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NP-hard -> exponential blow-up in runtime 



How do we deal the NP-hardness



How do we deal the NP-hardness

• work on solvers


• heuristics


• approximation algorithms 

• focussing on sub-classes of the problem 

• fixed-parameter tractability



How do we deal the NP-hardness

• work on solvers


• heuristics


• approximation algorithms 

• focussing on sub-classes of the problem 

• fixed-parameter tractability



How do we deal the NP-hardness

• work on solvers


• heuristics


• approximation algorithms


• focussing on sub-classes of the problem 

• fixed-parameter tractability



How do we deal the NP-hardness

• work on solvers


• heuristics


• approximation algorithms


• focussing on sub-classes of the problem


• fixed-parameter tractability



How do we deal the NP-hardness

• work on solvers


• heuristics


• approximation algorithms


• focussing on sub-classes of the problem


• fixed-parameter tractability



How do we deal the NP-hardness

• work on solvers


• heuristics


• approximation algorithms


• focussing on sub-classes of the problem


• fixed-parameter tractability



Fixed-Parameter Tractability

Given: Problem P with parameter 


If we can solve any instance of P in time 


then P is in FPT/ P is fixed-parameter tractable w.r.t. 

k

k



Fixed-Parameter Tractability

Given: Problem P with parameter 


If we can solve any instance of P in time 


then P is in FPT/ P is fixed-parameter tractable w.r.t. 

k

k

f(k) ⋅ poly( | I | )
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Fixed-Parameter Tractability - Example

Given:                                        ,  with parameter 


Instance size: 


Algorithm: Guess and test solution; 


x ∈ {0,1}n n

O(nm log(mΔ))

2n ⋅ O(nm)
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Integer Programming meets FPT - Agenda
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2-stage stochastic IPs

neural networks, worker scheduling, project planning, routing, facility 
location planning, …
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n-fold IPs

scheduling, knapsack-like problems, string problems,

social choice, …
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The Algorithm

1. Breaking the bricks 

2. We can deal easily with 
the high-multiplicity 
instance :) 
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Brick

Decomposition

Integer

Hull
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Lenstra-type Integer Programs

	  	 	 Lenstra ‘83


		 Kannan ‘87


       	Dadush, Peikert, Vempala ‘11, Dadush ‘12


	 Rothvoss, Reis ‘23

2n3

2nn2.5n

2nnn

log(n)n



Lenstra-type Integer Programs

1. Decide whether K is “fat” or “flat”




Lenstra-type Integer Programs

1.1. If “fat”: easy to find solution




Lenstra-type Integer Programs

1.2. If “flat”: find flat dimension and decompose
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	 	 	  Papadimitriou ‘81


	 	 	 	 	 	 Eisenbrand, Weismantel ‘18


	 	    Jansen, Rohwedder ‘19


	 	 	 	 	 	 	     Jansen Rohwedder ‘22

n2m+2 ⋅ (mΔ + m | |b | |∞ )(m+1)(2m+1)

n ⋅ (mΔ)2m ⋅ | |b | |2
1

O(nm) ⋅ (mΔ)2m ⋅ log( | |b | |∞ )

O(nm) ⋅ ( mΔ)2m
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