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How can we do time-efficient and informed branching at each node?


A compromise—Reliability Branching: do strong branching early in the tree, until we 
have “enough information” about how each variable affects the objective; use this 
information through the rest of the tree


A recent insight—Machine learning!


Existing literature on ML to branch: how to use strong branching as an expert to imitate 
(The idea: obtain a fast approximation of strong branching scores/relative strong 
branching ranking)


But… is strong branching the expert we should be imitating? 
Next, we give a framework through which we can think about this question
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Strong Branching:  (below  is the LP optimal value of subproblem )
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Question 2: How can we get a good estimate  Not clear since obtaining 

samples with true supervised labels  is not computationally viable
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Theorem (D.) 
Let    be such that  , where , for all possible 
subproblems , and let  be the BB tree certifying bound  for the integer 
program  that branches according to . Then, .

̂θ 𝔼 [ϵ ̂θ(S, v*)] = α θ(S, v*) α ∈ [0,1]
S 𝒯 ̂θ(P, v*) v*

P ̂θ 𝔼 [ |𝒯 ̂θ(P, v*) |] = (1 + α)n θ(P, v*)
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θgap(S, v*) = f(v(S) − v*) f

θmostinf(S, v*) = f( |𝒯mostinf(S, v*) | )

θsb(S, v*) = f( |𝒯sb(S, v*) | )

IMPERFECT, BUT GOOD SIGNALS

Disclaimer: This data comes from random 
multi-dimensional knapsack problems, where 
strong branching is known to struggle
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The theory tells us BB trees branching according to these stronger signals should 
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e.g., branching according to  :


At subproblem , branch on the variable 
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|𝒯mostinf(Sj=0, v*) | + |𝒯mostinf(Sj=1, v*) |
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Indeed, we see that the BB trees branching according to these stronger signals are 
significantly smaller than those produced by strong branching
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geomean +/- geostd

37.44 +/- 1.91

28.83 +/- 1.74

27.68 +/- 1.71

|𝒯strong |

|𝒯θmostinf
|

|𝒯θsb
|

RELATIVE RANKING — FREQUENCY

𝒯strong 𝒯θmostinf
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BB trees branching according to these stronger signals are significantly smaller than 
those produced by strong branching even when strong branching is excellent


A MODERATE STRESS TEST

geomean +/- geostd

135.69 +/- 2.69

18.39 +/- 2.08

21.25 +/- 2.25

14.14 +/- 1.99

|𝒯mostinf |

|𝒯strong |

|𝒯θmostinf
|

|𝒯θreliability
|

RELATIVE RANKING — FREQUENCY

𝒯mostinf 𝒯strong

𝒯θmostinf
𝒯θreliability

Data:  

Randomly generated max stable 

set problems on Albert-Barabasi 

graphs (100 nodes, affinity=8)


Clique cover relaxation
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. . .

(Φ(S1, v*1 ) θrule(S1, v*1 )) (Φ(SN, v*N) θrule(SN, v*N))
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ESTIMATING PROBLEM DIFFICULTY WITH REGRESSION
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̂θ(S, v*) = βgap( f(v(S) − v*))
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βgraph (variable-constraint interaction)
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QUESTIONS?


