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1. Feasible solution %: (c"X) provides a lower bound on zOFT.

2. Solving convex (LP) relaxation gives (standard) dual (upper) bound
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Cuts: obtaining better dual bounds

Mixed integer linear program

z%T .= max c¢'x

st. Ax<b (convex constraints)
x € Z™ x R™. (non-convex constraints)
1. Feasible solution X: (c"X) provides a lower bound on zOPT.
2. Solving convex (LP) relaxation gives (standard) dual (upper) bound
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sit.  x € conv({x € Z™ x R™ | Ax < b}) (convex hull)



Cuts: obtaining better dual bounds

Mixed integer linear program

ZOPT = maX CTX

st. Ax<b (convex constraints)
x € Z™ x R™. (non-convex constraints)

1. Feasible solution X: (c"X) provides a lower bound on zOPT.

2. Solving convex (LP) relaxation gives (standard) dual (upper) bound
(7).

3. Perfect dual bound (z°"") comes from solving convex hull of
feasible region .

4. Improving LP dual bound by adding cutting-planes.

ZLP+CUTS ‘=  max CTX

s.t. AX (convex constraints)

<
x < b (valid for convex hull — Cuts)
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Cuts: obtaining better dual bounds

Mixed integer linear program

ZOPT = maX CTX

st. Ax<b (convex constraints)
x € Z™ x R™. (non-convex constraints)

1. Feasible solution X: (c"X) provides a lower bound on zOPT.

2. Solving convex (LP) relaxation gives (standard) dual (upper) bound
(7).

3. Perfect dual bound (z°"") comes from solving convex hull of
feasible region .

4. Improving LP dual bound by adding cutting-planes.

‘ ZLP > LPHCUTS 5 JOPT 5 (Tg




An integer program: feasible region




An integer program: objective function
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An integer program: optimal solution

o
oooo;é‘]oooo
ooo\ooo

11



An integer program: dual bound from LP relaxation

* Solution
: Gives
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An integer program: perfect dual bound from convex hull
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An integer program: improved dual bound using

cutting-plane(s)

-plane
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Why linear inequalities is a reasonable choice:
Fundamental theorem of integer programming

Theorem ([Meyer (1974)])

Let S :={x € Z™ x R™ | Ax < b}. If A and b is rational, then conv(S)
is a rational polyhedron.

e o o oS o o o
e o o o o o o o
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Why linear inequalities is a reasonable choice:
Fundamental theorem of integer programming

Theorem ([Meyer (1974)])

Let S:={x € Z™ xR™| Ax < b}. If A and b is rational, then conv(S)
is a rational polyhedron.

Convex »

e o o oS o o o
e o o o o o o o

hull *

» Also adding linear cutting-plane, means we need to only solve
modified LPs with dual simplex.

» Generalization of the above result for integer points in general
convex set: [D., Moran (2013)]
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How to generate cutting-planes?

» Geometric ideas: Split Disjunctive cuts, Chvatal-Gomory Cuts,
maximal lattice-free cuts.

» Subadditive inequalities: Gomory mixed integer cut.

» Cuts using algebraic properties: Extended formulations.

» Cut from structured relaxations: Boolean quadric polytope, Clique
cuts, Mixed integer rounding inequalities, Lifted cover, Flow cover,
Mixing inequalities, . ...

> Lifting: A technique to generate, rotate and strengthen inequalities.
(Not covering this technique here)
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Section 2

Geometric ldeas
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2.1
Split disjunctive cuts



Split disjunctive cuts

[Balas (1979)][Cook, Kannan, Schrijver (1990)]

> Let P C R"” be a set and we are interested
in obtaining valid inequality for P N Z".
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Split disjunctive cuts

[Balas (1979)][Cook, Kannan, Schrijver (1990)]
» Let P C R" be a set and we are interested
in obtaining valid inequality for P N 7Z".

» lLet m € Z" and 7y € Z.

» Since

Z'N{x eR"|m < 7' x <m+1}=0.

Split disjunctive set
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Split disjunctive cuts

[Balas (1979)][Cook, Kannan, Schrijver (1990)]

>

| 4
| 4

Let P C R" be a set and we are interested in
obtaining valid inequality for P N Z".

Let m € Z" and wy € Z.

Since

Z'N{x €R"|my < 7' x <mo+1} =0.

Split disjunctive set

If aTx < B is valid for:
> PN{xeR"|n"x < m}, and
> PN{x€R"|7 x> m+ 1}, then

alx < B, .

is valid inequality for

P™ ™ = conv ((P n {X eR”

ﬂoZWTX})U(Pﬂ{XERn ’wazm)—Fl}j

and therefore also for: PN 7Z".
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Split disjunctive cuts

[Balas (1979)][Cook, Kannan, Schrijver (1990)]
> Let P C R" be a set and we are interested in
obtaining valid inequality for P N Z".

> Let w € Z" and mp € Z.
» Since

Z'N{x €R"|my < 7' x <mo+1} =0.

Split disjunctive set

> If o' x < 3 is valid for:
> PN{xeR"|n"x < m}, and
> PN{x€R"|7 x> m+ 1}, then
alx<B,

is valid inequality for

P™ ™ = conv ((P n {X eR”

ﬂoZWTX})U(Pﬂ{XER"

7rTx27ro—|—1}j

and therefore also for: PN 7Z".
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Split disjunctive cuts

[Balas (1979)][Cook, Kannan, Schrijver (1990)]
> Let P C R" be a set and we are interested in
obtaining valid inequality for P N Z".
> Let w € Z" and mp € Z.
» Since

Z'N{x €R"|m < 7' x <mo+1} =0.

Split disjunctive set

> If o' x < 3 is valid for:
> PN{xeR"|n"x < m}, and
> PN{x€R"|7 x> m+ 1}, then
alx<B,

<TX<my+
t Ty <MX<T,

1

is valid inequality for

P™™ := conv ((Pﬁ {x cR" ‘no > TFTX}) U (Pﬂ {x cR"

7rTx27ro—|—1})

and therefore also for: PN 7Z".
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Special-case: Chvétal-Gomory Cuts

[Gomory (1958)]

> If (WLOG) PN{x€R"|7 x>my+1} =0, then 7' x < mp is a
valid inequality for P N Z".

Follow-up work: [Schrijver (1980)], [Dadush, D., Vielma (2014)],
[Cornuéjols, Lee (2018)]
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Special-case: Chvétal-Gomory Cuts

[Gomory (1958)]

> If (WLOG) PN{x €R" |7 x >my+1} =0, then 7'x < 7p is a
valid inequality for P N Z".
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Follow-up work: [Schrijver (1980)], [Dadush, D., Vielma (2014)],
[Cornuéjols, Lee (2018)]
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Main take aways

» Given a set P, find a set
lattice-free set T such that

int(T)NZ"=1.
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Main take aways

» Given a set P, find a set
lattice-free set T such that
int(T)NZ"=1.

(in fact it is enough to satisfy
PAint(T)NZ" = ).

» Find an inequality valid
a'x < B,
valid for

P int(T).

21

» What type of lattice-free
set T considered?

» non-convex?
» convex?
> polyhedral?

» How is the valid inequality
found?

» Valid inequality for
conv(P \ int(T)).

» Closed-form
“formula”?



1.2
Generalizations of split disjunctive cuts



Types of lattice-free T sets |I: non-convex

» Asymmetric [Dash, D., Giinlik (2012)].

» Divides the feasible region into smaller polyhedral sets whose union
contains all the integer points.
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Types of lattice-free T sets |: non-convex
» Asymmetric [Dash, D., Ginlik (2012)].

» Union of split disjunctions [Li, Richard (2008)], [Dash et al.
(2013)], [Dash, Giinliik, Moréan (2013)]

» Divides the feasible region into smaller polyhedral sets whose union
contains all the integer points. ,,



Types of lattice-free T sets Il: convex

[Lovész (1989)]

> T is a convex set that does not contain integers in its interior:
Lattice-free convex set.
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Types of lattice-free T sets Il: convex
[Lovasz (1989)]

> T is a convex set that does not contain integers in its interior:
Lattice-free convex set.

» Lattice-free cuts can give the convex hull of the mixed-integer
feasible solutions. Picture proof:
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Types of lattice-free T sets Il: convex
[Lovasz (1989)]

» T is a convex set that does not contain integers in its interior:
Lattice-free convex set.

> Lattice-free cuts can give the convex hull of the mixed-integer
feasible solutions. Picture proof:




Maximal lattice-free convex set

» Clearly larger the lattice-free convex set T, we expect to find better
inequality.
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Maximal lattice-free convex set

» Clearly larger the lattice-free convex set T, we expect to find better
inequality.
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Maximal lattice-free convex set

» Clearly larger the lattice-free convex set T, we expect to find better
inequality.

Definition (Maximal Lattice-free convex set)

We say T C R” is a maximal lattice-free convex set if T/ C R" is a lattice-free
convex set and T/ D T, implies T' = T.
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Maximal lattice-free convex set

» Clearly larger the lattice-free convex set T, we expect to find better
inequality.

Definition (Maximal Lattice-free convex set)

We say T C R” is a maximal lattice-free convex set if T’ C R” is a lattice-free
convexset and 7' D T, implies T' = T.

Theorem ([Lovész (1989)], [Basu, Conforti, Cornuéjols,
Conforti (2010)])

All maximal lattice-free convex sets are polyhedral. Moreover, a full-dimension
lattice-free convex set is maximal iff it is a lattice-free polyhedron with integer
point in the relative interior of it facets.
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Maximal lattice-free convex set
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Generalization of maximal lattice-free sets
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Generalization of maximal lattice-free sets

«S=PNZ%
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Generalization of maximal lattice-free sets
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Generalization of maximal lattice-free sets

Definition (Maximal S-free convex set; [Johnson (1983)], [D.,
Wolsey (2010)])

Let S = PNZ", where P is a convex set. We say:
» T is a convex S-free set, if int(T)N S = 0.

» T CR"is a maximal S-free convex set if T/ C R" is a S-free
convex set and 7" D T, implies T' = T.
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Generalization of maximal lattice-free sets

Definition (Maximal S-free convex set; [Johnson (1983)], [D.,
Wolsey (2010)])

Let S= PNZ", where P is a convex set. We say:
> T is a convex S-free set, if int(T) NS = 0.

» T C R"is a maximal S-free convex set if T/ C R" is a S-free
convex set and T’ D T, implies T' = T.

Theorem ([D., Mordn (2011)])

All maximal S-free convex sets are polyhedral.

A48



Polyhedrality of maximal lattice-free sets is useful

> Let maximal lattice-free (or S-free) set be
T:={xeR"|(g") x> Hic[m]}
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Polyhedrality of maximal lattice-free sets is useful

> Let maximal lattice-free (or S-free) set be
T:={xeR"|(g") x> Hic[m]}

> If o x < f is valid for the disjunction:

m
VPixeR"|  (g) ' x<H ,
L N————

= complement of a facet of T

then o' x < A is a valid inequality for P N Z".
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Polyhedrality of maximal lattice-free sets is useful

> Let maximal lattice-free (or S-free) set be
T:={xeR"|(g") x> Hic[m]}
> If o x < f is valid for the disjunction:

m
VPixeR"|  (g) ' x<H ,
L N————

= complement of a facet of T

then o' x < A is a valid inequality for P N Z".

» One approach to find inequality o' x < 3 to separate x*:
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Polyhedrality of maximal lattice-free sets is useful

> Let maximal lattice-free (or S-free) set be
T:={xeR"|(g")"'x>hHic[m]}
> If o' x < B is valid for the disjunction:

m

VPnixeR"|  (g) x<H ,
o —————

=1 complement of a facet of T

then o x < A is a valid inequality for P N Z".

> One approach to find inequality o' x < 8 to separate x*:

maxas o x* —f3

s.t. ax < (3 is valid for (P N{xeR"|(g') x < hi}) Vi€ [m]
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Polyhedrality of maximal lattice-free sets is useful

> Let maximal lattice-free (or S-free) set be
T:={xeR"|(g") x> Hic[m]}

> If o' x < B is valid for the disjunction:

m
\/Pﬂ x eR"| (g)'x<H ,
o ————
= complement of a facet of T

then o' x < A is a valid inequality for P N Z".
> One approach to find inequality o' x < § to separate x*:  Use Farkas
Lemma:
maxa g\, u a'x =8
T = (N)TA+y - (¢) Vi€ m]
s.t. B> (N )Tb—i— p- B Vi€ [m] Cone
N >0,u >0Vie[m]
Normalization constraint: either bound « or .
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Polyhedrality of maximal lattice-free sets is useful
> Let maximal lattice-free (or S-free) set be
T:={xeR"|(g") x> Hic[m]}
> If o' x < B is valid for the disjunction:

\/Pﬂ x eR"| (g)'x<H ,
(S

i=1
complement of a facet of T

then o' x < A is a valid inequality for P N Z".

» One approach to find inequality o' x < 8 to separate x*:  Use Farkas
Lemma:

A
maXae,gau &« X — [0
T = (N)TA+y - (¢) Vi€ m]
s.t. B> (N )Tb—i— p- B Vi€ [m] Cone
N >0,u >0Vie[m]
Normalization constraint: either bound « or .

» See [Balas, Perregaard: (2003)] for a method to generate cuts for split
disjunctions with just one copy of variables (instead of two copies).
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Final comments

» A major topic of study 2005-2015: [Andersen, Louveaux,
Weismantel, Wolsey (2007)], [Borozan Cornuéjols (2009)], [D.
Wolsey (2010)] [Del Pia Weismantel (2012)], ...
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Final comments

» A major topic of study 2005-2015: [Andersen, Louveaux,
Weismantel, Wolsey (2007)], [Borozan Cornuéjols (2009)], [D.
Wolsey (2010)] [Del Pia Weismantel (2012)], ...

» This is very general paradigm: See, for example,

» Disjunctive ideas to get convex hull of QCQPs: [Tawarmalani,
Richard, Chung (2010)], [D., Santana (2020)]

» Intersection cuts for non-convex quadratically constrained
quadratic programs. [Bienstock, Chen, Mufioz (2020)],
[Mufioz, Serrano (2022)], [Chmiela, Mufioz, Serrano (2022)],
[Mufioz, Paat, Serrano (2023)].
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Final comments

» A major topic of study 2005-2015: [Andersen, Louveaux,
Weismantel, Wolsey (2007)], [Borozan Cornuéjols (2009)], [D.
Wolsey (2010)] [Del Pia Weismantel (2012)], ...

» This is very general paradigm: See, for example,

» Disjunctive ideas to get convex hull of QCQPs: [Tawarmalani,
Richard, Chung (2010)], [D., Santana (2020)]

» Intersection cuts for non-convex quadratically constrained
quadratic programs. [Bienstock, Chen, Mufioz (2020)],
[Mufioz, Serrano (2022)], [Chmiela, Mufioz, Serrano (2022)],
[Mufioz, Paat, Serrano (2023)].

P> The real challenge is how to select the lattice-free set.
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Section 3

Subadditive cutting-planes
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A simple observation

» Subbaditive function: A function f : R” — R is called subadditive if:

f(u)+ f(v) > f(u+v) for all u,v € R".

» Non-decreasing function: A function f : R™ — R is called non-decreasing
if:

f(u) < f(v) forall u < v.

1¢)



A simple observation

» Subbaditive function: A function f : R” — R is called subadditive if:

f(u)+ f(v) > f(u+v) for all u,v € R".

» Non-decreasing function: A function f : R™ — R is called non-decreasing
if:

f(u) < f(v) forall u < v.

Theorem ([Gomory, Johnson (1972ab)], [Jeroslow
(1978)][Jeroslow (1979)], [Blair, Jeroslow (1982)])

Let S := {XERi

> Ax > b, XEZ"},

j=1

where A/ € R™ for j € [n] and b € R™. Let f : R™ — R be a subadditive
function, non-decreasing, such that f(0) = 0, then

S F(A) > F(B),

=t

is a valid inequality for S.
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Example of subadditive function

Consider the following set:

1 1
S .= eri 1 |x14+| 0 |x+
0 1
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Example of subadditive function

Consider the following set:

1 1 1
S .= xEZi 1 |xx+| 0 |x+]| 0
0 1 1

Consider the function f : R3 — R:

f(u) = [0.5 . (U1 + up + U3)]

This function is
» subadditive,
» non-decreasing,
> and f(0) =0.
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Example of subadditive function

Consider the following set:

e feeat| [ ]ao [ ][ 3]o2 ] 1]}

Consider the function f : R3 — R:

f(u) = [0.5 . (Ul + up + U3)]

This function is
» subadditive,
» non-decreasing,
> and f(0) =0.

So we have the following valid inequality for S:
1 1 0 1
f 1 x1+f 0 xp + f 1 x3 > f 1
0 1 1 1
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Example of subadditive function
Consider the following set:

1 1 1
S = XEZ:}r 1 |x1+ 0 [x + 0
0 1 1

Consider the function f : R3 — R:

f(u) =105 (u1 + uz + u3)]

This function is
» subadditive,
» non-decreasing,
> and f(0) =0.
Equivalently:

X1+ x2 4+ x3 > 2,

which is a facet-defining inequity for conv(S).
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Mixed integer version

Theorem ([Gomory, Johnson (1972ab)])

Consider the set:

n
ZA’x,->b,x,-erel},

Jj=1

SZI{XGRZ_

where A/ € R™ for j € [n] and b € R™.
> Let f : R™ — R be a subadditive function, non-decreasing, such that
f(0) =0, and
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Mixed integer version

Theorem ([Gomory, Johnson (1972ab)])

Consider the set:

n
ZAfx,->b,x,-erel}7

=1

SZI{XGRZ_

where A/ € R™ for j € [n] and b € R™.
> Let f : R™ — R be a subadditive function, non-decreasing, such that
f(0) =0, and

f(ue)

> Let f(u):= lim sup,_q- ( ) . Let f(A) < oo forall A € [n]\ I,

Slope of f at origin in u direction

then

DA+ Y F(A)x > f(b),
jel Jelm\

is a valid inequality for S.
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Mixed integer version - variants

Theorem ([Gomory, Johnson (1972)])

Consider the set:

S:= {xem ZAJ'XJ'Z/b;Xj€ZjEI}.
j=1
where A/ € R™ for j € [n] and b € R™. Let

> Let f:R™ — R be a sub-additive function, nol=deereasing, such
that f(0) =0, and

> Let f(u) := lim sup,_,o+ (f(g6)>. Let f(A) < oo forall A € [n]\ I,
then

S A+ > F(A)x > f(b)

Jel J€ln\I




A very very special sub-additive function: Gomory mixed
integer cut (GMIC)

[Gomory, Johnson (1972ab)]
> Si={(xy) €ZF X RE| X a5 + 72, diyi = by
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A very very special sub-additive function: Gomory mixed
integer cut (GMIC)

[Gomory, Johnson (1972ab)]
> 5= {(ny) € 22 xR | 7% apg + Ty dhyi = b
> Let frc(a) = a— |a].

GMIC N o [ fre(u) 1—fre(u) \ FEMIC, .\ _ u/fre(b) u>0
> 77 (u) = min {frc(b)’ T—fre(b) } FEMIE(u) = { (—u)/(1 —fre(b)) u<0
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A very very special sub-additive function: Gomory mixed
integer cut (GMIC)

[Gomory, Johnson (1972ab)]
> 5= {(xy) €2} xR?| TP 2 + X2y dyi = b)
> Let frc(a) = a— |a].

_ . re(u —fre(u FGMIC /fl’C(b) >0
> o) = min {8 R 7w = { ey 020

fre(b) * 1—fre(b)

frc(aj) 1 — fre(aj)
2 ewmdt 2 TTe(n)”
Jj€lm],fre(a;)<frc(b) Jj€[m],fre(aj)>fre(b)
d,' *di
—_— — >1.
D et 2 T 2
i€[ny],d;i >0 i€[ny],d; <0
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zoo of subadditive functions

GMIC ¢ GMIC Two Slope ¢ GMIC Three Slope ¢ GMIC

GMIC ¢ Two Slope Two Slope ¢ Two Slope Three Slope { Two Slope

GMIC { Three Slope Two Slope ¢ Three Slope Three Slope ¢ Three Slope
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A zoo of subadditive functions

» Functions, functions, and more functions: [Letchford and Lodi (2002)],
[Gomory, Johnson (2003)], [Dash, Giinliik (2006)], [D., Richard (2008)],
[Kianfar, Fathi (2009)], [Richard, Li, Miller (2009)], [D., Richard (2010)],
[D., Richard, Li, Miller (2010)], [Chen (2011)], [Basu, Conforti, Paat
(2018)], [Basu, Conforti, Di Summa (2020)] ...
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A zoo of subadditive functions

» Functions, functions, and more functions: [Letchford and Lodi (2002)],
[Gomory, Johnson (2003)], [Dash, Giinliik (2006)], [D., Richard (2008)],
[Kianfar, Fathi (2009)], [Richard, Li, Miller (2009)], [D., Richard (2010)],
[D., Richard, Li, Miller (2010)], [Chen (2011)], [Basu, Conforti, Paat
(2018)], [Basu, Conforti, Di Summa (2020)] ...

> ‘Properties’ of these function: [D., Richard (2008)], [Basu, Conforti,
Cornuéjols, Zambelli (2010)], [Cornuéjols and Molinaro (2024)], [Basu, R.
Hildebrand, Képpe (2014abcd)] [Basu, Hildebrand, Képpe, Molinaro
(2013)], [KSppe, Zhou (2017)], [Di Summa (2020)] ...
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A zoo of subadditive functions

» Functions, functions, and more functions: [Letchford and Lodi (2002)],
[Gomory, Johnson (2003)], [Dash, Giinliik (2006)], [D., Richard (2008)],
[Kianfar, Fathi (2009)], [Richard, Li, Miller (2009)], [D., Richard (2010)],
[D., Richard, Li, Miller (2010)], [Chen (2011)], [Basu, Conforti, Paat
(2018)], [Basu, Conforti, Di Summa (2020)] ...

> ‘Properties’ of these function: [D., Richard (2008)], [Basu, Conforti,
Cornuéjols, Zambelli (2010)], [Cornuéjols and Molinaro (2024)], [Basu, R.
Hildebrand, Képpe (2014abcd)] [Basu, Hildebrand, Képpe, Molinaro
(2013)], [KSppe, Zhou (2017)], [Di Summa (2020)] ...

» Automatic search of these functions: [Kdppe, Zhou (2016)] and follow up
work.
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A zoo of subadditive functions

» Functions, functions, and more functions: [Letchford and Lodi (2002)],
[Gomory, Johnson (2003)], [Dash, Giinliik (2006)], [D., Richard (2008)],
[Kianfar, Fathi (2009)], [Richard, Li, Miller (2009)], [D., Richard (2010)],
[D., Richard, Li, Miller (2010)], [Chen (2011)], [Basu, Conforti, Paat
(2018)], [Basu, Conforti, Di Summa (2020)] ...

> ‘Properties’ of these function: [D., Richard (2008)], [Basu, Conforti,
Cornuéjols, Zambelli (2010)], [Cornuéjols and Molinaro (2024)], [Basu, R.
Hildebrand, Képpe (2014abcd)] [Basu, Hildebrand, Képpe, Molinaro
(2013)], [KSppe, Zhou (2017)], [Di Summa (2020)] ...

» Automatic search of these functions: [Kdppe, Zhou (2016)] and follow up
work.

» Some review articles: [D., Richard (2010)], [Basu, Hildebrand, Képpe
(2015)].
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How good are these “subadditive cuts”?

Theorem ([Jeroslow (1978)], [Jeroslow (1979)], [Johnson
(1973)], [Johnson (1974)], [Johnson (1979)] )

Consider the set:
S = {x eR]

where all the data is rational. Then the convex hull of S can be obtained using
inequalities generated by non-decreasing, subadditive functions (with f(0) = 0).

> Ax > b, xjere/},

Jj=1
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How good are these “subadditive cuts”?

Theorem ([Jeroslow (1978)], [Jeroslow (1979)], [Johnson
(1973)], [Johnson (1974)], [Johnson (1979)] )

Consider the set:
S:= {X ER]

where all the data is rational. Then the convex hull of S can be obtained using
inequalities generated by non-decreasing, subadditive functions (with f(0) =0).

n
ZAijzb,)gerel},

Jj=1

Only a particular type of subadditive functions called as Chvatal functions are

necessary for the above result: [Blair, Jeroslow (1982)], [Basu, Martin, Ryan, Wang
(2019)]
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How good are these “subadditive cuts”?

Theorem ([Jeroslow (1978)], [Jeroslow (1979)], [Johnson
(1973)], [Johnson (1974)], [Johnson (1979)] )

Consider the set:
S = {x eR]

where all the data is rational. Then the convex hull of S can be obtained using
inequalities generated by non-decreasing, subadditive functions (with f(0) = 0).

> Ax; > b, xjere/},

=t

Theorem (Wolsey [1981])

Consider the set:

S(b) == {x ezl

zn:Aij:b7 .
j=1

For A fixed, there is a finite list of subadditive functions that give the convex hull of
S(b) for all b.
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How good are these “subadditive cuts”?

Theorem ([Jeroslow (1978)], [Jeroslow (1979)], [Johnson
(1973)], [Johnson (1974)], [Johnson (1979)] )

Consider the set:
n .
S:=qx€ERL |Y Ax;>b, x5€LjEl ¢,
j=1

where all the data is rational. Then the convex hull of S can be obtained using
inequalities generated by non-decreasing, subadditive functions (with f(0) =0).

Theorem ([D., Moran, Vielma (2012)] )

Consider the set:

n
S::{XEIR"+ ZAfoth,xj-erel},

Jj=1

where K is a proper cone and there exists a strictly feasible solution X. Then the
convex hull of S can be obtained using inequalities generated by non-decreasing
(appropriately defined wrt K ), subadditive functions (with £(0) = 0).

Follow-up: [Kocuk, Moran (2019)]
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

» We can obtain the convex hull using maximal lattice-free convex cuts and also
subadditive cuts — is there a connection?YES!
One relationship via “intersection cuts” viewpoint of the lattice-free convex cuts for
theset, {x € Z™,z € ZI',y € R?, | x = b+ Az + Gy}. Cuts in (y, z)-space (Sketch):

\ Subbadditive function (f) \

l (Slope of f: lim _, o+ f(ue))
€

Subadditive and sublinear function

| (T=txfx=v) <1}

A lattice-free convex set T around fractional point v‘

From f to lattice-free convex set: [Borozan Cornuéjols (2009)], [Conforti et al.(2015)]

2With proper scaling of f
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

» We can obtain the convex hull using maximal lattice-free convex cuts and also
subadditive cuts — is there a connection? YES!

One relationship via “intersection cuts” viewpoint of the lattice-free convex cuts for
the set, {x € Z™,z € Z}',y € R}?, | x = b+ Az + Gy}. Cuts in (y, z)-space (Sketch):

T support function of
“polar” of (T -v)

‘A lattice-free convex set T around fractional point v‘

From lattice-free convex set to f: [Johnson (1974)], [D., Wolsey (2010)], [Basu,
Cornuéjols, Zambelli (2011)], [Conforti et al. (2015)]
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

» We can obtain the convex hull using maximal lattice-free convex cuts and also
subadditive cuts — is there a connection? Y ES!

One relationship via “intersection cuts” viewpoint of the lattice-free convex cuts for

theset, {x € Z™,z € ZI',y € R?, | x = b+ Az + Gy}. Cuts in (y, z)-space (Sketch):

Subadditive and sublinear function

T support function of
“polar” of (T - v)
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From lattice-free convex set to f: [Johnson (1974)], [D., Wolsey (2010)], [Basu,
Cornuéjols, Zambelli (2011)], [Conforti et al. (2015)]
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

» We can obtain the convex hull using maximal lattice-free convex cuts and also
subadditive cuts — is there a connection? Y ES!

One relationship via “intersection cuts” viewpoint of the lattice-free convex cuts for
theset, {x € Z™,z € ZI',y € R?, | x = b+ Az + Gy}. Cuts in (y, z)-space (Sketch):

Monoidal strengthening (Trivial lifting)
and general lifting
(Not necessarily unique)

Subadditive and sublinear function

T support function of
“polar” of (T - v)

‘A lattice-free convex set T around fractional point v‘

From f to f: Monoidal Strengthening [Balas, Jeroslow (1980)], [D., Wolsey (2010)],
Uniqueness: [Basu, Cornuéjols, Koéppe (2012)], [Campelo et al. (2013)], [Basu,
Averkov (2014)], [Basu, Paat (2015)], [Basu, D., Paat (2019)]
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Any connection between maximal lattice-free convex cuts
and subadditive cuts?

» We can obtain the convex hull using maximal lattice-free convex cuts and also
subadditive cuts — is there a connection? YESI
One relationship via “intersection cuts” viewpoint of the lattice-free convex cuts for
theset, {x € Z™,z € ZI',y € R?, | x = b+ Az + Gy}. Cuts in (y, z)-space (Sketch):

\ Subbadditive function (f) \

Monoidal strengthening (Trivial lifting)
T and general lifting
(Not necessarily unique)

Subadditive and sublinear function

T support function of
“polar” of (T -v)

‘A lattice-free convex set T around fractional point v‘

From f to f: Monoidal Strengthening [Balas, Jeroslow (1980)], [D., Wolsey (2010)],
Uniqueness: [Basu, Cornuéjols, Koéppe (2012)], [Campelo et al. (2013)], [Basu,
Averkov (2014)], [Basu, Paat (2015)], [Basu, D., Paat (2019)]
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A more concrete example of equivalence

> P:={xeR"|Ax=b,x>0}and S:=PnN{x|x; € ZVYiel}

Theorem ([Cornuéjols, Li (2002)])
Let:

> Split disjunctive closure: (. cyn ez P™™ = intersection of all split
cuts for all possible split disjunctions .
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Let:
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A more concrete example of equivalence

> P:={xeR"|Ax=b,x>0}and S:=PnN{x|x; € ZVYiel}

Theorem ([Cornuéjols, Li (2002)])
Let:

> Split disjunctive closure: (. cyn ez P™™ = intersection of all split
cuts for all possible split disjunctions .

» Gomory mixed integer cut closure: For any A € R™, generate GMI
cut for {x € RT |\ Ax = A" b,x; € Z Vi € I} and take the
intersection of all these inequalities.

Then:

Split disjunctive closure = Gomory mixed integer cut closure.

Q4




Section 4

Algebraic ideas
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Reformulation-Linearization Technique

[Sherali Adams (1990)]
(Closely related to Lift-and-project) [Balas, Ceria, Cornuéjols (1993)]

Consider the binary:

Za;ij < b Vie [m]

j=1
x € {0,1} Vj € [m]
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Reformulation-Linearization Technique

[Sherali Adams (1990)]
(Closely related to Lift-and-project) [Balas, Ceria, Cornuéjols (1993)]

Lets re-write binary MILPs as:

ZQUXJ < b; Vie [m]
j=1

X7 = x Vj € [m]
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Reformulation-Linearization Technique

[Sherali Adams (1990)]
(Closely related to Lift-and-project) [Balas, Ceria, Cornuéjols (1993)]

For convenience lets write as:

bi— Y ayx; >0 Vi€ [m]
j=1

xj >0 V)€ [m]

1—x>0V)€[m]

X7 = x; Vj € [m]

Q8



(‘Standard’ RL Technique) Step 1: reformulation

Multiply linear constraints:

b;—Za,-jijOVie[m]
j=1
xj > 0Vj € [m]
1—x>0V)€[m]
2

xi = x; Vj € [m]
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(‘Standard’ RL Technique) Step 1: reformulation

Multiply linear constraints:

X - (b,- - Za,-jxj) >0Vie[m],Vke[nm]

Jj=1

(1—xk) - (b,- — i:a;jxj) >0Vie[m]VYk e [m]
X - Xj > 0 V) € [m],Vk € [n]

(]. —Xk) - Xj >0 Vj S [nl],Vk S [nl]

Xk - (1 —XJ) >0V e [n1].,Vk S [n1]
(I—xk)-(1—x)) >0V)€[m],Vk € [m]

X = x; V) € [m]
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(‘Standard’ RL Technique) Step 1: linearization

> Replace x; - xx by a new variables, say wjx

Xk - (b,- — Za,pg) >0Vie[m],Vke [m]

j=t

(1—x) - (b,- — ia,-pg) >0Vie[m],Vk € [m]

j=1
Xk - xj > 0Vj € [m],Vk € [m]
(1=x)-x >0V € [m],Vk € [m]

xc- (1 —x;) > 0V) € [m],Vk € [m]
(1=x)- (1 —x)>0Vj € [m],Vk € [m]
X7 = x; Vj € [m]



(‘Standard’ RL Technique) Step 1: linearization

> Replace x; - xx by a new variables, say wjx

n
b,'Xk — E j=1 ajj Wik
n n
(bi - 221:1 aUXJ) — (bixk — E:j:]_ Qij Wik

Wik
Xj — Wik
Xk — Wik

1— Xk — x5 + wik
Wi

%

IIVIVIVIV IV

0 Vi ¢ [m],Vk € [m]
0 Vi e [m],Vk € [m]
0Vj € [m],Vk € [m]
0Vj € [m],Vk € [m]
0Vj € [m],Vk € [m]
0Vj € [m],Vk € [m]
x; Vj € [m]

RLT1(P



Whats the point?
[Sherali Adams (1990)]

» Let P:={x € [0, 1]™ x R™ | Ax < b}.
> Remember PZ-0 = conv {(P N {x|x <0} U (P N{x|x >1}}.
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[Sherali Adams (1990)]

» Let P:={x € [0, 1]™ x R™ | Ax < b}.
> Remember PZ-0 = conv {(P N {x|x <0} U (P N{x|x >1}}.

Theorem ([Balas, Ceria, Cornuéjols (1993)])
Let P, RLT1(P), and P¢0 pe as defined above. Then:

proj, (RLT1(P m pe0.
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Whats the point?
[Sherali Adams (1990)]

> Let P:={x € [0, 1]™ x R™| Ax < b}.
> Remember P¥-% = conv {(P N {x|x < 0}) U (P N{x|x >1}}.

Theorem ([Balas, Ceria, Cornuéjols (1993)])
Let P, RLT1(P), and P¢0 pe as defined above. Then:

proj, (RLT1(P)) = () peo

Jj=1

» The power of RLT comes from the multiplication of inequalities!

» The process of multiplying and linearization applied only to x; > 0
and 1 — x; > 0, then we obtain the McCormick inequalities.

» This technique generalizes to polynomial optimization.

» This process can be strengthened by adding implied semi-definite
constraints.



Semidefinite programming relaxation + RLT

bix, — Z_}’:l ajj wij > 0Vie [m],Vk € [n1]
(b= Sy aig) = (b~ Xjaaywy) > 0Vi€ [m],Vk € [m]
wix > 0VYj e [m],Vk € [m]
Xj—wy > 0VYje[m],Vk € [n]
Xk — Wik > 0Vje [nl],Vk € [nl]
l—xe—x+wi > 0Vje[m],Vke[n]
wj = x Vj€[m]
1 X1 X2 ... Xp
X1 W1 Wi ... Wi,
X2 W1 Wy ... W, = 0

Xn Whn1 Wp2 ... Wpp



Section 5

Relaxation based cuts

110



The main idea

» We would like generate cuts valid for PN Z", which is challenging in
general.




The main idea

>

>

We would like generate cuts valid for P N Z", which is challenging in
general.

we consider a relaxation of P, says @ that is we find valid

inequalities for
QNZ",

where @ D P.




The main idea

>

>

We would like generate cuts valid for P N Z", which is challenging in
general.

we consider a relaxation of P, says @ that is we find valid

inequalities for
QNZ",

where @ D P.




Some classic examples

» Knapsack polytope.
n
x € {0,1}" Zajxj <b
j=1

Cover inequalities and other inequalities [Wolsey (1975)], [Balas (1975)],
[Hammer, Johnson,Peled (1975)], Weismantel (1997), lifted cover inequalities
[Zemel (1978)], [Balas, Zemel (1984)], [Crowder, Johnson, Padberg (1983)],
Mixed binary: [Van Roy, Wolsey (1986)], [Gu, Nemhauser, Savelsberg (2000)],
[Richard, de Farias Jr, Nemhauser (2003ab)] General Integer and continuous
variables Knapsack constraint: [Atamtiirk (2003)],[Atamtiirk (2004)]
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Some classic examples

» Khnapsack polytope.

> Mixing set.
{(y) €{0,1}" xRy [xj+y = bi Vi€ [n]}.

[Giinliik, Pochet (2001)] Special case when n = 1: Mixed integer rounding
(MIR) inequalities.(= Gomory mixed integer cut in closure.) [Nemhauser,
Wolsey (1990)], [Dash, Giinliik, Lodi (2010)], Extensions: [Marchand, Wolsey
(1999)], [Van Vyve (2005)], [Atamtiirk, Giinliik (2010)], [D., Wolsey (2010)],
Chance-constrained programming: [Luedtke, Ahmed, Nemhauser (2010)],
[Ki¢likyavuz 92012)], [Kiling-Karzan, Kiiciikyavuz, Lee (2022)]



Some classic examples

» Knapsack polytope.

> Mixing set.

> Fixed charge network flow. Submodularity: [Wolsey (1989)], [Atamtiirk, S.
Kigiikyavuz, and B. Tezel (2017)], Flow cover: [Padberg, Van Roy, Wolsey

(1985)], [Gu, Nemhauser, Savelsberg (2000)], Network design: [Atamtiirk,
Giinliik (2007)]

n
Flow cover: {(x,y) € {0,1}" x RY. Zy; < b, yi < ajx; Vi € [n] } .
i=1



Some classic examples

Knapsack polytope.

Mixing set.

Fixed charge network flow.

Clique. [Johnson, Padberg (1982)], [Atamtiirk, Nemhauser, Savelsberg (2000)]

vVvyyvyy

{xe{0,1}"[xi+> <1Vije[n x[n], i#j}.

117



Some classic examples

vyVvyVvYyVvyy

Knapsack polytope.
Mixing set.

Fixed charge network flow.

Clique.

Boolean quadric polytope. [Padberg (1989)], [Boros, Hammer (1993)], [De
Simone (1996)] Cut polytope: [Barahona, Mahjoub (1986)], [Sherali, Lee,
Adams (1995)] Review: [Letchford (2022)]

{(x, w) € {0,137 x {0,115 | wy = xix; Vi j € [n]  [n], i;ﬁj}.

Connection to cuts for QCQPs.[Burer, Letchford (2009)]



Section 6

Measuring strength of cuts



Measuring strength of cuts - |

» Does it produce a finite algorithm?
Pure integer: [Gomory (1958)], [Conforti, De Santis, Di Summa,
Rinaldi (2021)] Mixed integer: [Dash et al. (2013)], Matching:
[Chandrasekaran, Végh, Vempala (2016)]
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Measuring strength of cuts - |

>

Does it produce a finite algorithm?

Pure integer: [Gomory (1958)], [Conforti, De Santis, Di Summa,
Rinaldi (2021)] Mixed integer: [Dash et al. (2013)], Matching:
[Chandrasekaran, Végh, Vempala (2016)]

Does it produce the convex hull?
Matching polytope using Chvétal-Gomory: [Edmonds (1965)]

Approximation to the convex hull?
Huge literature in CS theory.

Are they facet-defining for the relaxation?

Group relaxation: [Gomory, Johnson (1972ab)], [Johnson (1974)],
[Gomory, Johnson (2003)], [D., Richard, Miller (2010)], [Basu,
Hildebrand, Molinaro (2018)], [Basu, Conforti, Cornuéjols, Zambelli
(2010)], [Cornuéjols and Molinaro (2024)], [Basu, R. Hildebrand,
Koppe (2014abcd)] [Basu, Hildebrand, Koppe, Molinaro (2013)],
[K&ppe, Zhou (2017)], [Di Summa (2020)]




Measuring strength of cuts - Il
Rank of a cut-plane procedure:

» Closure of cutting plane: Add all cuts that can be generated by the
cutting-plane procedure.
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Theorem (Pure integer program)

Let P be an arbitrary rational polyhedron. Then for Chvatal-Gomory cuts, we
have the following:

» The rank is finite. [Schrijver (1980)]

> If P C[0,1]", then the rank is bounded by O(n*logn). [Eisenbrand,
Schulz (2003)]

» There exists a binary knapsack polytope whose rank is at least Q(n2).
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Measuring strength of cuts - Il
Rank of a cut-plane procedure:

» Closure of cutting plane: Add all cuts that can be generated by the
cutting-plane procedure.

» Closure may not be the convex hull.
» So we may obtain the closure of the closure, this is the second closure.

» If r is the smallest integer such that the rth closure is the convex hull, we
say the rank is r.

Theorem (Pure integer program)
Let P be an arbitrary rational polyhedron. Then for Chvatal-Gomory cuts, we
have the following:

» The rank is finite. [Schrijver (1980)]

> If P C[0,1]", then the rank is bounded by O(n*logn). [Eisenbrand,
Schulz (2003)]

» There exists a binary knapsack polytope whose rank is at least Q(n2).
[RothvoB, Sanita (2017)]

Theorem
Let P C [0, 1]" be an arbitrary rational polyhedron. Then the rank of the RLT
procedure is at most n. 120
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How do solvers select cuts to use?

But, here is a list of things that might matter:
» Maximize depth of cut: &];*Hz_ﬁ
Not always the best [Andreello, Caprara, Fischetti (2007)], [Amaldi,
Coniglio, Gualandi (2014)].
» Consider a point x* that can be separated
by the inequality: o x < 3, for a packing [Shah, D. , Molinaro
problem. (2024)]

Individual Cut

0%
20%

» Suppose a3 > 0 and x; = 0.

—10%

Change in Tree Size

» Then setting ai; = 0 is a valid inequality
(packing problem) and improves the depth  “Zal =~
of cut: However this cut is dominated by Depth of cut
the original inequality!
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But, here is a list of things that might matter:
» Maximize depth of cut: &];*Hz_ﬁ
Not always the best [Andreello, Caprara, Fischetti (2007)], [Amaldi,
Coniglio, Gualandi (2014)].
» Consider a point x* that can be separated
by the inequality: o x < 3, for a packing [Shah, D. , Molinaro
problem. (2024)]

Individual Cut

0%
20%

» Suppose a3 > 0 and x; = 0.

—10%

Change in Tree Size

» Then setting ai; = 0 is a valid inequality
(packing problem) and improves the depth  “Zal =~
of cut: However this cut is dominated by Depth of cut

the original inequality!
Variants of depth of cut: [Wesselmann, Suhl (2007)], Volume: [Basu,
Conforti, Di Summa, Zambelli (2019)], [Zhou (2023)]
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But, here is a list of things that might matter:

T *
» Maximize depth of cut: < H:!H;B

» Cuts separating multiple known fractional point/point in relative interior

or even interior. [Fischetti, Salvagnin (2009)], [Turner, Berthold,
Besancon, Koch (2023)]
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How do solvers select cuts to use?

But, here is a list of things that might matter:

T *
» Maximize depth of cut: < HZH;B

Cuts separating multiple known fractional point/point in relative interior
or even interior.

>

» Parallelism between cuts/objective function.

Sparsity. [Amaldi, Coniglio, Gualandi (2014)], [D., Molinaro, Wang
(2015)], [D., Molinaro, Wang (2018)]



How do solvers select cuts to use?

But, here is a list of things that might matter:

ol x*—8

» Maximize depth of cut: Tl

» Cuts separating multiple known fractional point/point in relative interior
or even interior.

» Parallelism between cuts/objective function.
> Sparsity.

» Facet-defining or not?
Closely related to normalization for cut-generating LP. [Conforti, Wolsey
(2019)]



How many cuts to add?

» [Balas, Ceria, Cornuéjols, Natraj (1996)]
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How many cuts to add?

» [Balas, Ceria, Cornuéjols, Natraj (1996)]
» [Shah, D., Molinaro (2024)]

Change in Tree Size
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Some review papers

» Theoretical challenges towards cutting-plane selection. D., Molinaro
(2018).

» Light on the infinite group relaxation. Basu, Hildebrand, Koéppe
(2016).

» Lifting techniques for mixed integer programming, Richard (2011).

» The group-theoretic approach in mixed integer programming. D.,
Richard (2010).

» Cutting planes in integer and mixed integer programming.
Marchand, Martin, Weismantel, Wolsey (2002).

» Progress in linear programming-based algorithms for integer
programming: an exposition. Johnson, Nemhauser, Savelsbergh
(2000).



Thank You!



	Introduction
	Geometric Ideas
	Split disjunctive cuts
	Generalizations of split disjunctive cuts

	Subadditive cutting-planes
	Algebraic ideas
	Relaxation based cuts
	Measuring strength of cuts

