Integer Programs meet
Fixed-Parameter Tractability

Alexandra Lassota (TU/e)

Integer Programming

Ax < b, x e 7"

Integer Programming

Introduction and Relevance

Ax < b, x e 7"

Integer Programming

Ax < b, x e 7"

Integer Programming

Integer Programming

NP-hard -> exponential blow-up in runtime

How do we deal the NP-hardness

How do we deal the NP-hardness

e work on solvers

How do we deal the NP-hardness

e work on solvers

e heuristics

How do we deal the NP-hardness

e work on solvers
e heuristics

e approximation algorithms

How do we deal the NP-hardness

e work on solvers
e heuristics
e approximation algorithms

* focussing on sub-classes of the problem

How do we deal the NP-hardness

 work on solvers

* heuristics

e approximation algorithms

* focussing on sub-classes of the problem

* fixed-parameter tractability

How do we deal the NP-hardness

* WOrk on solvers

* heuristics

e approximation algorithms

* focussing on sub-classes of the problem

* fixed-parameter tractability

Fixed-Parameter Tractability

Given: Problem P with parameter k

Fixed-Parameter Tractability

Given: Problem P with parameter k

If we can solve any instance of P in time
J(k) - poly(|1])

then P is in FPT/ P is fixed-parameter tractable w.r.t. k

Fixed-Parameter Tractability - Example

Given: |, x € {0,1}" with parameter n

Fixed-Parameter Tractability - Example

Given: |, x € {0,1}" with parameter n

Instance size: O(nmlog(mA))
AL (Al oo

Fixed-Parameter Tractability - Example

Given: |, x € {0,1}" with parameter n

Instance size: O(nmlog(mA))

AL (Al oo

Algorithm: Guess and test solution; 2" - O(nm)
—

t () oo\ C(\TV)

Integer Programming meets FPT

Integer Programming meets FPT

Integer Programming meets FPT

l

Inte
ger Programming meets FPT

B\ —iF
T

Integer Programming meets FPT

i

o k
A -A

Integer Programming meets FPT

I N

i

A A
A -A

Integer Programming meets FPT

Integer Programming meets FPT

Integer Programming meets FPT

Integer Programming meets FPT

i

k |
k “
A

Integer Programming meets FPT

Integer Programming meets FPT - Agenda

2-stage stochastic IPs

2-stage stochastic IPs

.

A.
A
B
An

2-stage stochastic IPs

A. |2,
A
i

An

neural networks, worker scheduling, project planning, routing, facility
location planning, ...

The Integer Hull

51

The Integer Hull

5 -

The Integer Hull

5 -

The Integer Hull

5 -

The Integer Hull

The Integer Hull

2-stage stochastic IPs

Theorem ltLet 0 ¢ 7k with non-repeating rows and || Al < A. There exists a ReN depending

on k and A such that, foreachr € {0,..., R - 1}™, there exist B, € Zm’xk, C, € 7 XM and fr € 7™
such that the following holds:

Foreach b € Z" withb — r € R - 2", one has

Pb); ={x € RK: B,x < f, + C,b}.
(S

‘“*L &" h\)\\

4

“A parameterized linear formulation of the integer hull” by F. Eisenbrand and 1. Rothvoss, 2025

2-stage stochastic IPs

Theorem ltLet 0 ¢ 7™k yith non-repeating rows and || Al < A. There exists a ReN depending

on k and A such that, foreachr € {0,..., R -1}, there exist B, € 7m' <K ¢ e zm' xm and £, € Z™
such that the following holds:

Foreachb € Z" withb — r € Q - 2", one has
P(b); = {z € R®: Bz < f, + C,b}.

4

“A parameterized linear formulation of the integer hull” by F. Eisenbrand and 1. Rothvoss, 2025

2-stage stochastic IPs

Theorem ltLet 0 ¢ 7™k with non-repeating rows and || Al < A. There exists a ReN depending

on k and A such that, foreachr € {0,..., R - 1}™, there exist B, € Zm’xk, C,. € Z™*™ and f, € 7™
such that the following holds:

Foreach b € Z" withb — r € Q - 2", one has

P(b); = {z e R®: B,z < f, + C,b}.

There IS an fot - sized olescea phion O'S

the \C\‘\'Q%CV no\\ of Dx £ b (Knr %XC& ?)

“A parameterized linear formulation of the integer hull” by F. Eisenbrand and 1. Rothvoss, 2025

2-stage stochastic IPs

Theorem ltLet 0 ¢ 7™k yith non-repeating rows and || Al < A. There exists a ReN depending

on K and A such that, foreachr € {0,..., R- 1}™, there exist B, € Zm'xk, C,. € Z™>™ gnd fr € AL
such that the following holds:

For each b € Z" withb — r € Q - 2", one has

P(b); = {z € R®: B,z < f, + C,b}.

Furthermore, the number A c N, the matrices B, and C'., as well as the vector [, can be computed in time

depending on A and | only.

4

“A parameterized linear formulation of the integer hull” by F. Eisenbrand and 1. Rothvoss, 2025

The Algorithm

1. Compute R and guess
remainder r for all D,

The Algorithm

1. Compute R and guess
remainder r for all D,

2. Compute integer hull
description of each [D; and
replace them

The Algorithm

1. Compute R and guess
remainder r for all D,

2. Compute integer hull
description of each [D; and
replace them

The Algorithm

1. Compute R and guess
remainder r for all D,

2. Compute integer hull
description of each [D; and
replace them

3. Solve the MIP

n-fold IPs

n-fold IPs

Cn
cfol-
Da

D,

Dn

n-fold IPs

DA)

scheduling, knapsack-like problems, string problems,
soclal choice, ...

n-fold IPs

Cn
cfol-
Da

D,

Dn

n-fold IPs

D :

D,

Dn

If dimension is small, we are done

n-fold IPs

D :

If dimension is small, we are done

If it Is large, there are only few types of diagonal blocks

n-fold IPs

1b’, b” sign-compatibleto b s.t. b = b'+ b" and Vv & Zy>o with

Dy = b there exist v/, v'with1.v=Vv'+Vv"2.Dyv' =b" 3.Dy"=b"

n-fold IPs

1)’ b sign-compatibleto b s.t. b = b’ + b" and Vv € Zy>0 with

Dy = b there exist v/, v'with1.v=Vv'+Vv"2.Dyv' =b" 3.Dy"=b"

> |-

n-fold IPs

1)’ b sign-compatibleto b s.t. b = b’ + b" and Vv € Zy>o with

Dy = b there exist v/, v'with1.v=Vv'+Vv"2.Dyv' =b" 3.Dy"=b"

D
o

n-fold IPs - based on Klein Lemma

1)’ b sign-compatibleto b s.t. b = b’ + b" and Vv € Zy>0 with

Dy = b there exist v/, v'with1.v=Vv'+Vv"2.Dyv' =b" 3.Dy"=b"

n-fold IPs - based on Klein Lemma

1b’, b” sign-compatibleto b s.t. b = b'+ b" and Vv & Z);o with

Dy = b there exist v/, v'with1.v=Vv'+Vv"2.Dyv' =b" 3.Dy"=b"

n-fold IPs - based on Klein Lemma

1b’, b” sign-compatibleto b s.t. b = b'+ b" and Vv & Z);o with

Dy = b there exist v/, v'with1.v=Vv'+Vv"2.Dyv' =b" 3.Dy"=b"

The Algorithm

1. Breaking the bricks

The Algorithm

1. Breaking the bricks

The Algorithm

1. Breaking the bricks

The Algorithm

1. Breaking the bricks

l A &\-\ _ene \

The Algorithm

1. Breaking the bricks

2. We can deal easily with
the high-multiplicity
instance :)

Integer Programming meets FPT

Integer Programming meets FPT

k kk _A k
Integer
Hull

i

k |

Kk | Brick
— Kk Decomposition
A

Lenstra-type Integer Programs

D -

Lenstra-type Integer Programs

3

2 | enstra ‘83

2Mp2Sn Kannan ‘87

2"'n" Dadush, Peikert, Vempala ‘11, Dadush ‘12

log(n)" Rothvoss, Reis ‘23

U.u

s

U.u

n
—]

Lenstra-type Integer Programs

1. Decide whether K Is “fat” or “flat”

Lenstra-type Integer Programs

1.1. If “fat”; easy to find solution

U.u

s

-

Lenstra-type Integer Programs

1.2. If “flat”: find flat dimension and decompose

—\-\' g— J—
\\.‘D{”/ /
— \\ 4
— — v
— > N
| L~ T
] e / ~
J — ’
z — /
I’//f _ . L - o~
p— — / -~ = N — - P
| e
/ o~
" ~
\\\ / .
P —
_— —

Papademitriou-type Integer Programs

| |8

Papademitriou-type Integer Programs ‘-_-:“U*U

n?"t2 . (mA + m||b|)t DEmTD Papadimitriou ‘81

n-(mA"-||b] |? Eisenbrand, Weismantel ‘18

O(nm) - (mA)*" - log(|| b |) Jansen, Rohwedder ‘19

O(nm) - (\/mA)zm Jansen Rohwedder ‘22

Papademitriou-type Integer Programs ‘-_-:“U*U

Graver elements: inclusion—wise
minimal (&) kernel elements

C:x, <y Vi
and sign—compatible

Papademitriou-type Integer Programs ‘-_-:“U*U

Graver elements: inclusion—wise
minimal (&) kernel elements

C:x, <y Vi
and sign—compatible

3l ()2

Papademitriou-type Integer Programs ‘-_-:“U*U

Graver elements: inclusion—wise
minimal (&) kernel elements

C:x, <y Vi
and sign—compatible

3l ()2

Papademitriou-type Integer Programs ':"U*U

| gl < A0 yia Steinitz lemma

Papademitriou-type Integer Programs '—:"U*U

| gl < A0 yia Steinitz lemma

Papademitriou-type Integer Programs ‘:"U*U

| gl < A0 yia Steinitz lemma

&N

Papademitriou-type Integer Programs ‘—_-:"U*U

| gl < A0 yia Steinitz lemma

Papademitriou-type Integer Programs ‘—_-:"U*U

| gl < A0 yia Steinitz lemma

Papademitriou-type Integer Programs ‘:“U*D

Papademitriou-type Integer Programs ‘:“U*D

