Recovering Dantzig-Wolfe Bounds by Cutting Planes

Rui Chen
Cornell Tech
(Joining CUHK-Shenzhen in August)

MIP Workshop, University of Kentucky
June, 2024
Joint work with...
Joint work with...

Figure: Andrea, me and Oktay at MIP 2022
We consider MI(L)Ps with the following structure:

\[z^* := \min c^\top x \]

subject to

\[x_{I(j)} \in P^j, \quad j \in \{1, \ldots, q\}, \quad \text{(blocks)} \]

\[Ax \geq b, \quad \text{(coupling constraints)} \]

\[x \in X, \quad \text{(integrality)} \]

where \(I(j) \subseteq \{1, \ldots, n\} \) (not necessarily disjoint), and

\[P^j = \{ y \in \mathbb{R}^{I(j)} : G^j y \geq g^j \} \quad \text{for } j = 1, \ldots, q \]

and \(X \subseteq \mathbb{R}^n \) represents integrality constraints on some of the variables (all data is rational, problem is feasible).

Many important MIP problems have this structure

Notice that \(P^j \)s do not know about the integrality
MIPs with blocks: Applications

- Loosely coupled [Bodur et al. 2022]
 - Multiple knapsack assignment [Kataoka and Yamada 2014]
 - Generalized assignment [Gattal and Benrazek 2021]

- Two-stage stochastic integer programs [Ahmed 2010]

- Overlapping
 - Temporal knapsack [Bartlett et al. 2005]
 - Temporal bin packing [Dell’Amico et al. 2020]
Dantzig-Wolfe (DW) relaxation

MIP with blocks:

\[z^* := \min c^\top x \]

\[\text{s.t. } x_{I(j)} \in P^j, \quad j \in J := \{1, \ldots, q\}, \quad \text{(blocks)} \]

\[Ax \geq b, \quad \text{(coupling constraints)} \]

\[x \in X \quad \text{(integrality)} \]

LP Relaxation:

\[z^{LP} := \min c^\top x \]

\[\text{s.t. } x_{I(j)} \in P^j, \quad j \in J \]

\[Ax \geq b, \]

where \(Q^j = P^j \cap X^j \) (\(X^j \) : integrality constraints on \(x_{I(j)} \)) and

\[z^{DW} \geq z^{LP} \]

DW Relaxation:

\[z^{DW} := \min c^\top x \]

\[\text{s.t. } x_{I(j)} \in \text{conv}(Q^j), \quad j \in J \]

\[Ax \geq b, \]
Solving Dantzig-Wolfe (DW) relaxation via column generation

DW Relaxation

\[
 z^{DW} = \min c^\top x \\
 \text{s.t. } x_{I(j)} = \sum_{v \in V^j} \lambda_v v + \sum_{r \in R^j} \mu_r r, \quad j \in J, \quad (\pi^j) \\
 \sum_{v \in V^j} \lambda_v = 1, \quad j \in J \quad (\theta^j) \\
 Ax \geq b, \quad (\beta) \\
 \lambda \geq 0, \quad \mu \geq 0,
\]

where \(V^j \) (\(R^j \)) is the set of extreme points (rays) of \(\text{conv}(Q^j) \)

- Solve the DW relaxation using column generation
 Pricing problem for block \(j \in J \):
 \[
 D_j(\pi^j) := \min \left\{ (\pi^j)^\top v : v \in \text{conv}(Q^j) \right\} = \min \left\{ (\pi^j)^\top v : v \in Q^j \right\}
 \]
- Can be used to solve the MIP exactly if combined with branching (i.e., branch-and-price, but not available in most solvers)
Solving Dantzig-Wolfe (DW) relaxation via column generation

DW Relaxation

\[
\begin{align*}
 z^{DW} &= \min \ c^\top x \\
 \text{s.t. } x_I(j) &= \sum_{v \in V^j} \lambda_v v + \sum_{r \in R^j} \mu_r r, \quad j \in J, \quad (\pi^j) \\
 \sum_{v \in V^j} \lambda_v &= 1, \quad j \in J \quad (\theta^j) \\
 Ax &\geq b, \quad (\beta) \\
 \lambda &\geq 0, \quad \mu \geq 0,
\end{align*}
\]

where \(V^j \) \((R^j)\) is the set of extreme points (rays) of \(\text{conv}(Q^j) \)

- Solve the DW relaxation using column generation

 Pricing problem for block \(j \in J \):

 \[
 D_j(\pi^j) := \min \left\{ (\pi^j)^\top v : v \in \text{conv}(Q^j) \right\} = \min \left\{ (\pi^j)^\top v : v \in Q^j \right\}
 \]

- Can be used to solve the MIP exactly if combined with branching (i.e., branch-and-price, but not available in most solvers)
Example: Multiple knapsack assignment problem (MKAP)

Given:

- N: set of items with weights
- M: set of knapsack types with capacity
- K: set of item classes
- $(S_k)_{k \in K}$: set of items that belong to item class k

- Objective: Maximize profit of packed items
- Only items from the same item class can be packed together
- Cannot exceed knapsack capacities
Example: Multiple knapsack assignment problem (MKAP)

Given:

- N: set of items with weights
- M: set of knapsack types with capacity
- K: set of item classes
- $(S_k)_{k \in K}$: set of items that belong to item class k

\[
\text{MKAP} \quad \begin{align*}
\text{min} & \quad \sum_{i \in M} \sum_{j \in N} -p_j x_{ij} \\
\text{s.t.} & \quad \sum_{j \in S_k} w_j x_{ij} \leq C_i y_{ik}, & i \in M, \ k \in K, \\
& \quad \sum_{i \in M} x_{ij} \leq 1, & j \in N, \\
& \quad \sum_{k \in K} y_{ik} \leq 1, & i \in M, \\
& \quad x \in \{0, 1\}^{M \times N}, \ y \in \{0, 1\}^{M \times K}
\end{align*}
\]
DW bound compared to LP bound

DW bound (z^{DW}) is better than LP bound (z^{LP}), and sometimes significantly so.

| $|K|$ | $|M|$ | $|N|$ | ($z^{DW} - z^{LP}$)/$|z^{DW}|$ (%) |
|------|------|------|-----------------------|
| 10 | 10 | 100 | 5.65 |
| 10 | 10 | 200 | 3.53 |
| 10 | 10 | 300 | 3.64 |
| 10 | 20 | 100 | 0.74 |
| 10 | 20 | 200 | 0.02 |
| 10 | 20 | 300 | 0.00 |
| 10 | 30 | 100 | 0.88 |
| 10 | 30 | 200 | 0.02 |
| 10 | 30 | 300 | 0.00 |
| 10 | 40 | 100 | 1.51 |
| 10 | 40 | 200 | 0.04 |
| 10 | 40 | 300 | 0.00 |

| $|K|$ | $|M|$ | $|N|$ | ($z^{DW} - z^{LP}$)/$|z^{DW}|$ (%) |
|------|------|------|-----------------------|
| 25 | 10 | 100 | 54.17 |
| 25 | 10 | 200 | 58.14 |
| 25 | 10 | 300 | 66.02 |
| 25 | 20 | 100 | 9.40 |
| 25 | 20 | 200 | 8.74 |
| 25 | 20 | 300 | 10.18 |
| 25 | 30 | 100 | 3.80 |
| 25 | 30 | 200 | 1.79 |
| 25 | 30 | 300 | 1.30 |
| 25 | 40 | 100 | 3.13 |
| 25 | 40 | 200 | 0.75 |
| 25 | 40 | 300 | 0.25 |

| $|K|$ | $|M|$ | $|N|$ | $|K|$ | $|M|$ | $|N|$ |
|------|------|------|------|------|------|

Table: Bound gaps ($|K| = 10$) Table: Bound gaps ($|K| = 25$)

- N: set of items
- M: set of knapsacks
- K: set of item classes
Let z^{LP+} denote the bound obtained by Gurobi at the root node (LP bound enhanced by Gurobi presolve and cuts)

| $|K|$ | $|M|$ | $|N|$ | $(z^{DW} - z^{LP})/|z^{DW}|$ (%) | $(z^{DW} - z^{LP+})/|z^{DW}|$ (%) |
|------|------|------|-------------------------------|-------------------------------|
| 10 | 10 | 100 | 5.65 | 4.13 |
| 10 | 10 | 200 | 3.53 | 2.64 |
| 10 | 10 | 300 | 3.64 | 2.79 |
| 10 | 40 | 100 | 1.51 | 0.12 |
| 25 | 10 | 100 | 54.17 | 1.76 |
| 25 | 10 | 200 | 58.14 | 13.64 |
| 25 | 10 | 300 | 66.02 | 16.63 |
| 25 | 20 | 100 | 9.40 | 0.45 |
| 25 | 20 | 200 | 8.74 | 6.83 |
| 25 | 20 | 300 | 10.18 | 8.78 |
| 25 | 30 | 100 | 3.80 | 0.13 |
| 25 | 30 | 200 | 1.79 | 0.85 |
| 25 | 30 | 300 | 1.30 | 1.29 |
| 25 | 40 | 100 | 3.13 | 0.00 |

Table: Bound gaps

Question: How to incorporate DW information without branch-and-price?
Solver cuts

Let z^{LP+} denote the bound obtained by Gurobi at the root node (LP bound enhanced by Gurobi presolve and cuts)

| $|K|$ | $|M|$ | $|N|$ | $(z^{DW} - z^{LP})/|z^{DW}|$ (%) | $(z^{DW} - z^{LP+})/|z^{DW}|$ (%) |
|---|---|---|---|---|
| 10 | 10 | 100 | 5.65 | 4.13 |
| 10 | 10 | 200 | 3.53 | 2.64 |
| 10 | 10 | 300 | 3.64 | 2.79 |
| 10 | 40 | 100 | 1.51 | 0.12 |
| 25 | 10 | 100 | 54.17 | 1.76 |
| 25 | 10 | 200 | 58.14 | 13.64 |
| 25 | 10 | 300 | 66.02 | 16.63 |
| 25 | 20 | 100 | 9.40 | 0.45 |
| 25 | 20 | 200 | 8.74 | 6.83 |
| 25 | 20 | 300 | 10.18 | 8.78 |
| 25 | 30 | 100 | 3.80 | 0.13 |
| 25 | 30 | 200 | 1.79 | 0.85 |
| 25 | 30 | 300 | 1.30 | 1.29 |
| 25 | 40 | 100 | 3.13 | 0.00 |

Table: Bound gaps

Question: How to incorporate DW information without branch-and-price?
Objective function cut

We can add a single cutting plane $c^T x \geq z^{DW}$ into the solver

- Straightforward, easy to implement
- Requires only one cut
- Often performs very badly in practice...

Explanation: high dual degeneracy (large/high-dim. optimal face) in LP relaxation

Simple Observation

Let P be a polyhedron in \mathbb{R}^n. If neither $c^T x \leq v$ nor $c^T x \geq v$ is valid for P, then

$$\dim(P \cap \{x : c^T x = v\}) = \dim(P) - 1.$$

- Ineffective solver cutting planes
- Ineffective branching decisions
- Serious degeneracy issues in the dual LP
Objective function cut

We can add a single cutting plane $c^\top x \geq z^{DW}$ into the solver

- Straightforward, easy to implement
- Requires only one cut
- Often performs very badly in practice...

Explanation: high dual degeneracy (large/high-dim. optimal face) in LP relaxation

Simple Observation

Let P be a polyhedron in \mathbb{R}^n. If neither $c^\top x \leq v$ nor $c^\top x \geq v$ is valid for P, then

$$\dim(P \cap \{x : c^\top x = v\}) = \dim(P) - 1.$$
Original formulation vs. objective function cut

Question: Is there a better way?
Dantzig-Wolfe block cuts

Remember:

\[z^{DW} = \min \left\{ c^\top x : Ax \geq b, \ x_{I(j)} \in \text{conv}(Q^j), \ j = 1, \ldots, q \right\} \]

\[\implies \text{DW bound } z^{DW} \text{ can be obtained by adding cuts valid for } \{Q^j\}_{j=1}^q \]

Definition

We call a cut a Dantzig-Wolfe Block (DWB) cut if it is of the form

\[\pi^\top x_{I(j)} \geq D_j(\pi) \]

for some \(j \in J \), where \(D_j(\pi) = \min \{ \pi^\top y : y \in Q^j \} \)

- DWB cuts together with \(Ax \geq b \) recover the DW bound \(z^{DW} \)
- Existing cutting plane approaches [Ralphs et al. 2003, Ralphs and Galati 2005, Avella et al. 2010]
- Under some conditions these cuts define high dimensional “faces” of the MIP

Question: Do we need a lot of DWB cuts to obtain \(z^{DW} \)?
Dantzig-Wolfe block cuts

Remember:

\[z^{DW} = \min \left\{ c^\top x : Ax \geq b, \ x_{I(j)} \in \text{conv}(Q_j), \ j = 1, \ldots, q \right\} \]

\[\implies \text{DW bound } z^{DW} \text{ can be obtained by adding cuts valid for } \{Q_j\}_{j=1}^q \]

Definition

We call a cut a Dantzig-Wolfe Block (DWB) cut if it is of the form

\[\pi^\top x_{I(j)} \geq D_j(\pi) \]

for some \(j \in J \), where \(D_j(\pi) = \min\{\pi^\top y : y \in Q^j\} \)

- DWB cuts together with \(Ax \geq b \) recover the DW bound \(z^{DW} \)
- Existing cutting plane approaches [Ralphs et al. 2003, Ralphs and Galati 2005, Avella et al. 2010]
- Under some conditions these cuts define high dimensional “faces” of the MIP

Question: Do we need a lot of DWB cuts to obtain \(z^{DW} \)?
Dantzig-Wolfe block cuts

Remember:

$$z^{DW} = \min \left\{ c^\top x : Ax \geq b, \ x_{I(j)} \in \text{conv}(Q^j), \ j = 1, \ldots, q \right\}$$

$$\implies$$ DW bound z^{DW} can be obtained by adding cuts valid for $\{Q^j\}_{j=1}^q$

Definition

We call a cut a **Dantzig-Wolfe Block (DWB) cut** if it is of the form

$$\pi^\top x_{I(j)} \geq D_j(\pi)$$

for some $j \in J$, where $D_j(\pi) = \min\{\pi^\top y : y \in Q^j\}$

- DWB cuts together with $Ax \geq b$ recover the DW bound z^{DW}
- Existing cutting plane approaches [Ralphs et al. 2003, Ralphs and Galati 2005, Avella et al. 2010]
- Under some conditions these cuts define high dimensional “faces” of the MIP

Question: Do we need a lot of DWB cuts to obtain z^{DW}?
Dantzig-Wolfe block cuts

Remember:

\[z^{DW} = \min \left\{ c^\top x : Ax \geq b, \ x_{I(j)} \in \text{conv}(Q^j), \ j = 1, \ldots, q \right\} \]

\[\implies \text{DW bound} \ z^{DW} \text{ can be obtained by adding cuts valid for } \{Q^j\}_{j=1}^q \]

Definition

We call a cut a **Dantzig-Wolfe Block (DWB) cut** if it is of the form

\[\pi^\top x_{I(j)} \geq D_j(\pi) \]

for some \(j \in J \), where \(D_j(\pi) = \min \{ \pi^\top y : y \in Q^j \} \)

- **DWB cuts** together with \(Ax \geq b \) recover the DW bound \(z^{DW} \)
- **Existing cutting plane approaches** [Ralphs et al. 2003, Ralphs and Galati 2005, Avella et al. 2010]
- **Under some conditions** these cuts define high dimensional “faces” of the MIP

Question: Do we need a lot of DWB cuts to obtain \(z^{DW} \) ?
Column generation gives an inner approximation

Column generation

\[
\begin{align*}
\min & \sum_{i \in I} c_i x_i \\
\text{s.t.} & \quad x_{I(j)} = \sum_{v \in \hat{V}^j} \lambda_v v + \sum_{r \in \hat{R}^j} \mu_r r, \quad j \in J \quad (\pi^j) \\
& \quad \sum_{v \in \hat{V}^j} \lambda_v = 1, \quad j \in J \quad (\theta_j) \\
& \quad Ax \geq b, \quad (\beta) \\
& \quad \lambda \geq 0, \; \mu \geq 0
\end{align*}
\]

• For \(\tau = 1, 2, \ldots \), we solve the following subproblem for each block \(j \in J \):

\[
D_j(\pi^j) := \min \left\{ (\pi^j)^\top v : v \in Q^j \right\}.
\]

to generate a new point \(v \in V^j \) or a ray \(r \in R^j \)

Notice: Such a point \(v \in V^j \) gives a valid inequality for \(Q^j \):

\[
(\pi^j)^\top x_{I(j)} \geq (\pi^j)^\top v = D_j(\pi^j)
\]
Inner and outer approximations

Build an inner approx. for each conv\((Q^j) \)

\[
\begin{align*}
\min \ & \sum_{i \in I} c_i x_i \\
\text{s.t.} \ & x_{I(j)} = \sum_{v \in \hat{V}^j} \lambda_v v + \sum_{r \in \hat{R}^j} \mu_r r, \quad j \in J \quad (\pi^j) \\
& \sum_{v \in \hat{V}^j} \lambda_v = 1, \quad j \in J \quad (\theta_j) \\
& Ax \geq b, \quad (\beta) \\
& \lambda \geq 0, \ \mu \geq 0
\end{align*}
\]

Build an outer approx. for each conv\((Q^j) \)

\[
\begin{align*}
\min \ & \sum_{i \in I} c_i x_i \\
\text{s.t.} \ & (\pi^j(\tau))^\top x_{I(j)} \geq D_j(\pi^j(\tau)), \quad j \in J, \ \tau \in T \\
& Ax \geq b
\end{align*}
\]
Inner and outer approximations

Build an inner approx. for each conv\((Q^j)\)

\[
\begin{align*}
\min \quad & \sum_{i \in I} c_i x_i \\
\text{s.t.} \quad & x_{I(j)} = \sum_{v \in \hat{V}^j} \lambda_v v + \sum_{r \in \hat{R}^j} \mu_r r, \quad j \in J \quad (\pi^j) \\
& \sum_{v \in \hat{V}^j} \lambda_v = 1, \quad j \in J \quad (\theta^j) \\
& Ax \geq b, \\
& \lambda \geq 0, \quad \mu \geq 0
\end{align*}
\]

Build an outer approx. for each conv\((Q^j)\)

\[
\begin{align*}
\min \quad & \sum_{i \in I} c_i x_i \\
\text{s.t.} \quad & (\pi^j(\tau))^\top x_{I(j)} \geq D_j(\pi^j(\tau)), \quad j \in J, \quad \tau \in \mathcal{T} \\
& Ax \geq b
\end{align*}
\]

- For \(\tau = 1, 2, \ldots\), we solve the following subproblem for each block \(j \in J\):

\[
D_j(\pi^j) := \min \left\{ (\pi^j)^\top v : v \in Q^j \right\}
\]

- At termination we have: \(z^{DW} = b^\top \bar{\beta} + \sum_{j=1}^{q} \bar{\theta}_j\), and

1. \(\bar{\theta}_j \leq D_j(\bar{\pi}^j)\) for all \(j \in J\) (Nonnegative reduced costs)
2. \(c_i = A_i^\top \bar{\beta} + \sum_{j : i \in I(j)} \bar{\pi}_i^j\), for all \(i = 1, \ldots, n\) (Dual feasibility of master LP)
Last-iteration DWB cuts

- Let $\bar{\pi}^j$ be the dual variables associated with the constraints
 \[x_{I(j)} = \sum_{v \in \hat{V}^j} \lambda_v v + \sum_{r \in \hat{R}^j} \mu_r r, \quad j \in J \]
 at the last iteration

- We know (not only for $\bar{\pi}^j$ but for any π^j)
 \[(\bar{\pi}^j)^\top x_{I(j)} \geq D_j(\bar{\pi}^j) \leftarrow \min \{ (\pi^j)^\top v : v \in Q^j \} \]
 are valid for the MIP for all $i \in J$

- These cuts together with linking constraints imply the objective function cut
 \[c^\top x \geq z^{DW} \]

Theorem

For $j \in J$, let $D_j(\bar{\pi}^j) = \min \{ (\bar{\pi}^j)^\top y : y \in Q^j \}$ be the block subproblem in the last iteration of DW decomposition. Then

\[z^{DW} = \min c^\top x \]

s.t. \((\bar{\pi}^j)^\top x_{I(j)} \geq D_j(\bar{\pi}^j), \quad j \in J, \)

\[Ax \geq b \]
Proof of the Theorem

The “≥” direction is from validity of the DWB cuts. We only prove the “≤” direction. For \(j \in J \), let \(D_j(\bar{\pi}^j) = \min \{(\bar{\pi}^j)^\top y : y \in Q^j \} \) be the block subproblem in the last iteration of DW decomposition. Then

\[
z^{DW} = \min c^\top x \\
\text{s.t. } (\bar{\pi}^j)^\top x_{I(j)} \geq D_j(\bar{\pi}^j), \quad j \in J, \\
Ax \geq b.
\]

For all \(x \) satisfying \(Ax \geq b \), \((\bar{\pi}^j)^\top x_{I(j)} \geq D_j(\bar{\pi}^j), \quad j \in J \), we have

\[
c^\top x = \sum_{i=1}^n c_i x_i = \sum_{i=1}^n \left[x_i A_i^\top \bar{\beta} + \sum_{j:i \in I(j)} x_i \bar{\pi}_i^j \right] = (\bar{\beta})^\top A x + \sum_{j=1}^q (\bar{\pi}^j)^\top x_{I(j)} \geq 0 \geq b \geq D_j(\bar{\pi}^j) \\
\geq b^\top \bar{\beta} + \sum_{j=1}^q D_j(\bar{\pi}^j) \geq b^\top \bar{\beta} + \sum_{j=1}^q \bar{\theta}_j = z^{DW}. \quad \square
\]
Comparing different approaches

| $(|K|, |M|, |N|)$ | # solved instances | Avg B&C time (s) | Avg opt gap (%) |
|-----------------|--------------------|------------------|-----------------|
| | MIP / OBJ / DWB | MIP / OBJ / DWB | MIP / OBJ / DWB |
| $(10,10,100)$ | 28/30 18/30 30/30 | ≥ 65 ≥ 298 2 | 0.04 0.03 0.00 |
| $(10,10,200)$ | 11/30 10/30 30/30 | ≥ 424 ≥ 457 6 | 0.27 0.09 0.00 |
| $(10,10,300)$ | 7/30 11/30 30/30 | ≥ 489 ≥ 454 41 | 0.21 0.09 0.00 |
| $(25,10,100)$ | 30/30 30/30 30/30 | < 1 1 < 1 | 0.00 0.00 0.00 |
| $(25,10,200)$ | 30/30 30/30 30/30 | 2 25 < 1 | 0.00 0.00 0.00 |
| $(25,10,300)$ | 30/30 29/30 30/30 | 6 < 40 < 1 | 0.00 0.00 0.00 |
| $(25,20,200)$ | 29/30 9/30 30/30 | ≥ 44 < 499 3 | 0.02 0.08 0.00 |
| $(25,20,300)$ | 22/30 2/30 29/30 | ≥ 224 ≥ 590 ≥ 48 | 0.24 0.17 0.00 |
| $(25,30,300)$ | 1/30 0/30 0/30 | ≥ 595 ≥ 600 ≥ 600 | 0.84 0.53 0.40 |

- MIP: original formulation
- OBJ: original formulation + objective cut
- DWB: original formulation + last-iteration DWB cuts

(Note: Even if we terminate early, we still obtain DWB cuts)
Strengthening DWB cuts

• DWB cuts have good computational performance, moreover,

• It is possible to strengthen the DWB cuts to further reduce dual degeneracy

1. Disjunctive coefficient strengthening
 – Variant of [Andersen and Pochet 2010]
 – Sequentially strengthen the coefficients of the cut
 – Each step requires solving one block MIP

2. Strengthening via tilting
 – Variant of local cuts [Chvatal et al. 2013]
 – Each tilting requires solving two sequences of block MIPs
 – (Depth-\(d\)) recursive tilting: one cutting plane \(\Rightarrow\) multiple \(2^d\) cutting planes
Strengthened DWB cuts

| (|K|, |M|, |N|) | # solved instances | Avg B&C time (s) | Avg opt gap (%) |
|---|---|---|---|
| | DWB | STR | D6T | DWB | STR | D6T | DWB | STR | D6T |
| (10,10,100) | 30/30 | 30/30 | 30/30 | 2 | < 1 | 2 | 0.00 | 0.00 | 0.00 |
| (10,10,200) | 30/30 | 30/30 | 30/30 | 6 | 1 | 7 | 0.00 | 0.00 | 0.00 |
| (10,10,300) | 30/30 | 30/30 | 30/30 | 41 | 2 | 17 | 0.00 | 0.00 | 0.00 |
| (25,10,100) | 30/30 | 30/30 | 30/30 | < 1 | < 1 | < 1 | 0.00 | 0.00 | 0.00 |
| (25,10,200) | 30/30 | 30/30 | 30/30 | < 1 | < 1 | 3 | 0.00 | 0.00 | 0.00 |
| (25,10,300) | 30/30 | 30/30 | 30/30 | < 1 | < 1 | 9 | 0.00 | 0.00 | 0.00 |
| (25,20,200) | 30/30 | 30/30 | 30/30 | 3 | 2 | 4 | 0.00 | 0.00 | 0.00 |
| (25,20,300) | 29/30 | 30/30 | 30/30 | ≥ 48 | 5 | 22 | 0.00 | 0.00 | 0.00 |
| (25,30,300) | 0/30 | 2/30 | 6/30 | ≥600 | ≥585 | ≥559 | 0.40 | 0.31 | 0.19 |

- **STR**: original formulation + last-iteration DWB cuts with disjunctive coefficient strengthening
- **D6T**: original formulation + last-iteration DWB cuts with disjunctive coefficient strengthening and tilting of depth 6
Comparing computational performance of cuts

| \(|K|, |M|, |N|\) | # B&C nodes |
|----------------|-------------|
| | MIP | OBJ | DBW | STR | D6T |
|\((10,10,100) \) | 22761 | 1698156 | 4481 | 151 | 1 |
|\((10,10,200) \) | 2778880 | 3898948 | 6828 | 258 | 8 |
|\((10,10,300) \) | 2616971 | 2781174 | 131139 | 495 | 5 |
|\((25,10,100) \) | 93 | 1123 | 1 | 1 | 1 |
|\((25,10,200) \) | 3853 | 20272 | 1 | 1 | 1 |
|\((25,10,300) \) | 8488 | 25864 | 1 | 1 | 1 |
|\((25,20,200) \) | 27987 | 438310 | 2255 | 335 | 1 |
|\((25,20,300) \) | 113353 | 410728 | 13861 | 1003 | 1 |
|\((25,30,300) \) | 81545 | 379999 | 105115 | 67556 | 6312 |

- **MIP**: original formulation
- **OBJ**: original formulation + objective cut
- **DWB**: original formulation + last-iteration DWB cuts
- **STR**: original formulation + last-iteration DWB cuts with coeff. strengthening
- **D6T**: original formulation + last-iteration DWB cuts with coeff. strengthening and tilting of depth 6
Comparing computational performance of cuts
Proposition

Assume $w^* \in \mathbb{R}_+^m$ is a dual basic optimal solution of an LP with n variables and m inequality constraints. Then, the optimal face of the LP has dimension at most $n - \|w^*\|_0$. Furthermore, if w^* is the unique dual optimal solution, then the optimal face of the LP has dimension exactly $n - \|w^*\|_0$.

Table: Relative Dual Degeneracy Levels ($1 - \|w^*\|_0/n$) for Different Formulations

| $(|K|, |M|, |N|)$ | $(1 - \|w^*\|_0/n) \times 100\%$ |
|-----------------|---------------------------------|
| | MIP | OBJ | DWB | STR | D3T | D6T |
| (10,10,100) | 50.65% | 99.91% | 56.98% | 35.05% | 1.36% | 1.54% |
| (10,10,200) | 53.30% | 99.95% | 53.77% | 38.02% | 7.19% | 0.28% |
| (10,10,300) | 54.23% | 99.97% | 53.50% | 39.77% | 17.99% | 0.61% |
| (25,10,100) | 44.57% | 99.92% | 40.47% | 30.85% | 3.70% | 3.70% |
| (25,10,200) | 49.75% | 99.96% | 47.23% | 37.99% | 3.71% | 1.68% |
| (25,10,300) | 51.73% | 99.97% | 56.84% | 48.89% | 8.05% | 1.17% |
| (25,20,200) | 52.44% | 99.98% | 62.38% | 38.30% | 0.93% | 1.25% |
| (25,20,300) | 54.69% | 99.98% | 62.72% | 42.19% | 4.78% | 0.62% |
| (25,30,300) | 55.68% | 99.99% | 78.99% | 48.56% | 8.59% | 3.27% |
Using ML(!) to distinguish between easy and hard instances

Train:
- Run half of the MKAP instances with and without DWB cuts (10 min time limit)
- Record simple features: \(z^{LP}, z^{LP+}, z^{DW}, z^{UB}\) and LB at termination for both
- Label instances if DW performs better (10% faster or better gap at termination)
- Run a shallow decision tree to obtain the simple rule:

\[
\text{DWB cuts are better if : } \frac{(z^{DW} - z^{LB})}{z^{UB}} > 0.05\%
\]

Test:
- On the rest, run DW on 1 thread and MIP in 3, stop when DW is done
- Allocate all processors to the more promising method

<table>
<thead>
<tr>
<th></th>
<th>MIP</th>
<th>DW-STR</th>
<th>HYB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Instances Solved</td>
<td>113/155</td>
<td>133/155</td>
<td>134/155</td>
</tr>
<tr>
<td>Average Optimality Gap (%)</td>
<td>0.13%</td>
<td>0.05%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Average Solution Time (s)</td>
<td>205</td>
<td>116</td>
<td>109</td>
</tr>
</tbody>
</table>
Time permitting: Solving the DW relaxation via column generation
Time permitting: Solving the DW relaxation in practice

- We do not try to solve the DW relaxation (or, to generate cuts)

- Instead we solve the Lagrangian relaxation of

$$z^{DW} = \min \ c^\top x$$

s.t. \(y^j \in \text{conv}(Q^j), \quad j = 1, \ldots, q, \)

$$y^j = x_{I(j)}, \quad j = 1, \ldots, q, \quad (\pi^j)$$

$$Ax \geq b \quad (\beta)$$

- After dualizing the coupling constraints

$$z^{DW} = \max_{\beta \geq 0, \pi} z(\pi, \beta)$$

where

$$z(\pi, \beta) = \min \ c^\top x + \beta^\top (b - Ax) + \sum_{j=1}^{q} (\pi^j)^\top (y^j - x_{I(j)}),$$

s.t. \(y^j \in Q^j, \quad j = 1, \ldots, q \)

- \(z(\pi, \beta) \) is a piecewise linear concave function, computing \(z^{DW} \) is a (nonsmooth) convex optimization problem
Time permitting: Computing (last-iteration) cuts in practice

\[z^{DW} = \max_{\beta \geq 0, \pi} z(\pi, \beta) \quad \text{s.t.} \quad \sum_{j: i \in I(j)} \pi_j^i + \beta^\top A_i = c_i, \quad i = 1, \ldots, n, \]

where

\[z(\pi, \beta) = \min \beta^\top b + \sum_{j=1}^q (\pi_j^j)^\top y_j^j, \quad \text{s.t.} \quad y_j^j \in Q_j, \quad j = 1, \ldots, q \]

(We use the level method to update π and β for better computational performance)

We can show that at any iteration τ we have

\[z(\pi(\tau), \beta(\tau)) \leq \min c^\top x \]

\[\text{s.t.} \quad (\pi_j^j(\tau))^\top x_{I(j)} \geq D_j(\pi_j^j(\tau)) \quad \leftarrow \min \{(\pi_j^j)^\top v : v \in Q_j^j\} \]

\[Ax \geq b \]

- If the Lagrangian dual is solved to optimality, we have cuts that recover z^{DW}
- If terminated early, we have a set of cuts recovering the current dual bound
Time permitting: Column generation vs. Level method
Thank you!

Contact:
rui.chen@cornell.edu

Reference:
Algorithm The Level Method for Solving Lagrangian Dual

1: Initialize:
 $\hat{V}_j \leftarrow \emptyset$, $\hat{R}_j \leftarrow \emptyset$, $j = 1, 2, \ldots, p$
 $\bar{z} \leftarrow$ an upper bound of z_D
 $\text{LB} \leftarrow -\infty$, $\text{UB} \leftarrow \infty$, $t \leftarrow 0$

2: Main Loop: $t \leftarrow t + 1$, solve:

 \[
 \begin{align*}
 \text{UB} & \leftarrow \max \sum_{j=1}^{q} \theta_j + b^T \beta \quad (1a) \\
 \text{s.t.} \quad \theta_j & \leq v^T \pi^j, \quad v \in \hat{V}_j, \ j = 1, \ldots, q, \quad (1b) \\
 r^T \pi^j & \geq 0, \quad r \in \hat{R}_j, \ j = 1, \ldots, q, \quad (1c) \\
 \sum_{j=1}^{q} \theta_j + b^T \beta & \leq \bar{z}, \quad \text{(some known UB on } z^{DW}) \quad (1d) \\
 \sum_{j:i \in I(j)} \pi^j_i + \beta^T A_i & = c_i, \quad i = 1, \ldots, n, \quad (1e) \\
 \beta & \geq 0. \quad (1f)
 \end{align*}
 \]

3: if $\text{LB} = -\infty$ then
4: \quad $(\bar{\pi}, \bar{\beta}) \leftarrow$ optimal value of (π, β) in (1)
5: else
6: \quad solve:
 \[
 \begin{align*}
 \min & \quad \| (\pi - \bar{\pi}, \beta - \bar{\beta}) \|_2^2 \\
 \text{s.t.} \quad \sum_{j=1}^{q} \theta_j + b^T \beta & \geq 0.7 \cdot \text{UB} + 0.3 \cdot \text{LB} \quad (2) \\
 (1b) - (1g)
 \end{align*}
 \]
7: \quad $(\bar{\pi}, \bar{\beta}) \leftarrow$ optimal value of (π, β) in (2)
8: end if
Algorithm The Level Method for Solving Lagrangian Dual – continued

1: for $j = 1, 2, \ldots, q$ do
2: solve pricing problem for $\pi^j = \bar{\pi}^j$
3: if bounded then
4: let v^j denote an optimal solution
5: $\hat{V}^j \leftarrow \hat{V}^j \cup \{v^j\}$
6: else
7: let r^j denote an extreme ray of $\text{conv}(Q^j)$ with $(\pi^j) ^\top r^j < 0$
8: $\hat{R}^j \leftarrow \hat{R}^j \cup \{r^j\}$
9: end if
10: end for
11: $\text{LB} \leftarrow \max \{\text{LB}, \sum_{j=1}^{q} D_j(\bar{\pi}^j) + b^\top \bar{\beta}\}$
12: if UB-LB is small enough then
13: return LB
14: else
15: go to step 2
16: end if