

 there exist with 1. 2. 3.

∃b′ , b′ ′ b b = b′ + b′ ′ ∀v ∈ ℤy
≥0

Div = b v′ , v′ ′ v = v′ + v′ ′ Div′ = b′ Div′ ′ = b′ ′

n-fold IPs - based on Klein Lemma

 sign-compatible to s.t. and with

 there exist with 1. 2. 3.

∃b′ , b′ ′ b b = b′ + b′ ′ ∀v ∈ ℤy
≥0

Div = b v′ , v′ ′ v = v′ + v′ ′ Div′ = b′ Div′ ′ = b′ ′

n-fold IPs - based on Klein Lemma

 sign-compatible to s.t. and with

 there exist with 1. 2. 3.

∃b′ , b′ ′ b b = b′ + b′ ′ ∀v ∈ ℤy
≥0

Div = b v′ , v′ ′ v = v′ + v′ ′ Div′ = b′ Div′ ′ = b′ ′

n-fold IPs - based on Klein Lemma

 sign-compatible to s.t. and with

 there exist with 1. 2. 3.

∃b′ , b′ ′ b b = b′ + b′ ′ ∀v ∈ ℤy
≥0

Div = b v′ , v′ ′ v = v′ + v′ ′ Div′ = b′ Div′ ′ = b′ ′

The Algorithm

1. Breaking the bricks

The Algorithm

1. Breaking the bricks

The Algorithm

1. Breaking the bricks

The Algorithm

1. Breaking the bricks

The Algorithm

1. Breaking the bricks

2. We can deal easily with
the high-multiplicity
instance :)

Integer Programming meets FPT

Integer Programming meets FPT

Brick

Decomposition

Integer

Hull

Lenstra-type Integer Programs

Lenstra-type Integer Programs

	 	 	 Lenstra ‘83

		 Kannan ‘87

 	Dadush, Peikert, Vempala ‘11, Dadush ‘12

	 Rothvoss, Reis ‘23

2n3

2nn2.5n

2nnn

log(n)n

Lenstra-type Integer Programs

1. Decide whether K is “fat” or “flat”

Lenstra-type Integer Programs

1.1. If “fat”: easy to find solution

Lenstra-type Integer Programs

1.2. If “flat”: find flat dimension and decompose

Papademitriou-type Integer Programs

Papademitriou-type Integer Programs

	 	 	 Papadimitriou ‘81

	 	 	 	 	 	 Eisenbrand, Weismantel ‘18

	 	 Jansen, Rohwedder ‘19

	 	 	 	 	 	 	 Jansen Rohwedder ‘22

n2m+2 ⋅ (mΔ + m | |b | |∞)(m+1)(2m+1)

n ⋅ (mΔ)2m ⋅ | |b | |2
1

O(nm) ⋅ (mΔ)2m ⋅ log(| |b | |∞)

O(nm) ⋅ (mΔ)2m

Papademitriou-type Integer Programs

Graver elements: inclusion—wise
minimal () kernel elements

 :
and sign—compatible

xi ≤ yi ∀i

Papademitriou-type Integer Programs

Graver elements: inclusion—wise
minimal () kernel elements

 :
and sign—compatible

xi ≤ yi ∀i

Papademitriou-type Integer Programs

Graver elements: inclusion—wise
minimal () kernel elements

 :
and sign—compatible

xi ≤ yi ∀i

 via Steinitz lemma | |g||∞ ≤ Δf(k)

Papademitriou-type Integer Programs

 via Steinitz lemma | |g||∞ ≤ Δf(k)

Papademitriou-type Integer Programs

 via Steinitz lemma | |g||∞ ≤ Δf(k)

Papademitriou-type Integer Programs

 via Steinitz lemma | |g||∞ ≤ Δf(k)

Papademitriou-type Integer Programs

 via Steinitz lemma | |g||∞ ≤ Δf(k)

Papademitriou-type Integer Programs

Papademitriou-type Integer Programs

Papademitriou-type Integer Programs

