Integer Programs meet
Fixed-Parameter Tractability

Alexandra Lassota (TU/e)




Integer Programming

Ax < b, x e 7"



Integer Programming

Introduction and Relevance

Ax < b, x e 7"



Integer Programming

Ax < b, x e 7"



Integer Programming




Integer Programming

NP-hard -> exponential blow-up in runtime
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Given: Problem P with parameter k

If we can solve any instance of P in time
J(k) - poly(|1])

then P is in FPT/ P is fixed-parameter tractable w.r.t. k
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Fixed-Parameter Tractability - Example

Given: |, x € {0,1}" with parameter n

Instance size: O(nmlog(mA))

AL (Al oo

Algorithm: Guess and test solution; 2" - O(nm)
—

t () oo\ C(\TV)
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Integer Programming meets FPT - Agenda
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2-stage stochastic IPs

A. |2,
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neural networks, worker scheduling, project planning, routing, facility
location planning, ...
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2-stage stochastic IPs

Theorem ltLet 0 ¢ 7k with non-repeating rows and || Al < A. There exists a ReN depending

on k and A such that, foreachr € {0,..., R - 1}™, there exist B, € Zm’xk, C, € 7 XM and fr € 7™
such that the following holds:

Foreach b € Z" withb — r € R - 2", one has

Pb); ={x € RK: B,x < f, + C,b}.
(S
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“A parameterized linear formulation of the integer hull” by F. Eisenbrand and 1. Rothvoss, 2025
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2-stage stochastic IPs

Theorem ltLet 0 ¢ 7™k yith non-repeating rows and || Al < A. There exists a ReN depending

on K and A such that, foreachr € {0,..., R- 1}™, there exist B, € Zm'xk, C,. € Z™>™ gnd fr € AL
such that the following holds:

For each b € Z" withb — r € Q - 2", one has

P(b); = {z € R®: B,z < f, + C,b}.

Furthermore, the number A c N, the matrices B, and C'., as well as the vector [, can be computed in time

depending on A and | only.

4

“A parameterized linear formulation of the integer hull” by F. Eisenbrand and 1. Rothvoss, 2025
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The Algorithm

1. Compute R and guess
remainder r for all D,

2. Compute integer hull
description of each [D; and
replace them

3. Solve the MIP
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scheduling, knapsack-like problems, string problems,
soclal choice, ...
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D :

If dimension is small, we are done

If it Is large, there are only few types of diagonal blocks
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The Algorithm

1. Breaking the bricks

2. We can deal easily with
the high-multiplicity
instance :)
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Lenstra-type Integer Programs

1. Decide whether K Is “fat” or “flat”
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1.1. If “fat”; easy to find solution
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Lenstra-type Integer Programs

1.2. If “flat”: find flat dimension and decompose
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n?"t2 . (mA + m||b| )t DEmTD Papadimitriou ‘81

n-(mA"-||b] |? Eisenbrand, Weismantel ‘18

O(nm) - (mA)*" - log(|| b | ) Jansen, Rohwedder ‘19

O(nm) - (\/mA)zm Jansen Rohwedder ‘22
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