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Goal of this part

@ Provide several ideas (mostly on higher level) of what can be done on top of what
we have seen

o Not many details provided for some ideas

@ Provide takeaways and references for all
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Color code

@ Textbook
@ Issues that are somewhat standard

@ Research issues
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Shortest path with resource constraints
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Shortest path with resource constraints

For the CVRP, the pricing problem is to find a shortest path in:
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Shortest path with resource constraints

Different perspective. Consider the original graph (with dummy destination depot 0'):

@ Define a resource called “load”
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Different perspective. Consider the original graph (with dummy destination depot 0'):

@ Define a resource called “load”

@ Everytime we visit a client 7, the resource load increases by d.
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Shortest path with resource constraints

Different perspective. Consider the original graph (with dummy destination depot 0'):

=2

@ Define a resource called “load”
@ Everytime we visit a client 7, the resource load increases by d.

@ Find minimum cost 0 — 0" walk such that total load is < C
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Shortest path with resource constraints

. “Path” with resource constraints in original
Path in extended (“state-space”) graph &

graph (actually a walk)
Load = 1

(13)
NYANAN

(132))
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Shortest path with resource constraints

“Path” with resource constraints in original
graph (actually a walk)

Path in extended (“state-space”) graph

Load = 2
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Shortest path with resource constraints

“Path” with resource constraints in original
graph (actually a walk)

Path in extended (“state-space”) graph
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Shortest path with resource constraints

“Path” with resource constraints in original

Path in extended (“state-space”) graph
graph (actually a walk)
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Shortest path with resource constraints (SPPRC)

Why does it matter?

o Lima et al. (2022): Several applications with pseudopolynomial arc-flow
formulations, linked to DW over them

°

@ (SPPRC) can be solved more efficiently
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Shortest path with resource constraints (SPPRC)

Why does it matter?
@ Lima et al. (2022): Several applications with pseudopolynomial arc-flow
formulations, linked to DW over them

°
@ (SPPRC) can be solved more efficiently
> States are generated only as needed
> Dominated states are eliminated (leads to so-called “domination rules”)
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Original graph (with demands) Cost=-1
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Shortest path with resource constraints (SPPRC)

Why does it matter?
@ Lima et al. (2022): Several applications with pseudopolynomial arc-flow
formulations, linked to DW over them

°
@ (SPPRC) can be solved more efficiently
> States are generated only as needed
> Dominated states are eliminated (leads to so-called “domination rules”)
Path in extended (“state-space”) graph

Original graph (with demands)

Cost=-1

Cost=2
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Takeaway
Several successful DW/CG based formulations based on DP.
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Takeaway
Several successful DW/CG based formulations based on DP. J

Takeaway 2
Solving DP with SPPRC is more efficient. J
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Non-robust cuts (7)
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Non-robust cuts (7)

min Y e G A

st. D ,er COUNT(v,r)- A =1, Vve V,, (SP)
Zre'R Ar= K’
Ar €{0,1}, VreR.

Non-robust cuts:
@ Directly on the X variables (not translated to original space)

@ Dates back to Nemhauser and Park (1991) - for a different problem and not with

this name
@ Example: Subset-row cuts (Jepsen et al., 2008): Pick S C V, and add degree

constraints with certain multipliers:

COUNT(v, r) s
225 M=y

reR ves

=g [3

reR LveSs
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Non-robust cuts (7)

Subset-row cuts (SRC)
@ Must keep track of the number of visited customers in S, for every S used in a SRC
o Becomes expensive, though gives strong bounds

Limited-memory SRC (Pecin et al., 2017).

Consider |S| =3

Weaken the cut

@ )\, receives coefficient 1 if route r visits at least two customers i; and i in S AND
nodes between i1 and i, belong to a pre-specified subset of customers (the memory)

All other A\, have a zero coefficient
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Non-robust cuts (7)

d

flow = 0.5 /
OW/\L ©,

flow = 0.5

®
©

Set S ={1,2,3}
Memory: {a, b, c,d}

(Figures taken from Pecin’s presentation at ColGen2016 workshop
https://www.gerad.ca/colloques/ColumnGeneration2016/PDF/Pecin.pdf)
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Non-robust cuts (7)

Gap(%)
Only CG (elementary routes) 2.63
+ robust cuts 0.98
+ 3SRCs 0.35
+ 4SRCs + 5SRCs 0.24
Rank 1 Cuts up to 5 rows 0.17

(Table taken from Pecin’s presentation at ColGen2016 workshop
https://www.gerad.ca/colloques/ColumnGeneration2016/PDF/Pecin.pdf)
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Takeaway

Non-robust cuts are good, but must be used with caution.
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Takeaway J

Non-robust cuts are good, but must be used with caution.

Sometimes it is worth to use weaker formulations, if they are more efficient.

Takeaway 2 J
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Dealing with nonlinearity
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Nonlinear DW (Ceselli, Létocart, and Traversi, 2022)

min  x' Qx+c’x
st. Dx>f
Gx>h
x € {0,1}"

(BQP)
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Nonlinear DW (Ceselli, Létocart, and Traversi, 2022)

min  x' Qx+c’x

s.t. Dx > f
Gx > h (BQP)
x € {0,1}"
min x' Qx+c’x ) ;
st. Dx>f ‘ min i;:zc Ai
X - ;{ viAi =0 (@QM) st. S DVIN>F (Q-QP)
! - = -
Z Ai=1 Z Ai=1
n iER ieR
x € [0,1] A€ [0,1]
Ai €]0,1]
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Nonlinear DW (Ceselli, Létocart, and Traversi, 2022)

min  x' Qx+c’x
s.t. Dx > f

Gx > h (BQP)
x € {0,1}"
min x' Qx+c’x ) ;
st. Dx>f ‘ min i;:zc Ai
X - 627)2 viAi =0 (@QM) st. S DVIN>F (Q-QP)
! - i€ER -
2 Ai=1 S A =1
n iER ieR
X € [0, 1] X\ € [0’ 1]
i € [07 1]

o Ceselli, Létocart, and Traversi (2022): No dominance between the two relaxations

@ Ceselli, Létocart, and Traversi (2022): Study (theoretical and empirical) strength of
several variants
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Nonlinear DW (Ceselli, Létocart, and Traversi, 2022)

Variants considered:

° (Q-QM), (Q-QP)

o Corresponding versions with addition of Lagrangian terms in the objective for:
> (xl2 —X;)
> Implicit equalities
> (zj — xix;) (after adding extra binary variables z;;)

@ A variant of quadratic pricing provides strongest bounds (nearly 100% gap closed) in

a reasonable time for cardinality constrained quadratic knapsack.

@ Variants of quadratic pricing provides strongest theoretical bounds.
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CG with NLP — opens many more questions/challenges/opportunities

Takeaway J

R. Fukasawa CG+IP 1l



Nonlinear DW (F. et al., 2018)

Recall CVRP:

G=(V,E)
vV ={0uV,
Edge lengths ., e € E

K vehicles, capacity C
Client demands d;,Vi € V.

Let S; be the set of clients

served by route j.
Then d(Sj) == Y. d, < C
u€s;

depot

@ Goal: Find minimum cost set
of K routes that start/end at
depot, serves all customers
and respect capacity constraint
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Nonlinear DW (F. et al., 2018)

Problem studied:

@ Same data as CVRP (directed version)

o Each customer has a time window [a,, b,] when it must be visited
o Early arrival is allowed (must wait until beginning of time window)
]

Decision variable: average speed v € [/, u] under which to travel i

_ 4

@ Objective: min > (¢ + f(vjj)), where f is a strictly convex function
ij
@ Motivation: Minimize pollution, calculated as function of speed
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Nonlinear DW (F. et al., 2018)

Key result:

Theorem (F. et al., 2018)

If time window is not hit at customer i, then optimal speed for arc entering and leaving i
is the same.
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Nonlinear DW (F. et al., 2018)

Key result:

Theorem (F. et al., 2018)

If time window is not hit at customer i, then optimal speed for arc entering and leaving i
is the same.

Pricing
o g-routes: Walks that start/end at depot and satisfy capacity
@ Pricing: Finding minimum cost g-route
@ Shortest path in a “state-space” graph
o States are (v, 4, t, [tw).
> v: Last visited client
§: Total accumulated demand

t: Total accumulated time in route
Itw: Last customer for which time window was hit

vyvvyy
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Takeaway
Nonlinear pricing: Better bounds, but solving pricing requires much more work. J
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Pricing with other oracles
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Pricing with other oracles (Lubke, F., and Ricardez-Sandoval, 2024)

Disclosure: Similar approach has been done in several other papers (e.g. Jaumard,
Semet, and Vovor, 1998)
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Pricing with other oracles (Lubke, F., and Ricardez-Sandoval, 2024)

Disclosure: Similar approach has been done in several other papers (e.g. Jaumard,
Semet, and Vovor, 1998)

Context:
@ Schedule analysis, that must be done in a particular sequence

@ Analysis must be done by personnel, whose schedules have several requirements (e.g.
break time, lunch, shift characteristics, etc)
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Pricing with other oracles (Lubke, F., and Ricardez-Sandoval, 2024)

Disclosure: Similar approach has been done in several other papers (e.g. Jaumard,
Semet, and Vovor, 1998)

Context:
@ Schedule analysis, that must be done in a particular sequence

@ Analysis must be done by personnel, whose schedules have several requirements (e.g.
break time, lunch, shift characteristics, etc)

Basic model idea:
o Time-discretized model (e.g. every 15 minutes)

@ Analysis Schedule variables/constraints (precedence, machine capacity, etc.)
@ Personnel constraints (break time, lunch, etc.):
> Variables zep: € {0,1}: Whether employee e (or type e) is working process p at time t

@ Constraints linking both
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Pricing with other oracles (Lubke, F., and Ricardez-Sandoval, 2024)

Problem:
o Expressing personnel constraints in terms z.,: variables may be tricky
@ May require Big-M and/or additional binary variables

@ Examples:

> If an employee started working at time t, they must stay working for 10 periods
> An employee must take lunch break of 1h between 11:30am and 2:30pm
> Employees must take “regular” breaks (e.g. one 15 minute break every 4h)
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Pricing with other oracles (Lubke, F., and Ricardez-Sandoval, 2024)

Problem:
o Expressing personnel constraints in terms z.,: variables may be tricky

@ May require Big-M and/or additional binary variables

@ Examples:
> If an employee started working at time t, they must stay working for 10 periods
> An employee must take lunch break of 1h between 11:30am and 2:30pm
> Employees must take “regular” breaks (e.g. one 15 minute break every 4h)

Idea:
@ Use columns A, to represent a possible shift i of employee e
o Link zep: with Ag
@ Generate columns using constraint programming
> Scheduling constraints and logical constraints are easier to implement

> More flexible and efficient than IP-based (for this problem)
> Reasonably fast in practice

o Pure scheduling (without employees) is solved better by IP-techniques
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Takeaway

Pricing: We can use diverse tools even if they don’'t have good worst-case guarantees.
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Takeaway

Pricing: We can use diverse tools even if they don’t have good worst-case guarantees.

Takeaway 2

CG allows to combine IP-based approach with other techniques that may work better for
a different part of the problem.
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Issue: Dealing with hard pricing
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When pricing is too hard (Dinh, F., and Luedtke, 2018)

Determinstic VRP
° G= (V7 E)
. . * . v={0luVv,
Edge lengths ¢., e € E

o

°
. . @ K vehicles, capacity C

o Find a set of K routes with
o ® minimum total length

Client demands d;,Vi € V.

R. Fukasawa CG+IP 1l 29 /44



When pricing is too hard (Dinh, F., and Luedtke, 2018)

Determinstic VRP

G=(V,E)

vV ={0}uU Vy

Edge lengths 4., e € E
K vehicles, capacity C

Find a set of K routes with
minimum total length

Client demands d;,Vi € V.

depot

o Let §; be the set of clients
served by route j.

Then d(S5;) := Z d<C

i€S;
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When pricing is too hard (Dinh, F., and Luedtke, 2018)

Chance-constrained VRP

G=(V,E)

vV ={0}uU Vy

Edge lengths ¢., e € E

K vehicles, capacity C

Find a set of K routes with
minimum total length

o Client-demands-di-¥i-&-Va-
Demands D;,Vi € V.: random
variables that only get realized
after routes have been decided

depot

o Let §; be the set of clients
served by route j.

= =
i€S;
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When pricing is too hard (Dinh, F., and Luedtke, 2018)

Chance-constrained VRP

G=(V,E)

vV ={0}uU Vy

Edge lengths 4., e € E
K vehicles, capacity C

Find a set of K routes with
minimum total length
Client-demands-d;- ¥4V

@ Demands D;,Vi € V,: random

variables that only get realized
after routes have been decided

depot

o Let S; be the set of clients

served by route j.
Then P{D(5;) < C}>1—¢
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When pricing is too hard (Dinh, F., and Luedtke, 2018)

Column generation for stochastic VRP:

K
Find a walk O, v1, ..., vk, 0 such that P{Z D, < C} >1—e

i=1
Theorem (Dinh, F., and Luedtke, 2018)

Finding the least cost walk (g-route) in a graph that respects the capacity chance
constraint under the finite distribution model or independent normal is strongly NP-hard.
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@ Derive a valid branch-and-cut approach
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Column generation for stochastic VRP:
K
Find a walk 0, v1, ..., vk, 0 such that IF’{Z D, < C} >1—ce

i=1
Theorem (Dinh, F., and Luedtke, 2018)

Finding the least cost walk (g-route) in a graph that respects the capacity chance
constraint under the finite distribution model or independent normal is strongly NP-hard.

Solution
@ Derive a valid branch-and-cut approach
o Define an easier pricing problem, which will allow integer solutions to be infeasible
@ Branch-and-price is NOT a valid approach

@ Must be combined with cuts to yield a valid approach

R. Fukasawa CG+IP 1l 30/ 44



When pricing is too hard (Dinh, F., and Luedtke, 2018)

Column generation for stochastic VRP:
K
Find a walk 0, v1, ..., vk, 0 such that IF’{Z D, < C} >1—ce

i=1
Theorem (Dinh, F., and Luedtke, 2018)

Finding the least cost walk (g-route) in a graph that respects the capacity chance
constraint under the finite distribution model or independent normal is strongly NP-hard.

Solution
@ Derive a valid branch-and-cut approach
o Define an easier pricing problem, which will allow integer solutions to be infeasible
@ Branch-and-price is NOT a valid approach
@ Must be combined with cuts to yield a valid approach

@ Noteworthy: Typically both branch-and-price and branch-and-cut approaches are
valid
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Takeaway

Combining pricing and cutting is advantageous.
For BPC, only ONE of them must yield a valid formulation.
The other one may be chosen carefully to strengthen, but not be too expensive.
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Dynamically refining CG
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Refining pricing dynamically (Cire et al., 2025)

Column elimination

@ Start with g-route formulation
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Refining pricing dynamically (Cire et al., 2025)

Column elimination
o Start with g-route formulation

o Formulate problem as a network flow over the state-space graph

min > G
acA

s.t. S oyva— Y yva=0YueN\{s, t}
aeé— (u) acdt(u)
Z Ya = 1,vl S V+
ac Al
> va=K

acst(s)
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Refining pricing dynamically (Cire et al., 2025)
Column elimination
@ Start with g-route formulation

@ Formulate problem as a network flow over the state-space graph
o lteratively refine it “as needed”

(12)  (13)
NN
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Refining pricing dynamically (Cire et al., 2025)

Column elimination
@ Start with g-route formulation
o Formulate problem as a network flow over the state-space graph

o lIteratively refine it “as needed”
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Refining pricing dynamically (Cire et al., 2025)

Column elimination
@ Start with g-route formulation
o Formulate problem as a network flow over the state-space graph
o lIteratively refine it “as needed”

@ Similar to dynamic ng-routes, decremental state-space relaxation approaches to
eliminate cycles (works in the full DP-state space)

\w

@ @\ @
AN
@,},{@,},&"%@
CI R K
DN
TATATH

R. Fukasawa CG+IP Il 33 /44

RN
i

<>




Refining pricing dynamically (Cire et al., 2025)

Column elimination
@ Start with g-route formulation
o Formulate problem as a network flow over the state-space graph
o lIteratively refine it “as needed”

@ Similar to dynamic ng-routes, decremental state-space relaxation approaches to
eliminate cycles (works in the full DP-state space)

@ Infeasibility in column elimination does not need to be because of cycles
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Refining pricing dynamically (Cire et al., 2025)

Basic idea:
o Define a network A\ on the original graph

@ Work with basic CG approach on top of N
@ For all CG-based variables A, that are > 0 and NOT feasible:

» Do CE refinement on N\ to remove r

Repeat
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Refining pricing dynamically (Cire et al., 2025)

Basic idea:
o Define a network A on the original graph

@ Work with basic CG approach on top of N
@ For all CG-based variables A, that are > 0 and NOT feasible:

» Do CE refinement on N\ to remove r

Repeat

When applied to CCVRP:

> Allows to eliminate chance-constraint infeasible columns
> Avoid having to do strongly np-hard pricing
> Produces state-of-the-art results
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Takeaway

Dynamically refining CG can be good idea.
(see poster by Matheus Ota)
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Takeaway

Dynamically refining CG can be good idea.
(see poster by Matheus Ota)

Vague thought 2

Decision diagrams are similar to DP algorithms that are used in CG.
Using them in/with CG make sense.
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Replacing CG with cuts
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Replacing CG with cuts

Consider our extended formulation:
-

Zgpc = min  c¢'x _
s.t. X — Z VI>\,‘ =0
iER
Dx > f
S A 1 (BPQC)
iER
xelZ"

X €[0,1],Vie R

@ Produces good bounds.

@ May be expensive to solve (particularly at every branch-and-bound node)
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Replacing CG with cuts

Consider our extended formulation:
-

Zgpc = mMin  C' X _
st x - > v\ =0 (m)
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Dx > f
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R. Fukasawa CG+IP 1l 37 /44



Replacing CG with cuts

Consider our extended formulation:

zepc = min ¢ x '
st x - > v\ =0 (m)
ieRr
Dx > f
ST =1 (m) (BPC)
iER
xeZ"

N €[0,1],VieR

@ Produces good bounds.
@ May be expensive to solve (particularly at every branch-and-bound node)

@ Question: Can we get the same bound by using only x variables and cuts?
o Why?

> Can be used in branch-and-cut (implemented in commercial solvers)
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Replacing CG with cuts

Consider our extended formulation:
-

Zgpc = mMin  C' X '
st x - > v\ =0 (m)
ieRr
Dx > f
ST =1 (m) (BPC)
iER
xeZ"

N €[0,1],VieR

@ Produces good bounds.
@ May be expensive to solve (particularly at every branch-and-bound node)
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Replacing CG with cuts

Consider our extended formulation:

T

Zgpc = mMin  C' X
st x - > v =
iER
Dx >f
Z i =1
iEer
xeZ"

N €[0,1],VieR

@ Produces good bounds.

(BPQ)

@ May be expensive to solve (particularly at every branch-and-bound node)

@ Question: Can we get the same bound by using only x variables and cuts?

o Why?

> Can be used in branch-and-cut (implemented in commercial solvers)

> Easier to intersect multiple relaxations
o Trivial: ¢"x > zgpc — Terrible performance

Chen, Giinliik, and Lodi (2024) and Ota, F., and Kazachkov (2025):
Better ways to do this: Benders/Fenchel cuts.
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Takeaway
There are good ways to derive cuts from DW formulation and recover same bound. J
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Some other issues
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CG based heuristics

How to obtain good primal solutions?

o Strategy 1: Solve LP relaxation with CG
Then solve the IP (without generating any more columns at BB nodes
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CG based heuristics

How to obtain good primal solutions?

o Strategy 1: Solve LP relaxation with CG
Then solve the IP (without generating any more columns at BB nodes

@ Strategy 2: Use formulation in “natural” variable space (x) combined with CG, and
then do general MIP techniques based on the x values

o Strategy 3: Exploit special CG structure to guide your heuristic
Diving heuristic: Joncour et al. (2010),
Feasibility pump: Pesneau, Sadykov, and Vanderbeck (2012)

R. Fukasawa CG+IP 11 40 / 44



Software and implementation

@ Branch-and-price not supported by commercial solvers
@ Open source supported:
» SCIP
Highs
Coluna.jl
SYMPHONY
COIN
idol

vvyvyy

v

o VRP specific: VRPsolver (also been used to solve non-routing problems)
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Final thoughts
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Final thoughts

o CG can be FUN

@ CG can be USEFUL

@ CG can be HARD

@ CG can be INTERESTING

My hope:
@ That you learned something
@ That you remember what you learned in the future

@ That it perhaps may be useful to you
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Final thoughts

o CG can be FUN

@ CG can be USEFUL

@ CG can be HARD

@ CG can be INTERESTING

My hope:
@ That you learned something
@ That you remember what you learned in the future

@ That it perhaps may be useful to you

THANK YOU!
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