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Goal of this part

Provide several ideas (mostly on higher level) of what can be done on top of what
we have seen

Not many details provided for some ideas

Provide takeaways and references for all
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Color code

Textbook

Issues that are somewhat standard

Research issues
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Shortest path with resource constraints
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Shortest path with resource constraints

For the CVRP, the pricing problem is to find a shortest path in:
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Shortest path with resource constraints

Different perspective. Consider the original graph (with dummy destination depot 0′):
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Define a resource called “load”

Everytime we visit a client i , the resource load increases by di .

Find minimum cost 0− 0′ walk such that total load is ≤ C

R. Fukasawa CG+IP II 6 / 44



Shortest path with resource constraints

Different perspective. Consider the original graph (with dummy destination depot 0′):

0 0'

1

2

3

4

Define a resource called “load”

Everytime we visit a client i , the resource load increases by di .

Find minimum cost 0− 0′ walk such that total load is ≤ C

R. Fukasawa CG+IP II 6 / 44



Shortest path with resource constraints

Different perspective. Consider the original graph (with dummy destination depot 0′):

0 0'

1

2

3

4

Define a resource called “load”

Everytime we visit a client i , the resource load increases by di .

Find minimum cost 0− 0′ walk such that total load is ≤ C

R. Fukasawa CG+IP II 6 / 44



Shortest path with resource constraints

Path in extended (“state-space”) graph
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Shortest path with resource constraints (SPPRC)

Why does it matter?

Lima et al. (2022): Several applications with pseudopolynomial arc-flow
formulations, linked to DW over them

(SPPRC) can be solved more efficiently
▶ States are generated only as needed
▶ Dominated states are eliminated (leads to so-called “domination rules”)

Original graph (with demands)

0 0'
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4

Path in extended (“state-space”) graph
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Takeaway

Several successful DW/CG based formulations based on DP.

Takeaway 2

Solving DP with SPPRC is more efficient.
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Non-robust cuts (?)
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Non-robust cuts (?)

min
∑

r∈R cr · λr

s.t.
∑

r∈R count(v , r) · λr = 1, ∀v ∈ V+,∑
r∈R λr = K ,

λr ∈ {0, 1}, ∀r ∈ R.

(SP)

Non-robust cuts:

Directly on the λ variables (not translated to original space)

Dates back to Nemhauser and Park (1991) - for a different problem and not with
this name

Example: Subset-row cuts (Jepsen et al., 2008): Pick S ⊆ V , and add degree
constraints with certain multipliers:∑

r∈R

∑
v∈S

count(v , r)

2
· λr =

|S |
2

Apply CG ∑
r∈R

⌊∑
v∈S

count(v , r)

2

⌋
· λr ≤

⌊
|S |
2

⌋
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Non-robust cuts (?)

Subset-row cuts (SRC)

Must keep track of the number of visited customers in S , for every S used in a SRC

Becomes expensive, though gives strong bounds

Limited-memory SRC (Pecin et al., 2017).

Consider |S | = 3

Weaken the cut

λr receives coefficient 1 if route r visits at least two customers i1 and i2 in S AND
nodes between i1 and i2 belong to a pre-specified subset of customers (the memory)

All other λr have a zero coefficient
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Non-robust cuts (?)

Set S = {1, 2, 3}
Memory: {a, b, c, d}

(Figures taken from Pecin’s presentation at ColGen2016 workshop
https://www.gerad.ca/colloques/ColumnGeneration2016/PDF/Pecin.pdf)
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Non-robust cuts (?)

(Table taken from Pecin’s presentation at ColGen2016 workshop
https://www.gerad.ca/colloques/ColumnGeneration2016/PDF/Pecin.pdf)
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Takeaway

Non-robust cuts are good, but must be used with caution.

Takeaway 2

Sometimes it is worth to use weaker formulations, if they are more efficient.
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Dealing with nonlinearity
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Nonlinear DW (Ceselli, Létocart, and Traversi, 2022)

min xTQx + cT x
s.t. Dx ≥ f

Gx ≥ h
x ∈ {0, 1}n

(BQP)

min xTQx + cT x
s.t. Dx ≥ f

x −
∑
i∈R

v iλi = 0∑
i∈R

λi = 1

x ∈ [0, 1]n

λi ∈ [0, 1]

(Q-QM)

min
∑
i∈R

c iλi

s.t.
∑
i∈R

Dv iλi ≥ f∑
i∈R

λi = 1

λi ∈ [0, 1]

(Q-QP)

Ceselli, Létocart, and Traversi (2022): No dominance between the two relaxations

Ceselli, Létocart, and Traversi (2022): Study (theoretical and empirical) strength of
several variants
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Nonlinear DW (Ceselli, Létocart, and Traversi, 2022)

Variants considered:

(Q-QM), (Q-QP)

Corresponding versions with addition of Lagrangian terms in the objective for:
▶ (x2i − xi )
▶ Implicit equalities
▶ (zij − xixj ) (after adding extra binary variables zij )

A variant of quadratic pricing provides strongest bounds (nearly 100% gap closed) in
a reasonable time for cardinality constrained quadratic knapsack.

Variants of quadratic pricing provides strongest theoretical bounds.
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Takeaway

CG with NLP → opens many more questions/challenges/opportunities
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Nonlinear DW (F. et al., 2018)

Recall CVRP:

depot

G = (V ,E)

V = {0} ∪ V+

Edge lengths ℓe , e ∈ E

K vehicles, capacity C

Client demands di , ∀i ∈ V+.

Let Sj be the set of clients
served by route j .
Then d(Sj) :=

∑
u∈Sj

du ≤ C

Goal: Find minimum cost set
of K routes that start/end at
depot, serves all customers
and respect capacity constraint
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Nonlinear DW (F. et al., 2018)

Problem studied:

Same data as CVRP (directed version)

Each customer has a time window [av , bv ] when it must be visited

Early arrival is allowed (must wait until beginning of time window)

Decision variable: average speed vij ∈ [l , u] under which to travel ij

tij =
ℓij
vij

Objective: min
∑
ij

(ℓij + f (vij)), where f is a strictly convex function

Motivation: Minimize pollution, calculated as function of speed
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Nonlinear DW (F. et al., 2018)

Key result:

Theorem (F. et al., 2018)

If time window is not hit at customer i , then optimal speed for arc entering and leaving i
is the same.

Pricing

q-routes: Walks that start/end at depot and satisfy capacity

Pricing: Finding minimum cost q-route

Shortest path in a “state-space” graph

States are (v , δ, t, ltw).
▶ v : Last visited client
▶ δ: Total accumulated demand
▶ t: Total accumulated time in route
▶ ltw : Last customer for which time window was hit
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Takeaway

Nonlinear pricing: Better bounds, but solving pricing requires much more work.
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Pricing with other oracles
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Pricing with other oracles (Lubke, F., and Ricardez-Sandoval, 2024)

Disclosure: Similar approach has been done in several other papers (e.g. Jaumard,
Semet, and Vovor, 1998)

Context:

Schedule analysis, that must be done in a particular sequence

Analysis must be done by personnel, whose schedules have several requirements (e.g.
break time, lunch, shift characteristics, etc)

Basic model idea:

Time-discretized model (e.g. every 15 minutes)

Analysis Schedule variables/constraints (precedence, machine capacity, etc.)

Personnel constraints (break time, lunch, etc.):
▶ Variables zept ∈ {0, 1}: Whether employee e (or type e) is working process p at time t

Constraints linking both
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Pricing with other oracles (Lubke, F., and Ricardez-Sandoval, 2024)

Problem:

Expressing personnel constraints in terms zept variables may be tricky

May require Big-M and/or additional binary variables

Examples:
▶ If an employee started working at time t, they must stay working for 10 periods
▶ An employee must take lunch break of 1h between 11:30am and 2:30pm
▶ Employees must take “regular” breaks (e.g. one 15 minute break every 4h)

Idea:

Use columns λei to represent a possible shift i of employee e

Link zept with λei

Generate columns using constraint programming
▶ Scheduling constraints and logical constraints are easier to implement
▶ More flexible and efficient than IP-based (for this problem)
▶ Reasonably fast in practice

Pure scheduling (without employees) is solved better by IP-techniques
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Takeaway

Pricing: We can use diverse tools even if they don’t have good worst-case guarantees.

Takeaway 2

CG allows to combine IP-based approach with other techniques that may work better for
a different part of the problem.
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Issue: Dealing with hard pricing
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When pricing is too hard (Dinh, F., and Luedtke, 2018)

Determinstic VRP

depot

G = (V ,E)

V = {0} ∪ V+

Edge lengths ℓe , e ∈ E

K vehicles, capacity C

Find a set of K routes with
minimum total length

Client demands di , ∀i ∈ V+

Demands Di , ∀i ∈ V+: random
variables that only get realized
after routes have been decided

Let Sj be the set of clients
served by route j .
Then d(Sj) :=

∑
i∈Sj

di ≤ C
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When pricing is too hard (Dinh, F., and Luedtke, 2018)

Column generation for stochastic VRP:

Find a walk 0, v1, . . . , vk , 0 such that P
{

k∑
i=1

Dvi ≤ C

}
≥ 1− ϵ.

Theorem (Dinh, F., and Luedtke, 2018)

Finding the least cost walk (q-route) in a graph that respects the capacity chance
constraint under the finite distribution model or independent normal is strongly NP-hard.

Solution

Derive a valid branch-and-cut approach

Define an easier pricing problem, which will allow integer solutions to be infeasible

Branch-and-price is NOT a valid approach

Must be combined with cuts to yield a valid approach

Noteworthy: Typically both branch-and-price and branch-and-cut approaches are
valid
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Takeaway

Combining pricing and cutting is advantageous.
For BPC, only ONE of them must yield a valid formulation.
The other one may be chosen carefully to strengthen, but not be too expensive.
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Dynamically refining CG

R. Fukasawa CG+IP II 32 / 44



Refining pricing dynamically (Cire et al., 2025)

Column elimination

Start with q-route formulation

Formulate problem as a network flow over the state-space graph

Iteratively refine it “as needed”

Similar to dynamic ng-routes, decremental state-space relaxation approaches to
eliminate cycles (works in the full DP-state space)

Infeasibility in column elimination does not need to be because of cycles

s t

1,1

2,1

3,1

4,1

1,2

2,2

3,2

4,2

1,3

2,3

3,3

4,3

1,4

2,4

3,4

4,4
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Refining pricing dynamically (Cire et al., 2025)

Basic idea:

Define a network N on the original graph

Work with basic CG approach on top of N
For all CG-based variables λr that are > 0 and NOT feasible:

▶ Do CE refinement on N to remove r

Repeat

When applied to CCVRP:
▶ Allows to eliminate chance-constraint infeasible columns
▶ Avoid having to do strongly np-hard pricing
▶ Produces state-of-the-art results
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Takeaway

Dynamically refining CG can be good idea.
(see poster by Matheus Ota)

Vague thought 2

Decision diagrams are similar to DP algorithms that are used in CG.
Using them in/with CG make sense.
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Replacing CG with cuts
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Replacing CG with cuts

Consider our extended formulation:

zBPC = min cT x
s.t. x −

∑
i∈R

v iλi = 0 (π)

Dx ≥ f∑
i∈R

λi = 1 (πo)

x ∈ Zn

λi ∈ [0, 1], ∀i ∈ R

(BPC)

Produces good bounds.

May be expensive to solve (particularly at every branch-and-bound node)

Question: Can we get the same bound by using only x variables and cuts?

Why?
▶ Can be used in branch-and-cut (implemented in commercial solvers)
▶ Easier to intersect multiple relaxations

Trivial: cT x ≥ zBPC → Terrible performance

Chen, Günlük, and Lodi (2024) and Ota, F., and Kazachkov (2025):
Better ways to do this: Benders/Fenchel cuts.
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Takeaway

There are good ways to derive cuts from DW formulation and recover same bound.
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Some other issues
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CG based heuristics

How to obtain good primal solutions?

Strategy 1: Solve LP relaxation with CG
Then solve the IP (without generating any more columns at BB nodes

Strategy 2: Use formulation in “natural” variable space (x) combined with CG, and
then do general MIP techniques based on the x values

Strategy 3: Exploit special CG structure to guide your heuristic
Diving heuristic: Joncour et al. (2010),
Feasibility pump: Pesneau, Sadykov, and Vanderbeck (2012)
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Software and implementation

Branch-and-price not supported by commercial solvers

Open source supported:
▶ SCIP
▶ Highs
▶ Coluna.jl
▶ SYMPHONY
▶ COIN
▶ idol

VRP specific: VRPsolver (also been used to solve non-routing problems)
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Final thoughts

CG can be FUN

CG can be USEFUL

CG can be HARD

CG can be INTERESTING

My hope:

That you learned something

That you remember what you learned in the future

That it perhaps may be useful to you

THANK YOU!
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