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» Description Logics (DL) are a family of formal knowledge representation languages.
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Description Logic

» Description Logics (DL) are a family of formal knowledge representation languages.
» Used to represent the knowledge of an application domain in a structured and formal way.

» Provides a mechanism for encoding semantics of a domain and reasoning about it.

Checking satisfiability; classification; answering queries e‘

> It serves as a foundation for implementing ontologies and semantic web technologies

Used to define a formal representation of
a domain using concepts and relationships.

An extension of the traditional Web, enables computers to
understand web data, using ontologies.
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The Semantic Web & Description Logic -
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» OWL (Web Ontology Language): A language for defining and instantiating Web ontologies.
- OWL uses DL to provide semantics for complex ontologies.

- OWL DL is compatible with existing Web standards, e.g., HTTP, XML, RDF, RDFS
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The Semantic Web & Description Logic

» OWL (Web Ontology Language): A language for defining and instantiating Web ontologies.

- OWL uses DL to provide semantics for complex ontologies.
- OWL DL is compatible with existing Web standards, e.g., HTTP, XML, RDF, RDFS

— DL provides a theoretical basis for semantic reasoning on the Web.

Semantic Web: Data is not just structured but also meaningful and machine-understandable. J

> Why not the existing Web data models? XML? RDF?
- XML: syntax v/, semantics x
- RDF: syntax v/, (basic) semantics v/, reasoning x

- OWL DL: syntax v/, (rich) semantics v/, reasoning v'
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A Simple Ontology: Description -

MONTREAL

Modeling a University domain including entities like Professors, Students, and Courses. )

» Concepts: Professor, Student, Full-time Student, Part-time Student, Course

> Roles: teaches(Professor, Course), enrolled(Student, Course)

> Axioms:

- Every Full-time Student is a Student. Every Part-time Student is a Student.

A Student is either Full-time Student, or Part-time Student. They cannot be both.

Every Full-time Student is enrolled in at least 3 Courses.

Every Part-time Student is enrolled in at most 2 Courses.

- For every Course there exists some Professor teaching it.
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A Simple Ontology: DL Syntax HEC

MONTREAL

Modeling a University domain including entities like Professors, Students, and Courses. )

» Concepts: Professor, Student, Full-time Student, Part-time Student, Course
» Roles: teaches(Professor, Course), enrolled(Student, Course)

» Axioms:

Full-time Student C Student, Part-time Student C Student

Student C Full-time Student U Part-time Student, Full-time Student M Part-time Student C L

Full-time Student C> 3 enrolled.Course

Part-time Student C< 2 enrolled.Course

- Course C Jinv(teaches).Professor
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A Simple Ontology: Knowledge Graph HEC
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Active ontology  Entities  Individuals by class DL Query OntoGraf

Class hierarchy: Full-time_Student  @IE® fOntoGraf: DEEE
© owl:Thing
© Course [MIESHEAE I EA I T HEN N Y @B [J]&] [wa] =
© Professor
© Student

D JFull-time_Student

© Part-time_Student

@ owl:Thing

@ Professor ( @ Course ) Student
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» OWL DL can also infer new knowledge — reasoning
» Let's add two new concepts to our ontology:
- PhD-Student C Student

- Seminar C Jinv(enrolled).PhD-Student
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A Simple Ontology: Reasoning HEC

MONTREAL

» OWL DL can also infer new knowledge — reasoning
» Let's add two new concepts to our ontology:
- PhD-Student C Student
- Seminar C Jinv(enrolled).PhD-Student
> We haven't explicitly told the reasoner that a Seminar is a Course. It will infer this.

- RDF cannot represent the semantics of our ontology. It lacks the vocabulary for
disjointedness, cardinality, etc.

- RDF cannot infer new knowledge.
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A Simple Ontology: Reasoning HEC

MONTREAL

» Added concepts and axiom

Annotation properties  Datatypes  Individuals = @ Seminar — http://www.semanticweb.org/maryamdaryalal/ontologies/2024/4/University#Seminar
Classes | Object properties Data properties Annotations | Usage
Class hierarchy: Seminar PIMEEX WA notations: Seminar
L2902 Asserted
Annotations
@ owl:Thing
@ Course

© Professor

;m Description: Seminar
© PhD_Student Equivalent To
© Full-time_Student
© Part-time_Student SubClass OF

© inverse (enrolled) some PhD_Student
General class axioms
SubClass Of (Anonymous Ancestor)
Instances
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A Simple Ontology: Reasoning HEC

MONTREAL

» Inferences made by the reasoner

Annotation properties  Datatypes  Individuals = @ Seminar — http://www.semanticweb.org/maryamdaryalal/ontologies /2024 /4/University#Seminar
Classes  Object properties  Data properties Annotations Usage
Class hierarchy: Seminar RIIEEX 0 annotations: Seminar
(%) Inferred
Annotations
@ owl:Thing
@ Course
@ Professor
Description: Seminar

© Student
@ Full-time_Student
@ Part-time_Student
@ PhD_Student

Equivalent To

SubClass Of

inverse (enrolled) some PhD_Student

General class axioms

SubClass Of (Anonymous Anceston)
nverse (teaches) some Professor
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A Simple Ontology: Reasoning

Results & Conclusion

> Explanations provided by the reasoner

Active ontology En

Annotation propertie

Classes | Object g

5

s 8 X ¢
owl:Thing
Course

Professor

Student
PhD_S
Full-ti
Part-t

M. Daryalal

© Show regular justifications O All justifications
Show laconic justifications Limit justifications to
2
Explanation 1 Display laconic explanation

Explanation for: Seminar SubClassOf Course
Seminar SubClassOf inverse (enrolled) some PhD_Student
enrolled Range Course
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Takeaway: Key Features of DL

Expressiveness

Decidability Conciseness

<——— Description Logic ——

Formal Semantics
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Expressiveness

It balances expressivity
with computational
tractability

Decidability Conciseness

The reasoning problems : Description Logic >| Provides compact and
can be solved human-readable form.
algorithmically.

Formal Semantics
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Results & Conclusion

Takeaway: Key Features of DL

Expressiveness

It balances expressivity
with computational
tractability

Decidability Conciseness

The reasoning problems
can be solved
algorithmically.

<——— Description Logic —— Provides compact and
human-readable form.

Formal Semantics

Uses formal logic-based
semantics to avoid
ambiguity.
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Problem Description Solution Methodolog) Results & Conclusion

Constructors & Axioms in DL ALCQ (1)

HEC

MONTREAL

» An interpretation: Z = (AZ,.7), with AZ a non-empty domain set and .~ a mapping.

M. Daryalal

Thing T = TI=A%
Nothing 1 = 1T=9

Concept (class) A = ATcCA?
Concept assertion a:C = afec?t

Negation -C = AT\C*

Conjunction cnb = ctnDt
Disjunction cuD = CcTtuD*
Subsumption cch = ctcp?
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Solution Methodolog) Results & Conclusion

Problem Description

Constructors & Axioms in DL ALCQ (I1)

HEC

MONTREAL

> An interpretation: 7 = (AZ,.7), with AZ a non-empty domain set and .7 a mapping.

Role (relationship)

Role assertion

Universal restriction

At-least qualified cardinality restriction
At-most qualified cardinality restriction
Role hierarchy

Transitive role

RT C AT x AT

(at,b%) € R?

{z|Vy : (v,y) € RT = y € CT}
(o[ R(2,C) > n}

[ol#R (2,C) < m)

R C 5t

RT = (RT)*
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The Satisfiability Problem in DL Ontologies

The SAT Problem

Given an ontology O written in a Description Logic £, and a concept C, is there a model Z of
O where CT £ ()?

» Does there exist an interpretation that satisfies all axioms in O and where C' is non-empty?

» Ontology axioms constrain possible Zs, potentially making a concept unsatisfiable.
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The Satisfiability Problem in DL Ontologies

The SAT Problem

Given an ontology O written in a Description Logic £, and a concept C, is there a model Z of
O where CT £ ()?

» Does there exist an interpretation that satisfies all axioms in O and where C' is non-empty?
» Ontology axioms constrain possible Zs, potentially making a concept unsatisfiable.
> Example:

- Full-time Student C Student

- Professor C — Student (Professors are not Students)

- |Is Professor M Full-time Student satisfiable? No — Professor M Full-time Student C L
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The Challenge of Qualified Cardinality Restrictions (QCRs)

» QCRs are expressive, but computationally challenging for reasoning algorithms.

» Reasoning with QCRs:
- Tableaux algorithms: Introduce or merge individuals to satisfy cardinality constraints.
e Example: For Person C> 2hasChild.Student:
o Start with individual ‘a: Person’, ‘a: (> 2hasChild.Student)’

o Introduce ‘b1,b2 : Student’ such that hasChild(a,b1l), hasChild(a,b2)

e Challenges: Non-determinism, exponential complexity.
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QCRs as Linear Inequalities: The Idea -

MONTREAL

» Example: S ={>3R,<2T,>15,< 1S}

» Atomic Decomposition of S:

p1 = {R}aPQ = {T}ap4 = {S}v
p3 = {Rv T}7p5 = {R7 S}7p6 = {Sﬂ T}7
pPr = {R, S, T}
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Introduction Problem Description

QCRs as Linear Inequalities: The Idea

» Example: S ={>3R,<2T,>15,< 1S}
» Atomic Decomposition of S:

1. Define int variable v , i for each partition:

S, iT 0

P1 — Voo1, P2 — Vo10, P3 — Vo011, P4 — V100,

Ps — V101, Pe — V110, P7 — V111

p1 = {R}aPQ = {T}ap4 = {S}v
p3 = {Rv T}7p5 = {R7 S}7p6 = {Sa T}7
pPr = {R, S, T}
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QCRs as Linear Inequalities: The Idea

» Example: S ={>3R,<2T,>15,< 1S}
» Atomic Decomposition of S:

1. Define int variable v , i for each partition:

S, iT 0

P1 — Voo1, P2 — Vo10, P3 — Vo011, P4 — V100,

Ps — V101, Pe — V110, P7 — V111

2. Write S as:

voo1 + vo11 + V101 + V111 = 3

Uo10 + Vo11 + V110 + V111 < 2 p1={R},p2 = {T},ps = {5},
ps ={R, T}, ps ={R,S},ps = {5, T},
pr={R,S, T}

v100 + V101 + v110 + 0111 < 1

V100 + V101 + V110 + U111 > 1

. Daryalal Large-scale Optimization for Logical Reasoning
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Introduction Problem Description

QCRs as Linear Inequalities: Compact Model -

MONTREAL

» Back to our own world!
> Let R be the set of all roles, and §i and §5 be the right-hand side of at-most and at-least

restrictions on a role R.

min E E Uil,---7’i\7z|

RER ipe{0,1}

st. 0p< Z Z Vit pijr) < ) ReER
JER j#R:i;€{0,1}
jZR:ij=1
€Z+ RERaiRE{O)l}

Vit,ig|
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Introduction Problem Description

QCRs as Linear Inequalities: Compact Model -

MONTREAL

» Back to our own world!
> Let R be the set of all roles, and §i and §5 be the right-hand side of at-most and at-least

restrictions on a role R.

min E E Uil,---7’i\7z|

RER ipe{0,1}

s.t. 0p < Z Z Vit ,eonijm) <dép ReR

JER j#R:ije{0,1}
j=Riij=1

ezt ReR,ig € {0,1}

Vit,ig|

» How many partitions do we have?
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Introduction Problem Description

QCRs as Linear Inequalities: Compact Model -

MONTREAL

» Back to our own world!
> Let R be the set of all roles, and §i and §5 be the right-hand side of at-most and at-least

restrictions on a role R.

min E E Uil,---7’i\7z|

RER ipe{0,1}

s.t. 0p < Z Z Vit ,eonijm) <dép ReR

JER j#R:ije{0,1}
j=Riij=1

ezt ReR,ig € {0,1}

Vit,ig|

» How many partitions do we have?

» There's also other axioms and concepts we haven't considered yet...
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Extended Formulation for QCRs (1) HEC

MONTREAL

» Define a mapping «(.) that assigns a newly defined sub-role R’ C R to each QCR:
a(<nR.C)=R'.
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Extended Formulation for QCRs (1)

» Define a mapping «(.) that assigns a newly defined sub-role R’ C R to each QCR:
a(<nR.C)=R'.

» Define Sg = {a(xnR.C) | xxnR.C € S}U{C | xnR.C e S}U{T, L}
> Define Ps,, as the power set of S excluding the empty set, and any subset without a role.

> A partition configuration: Represents a partition p in Pg,,. It is a set of binary
parameters afl, R' € Sg:

r_ ) 1 ifroleR ep
~ ] 0 otherwise.

» cost,: Cost of partition p, defined as the number of concepts in p

— We want only explicitly entailed concepts
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Extended Formulation for QCRs (1) HEC

MONTREAL

» 2, € Zt: The number of individuals belonging to partition p in the optimal solution.

— EF(Ps,) = min Z cost,z,

pEPsq

s.t. Z af/:cp >0p, R €{a(>nR.C)|>nR.CeS}
PEPsq

Z af’la:p <dr, R €{a(<nR.C)|<nR.Cc S}
p€Psq

CCpGZJ'_, pGPsQ.

» A branch-and-price framework can implicitly enumerate the exponentially many partitions.

> We will take care of all other axioms inside the implicit enumeration.

M. Daryalal Large-scale Optimization for Logical Reasoning
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Introduction Problem Description

Branch-and-Price for QCRs

> Let P’ C Pg,. Then EF-F(P’) is the LP relaxation of EF over 7.

» Partition Generation:
- Let 7 and w be the dual vectors associated with > and < constraints in EFLP(P’), respectively.

- Let a® € {0,1} be a decision variable equal to 1 iff role R’ is in the generated partition.

- Let b € {0, 1} be a decision variable equal to 1 iff concept C is in the generated partition.
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Branch-and-Price for QCRs

> Let P’ C Pg,. Then EF-F(P’) is the LP relaxation of EF over 7.

» Partition Generation:

- Let 7 and w be the dual vectors associated with > and < constraints in EFLP(P’), respectively.

Let af’ € {0,1} be a decision variable equal to 1 iff role R’ is in the generated partition.

- Let b € {0, 1} be a decision variable equal to 1 iff concept C is in the generated partition.

— PP = min Reduced-cost(7r,w)

st. af xbe, R € {a(=<nR.C) | =<nR.C € S},C = R Qualifier
bc < b, C e {C|=nR.C € S}
by =0

All other axioms
be,a® €{0,1}, R €{a(~nR.C)|xnR.CeS},Ce{C|xnRC eS8}
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Mapping of Axioms (1) HEC

MONTREAL

> Basic axioms:

For every subsumption A C B, add the following to PP:

ba < bp.

For every binary subsumption AM B C C, add the following to PP:
ba+bg—1<bo.

For every disjointness A1 M---M A, C1,n > 2, add the following to PP:
Z?:lei —-n+1<b,.

For modelling the negation between C' and —C, add the following to PP:
bo +b-c =1.

M. Daryalal Large-scale Optimization for Logical Reasoning 20 / 26
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Problem Description Solution Methodology

Mapping of Axioms (II)

Results & Conclusion

MONTREAL

» We can show that all the other axioms in DL ALCQ can be converted to basic axioms by
introducing new concepts and basic axioms.

> Example:
ACAN---MA, = ACA;, i=1,...,n
ACBUC = -Bn-CLC -4

M. Daryalal

>nR-CCA
<nR-CCA
AC3JR-B =
>1R-BC A

—“AC< (n—1)R-C
—AC> (n+1)R-C

AC>1R-B

-AC<OR-B

Large-scale Optimization for Logical Reasoning
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Integrality -

MONTREAL

» Branching rule can be defined on binary variables a*'.

» However, in all of our instances so far (real and synthetic ontologies), optimal solution
returned by the column generation method have been integral!

The polyhedron of EF-P(P’) is integral.

» We haven't been able to prove this using the usual sufficient conditions. So, to be
continued...
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Results & Conclusion
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Preliminary Experiments e

MONTREAL

> We compared our ILP-based reasoner with major OWL reasoners: FaCT++, HermiT,
Konclude, and Racer.

» Benchmark ontologies:

Ontology Name #Axioms | #Concepts | #Roles | #QCRs
canadian-parliament-factions-1 48 21 6 19
canadian-parliament-factions-2 56 24 7 25
canadian-parliament-factions-3 64 27 8 30
canadian-parliament-factions-4 72 30 9 35
canadian-parliament-factions-5 81 34 10 40
C-SAT-exp-ELQ 26 10 4 13
C-UnSAT-exp-ELQ 26 10 4 13
genomic-cds rules-ELQ-fragment-1 716 358 1 357
genomic-cds rules-ELQ-fragment-2 718 359 1 357
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Preliminary Observations i

MONTREAL

» The only reasoners that can classify all variants of the simplest of the first benchmark
ontology within the given time limit of 1000s are our ILP-based reasoner and Racer.

» Second benchmark:

C-SAT-exp-ELQ C-UnSAT-exp-ELQ
n | ILP | Fac | Her | Kon | Rac | ILP | Fac | Her | Kon | Rac
40| 06 | TO | TO | TO | 001|063 | TO | TO | TO | 0.01
20062 TO | TO | TO | 001|080 | TO | TO | TO | 0.01
101063 | TO | TO | TO [0.01 099 | TO | TO | TO | 0.01
51072 63 | 44 |091|001|074| TO | TO | 784 | 0.01
3 1062|017 |0.18 033 (0.01|0.75|0.25|1.15| 1.18 | 0.01

» Ontologies genomic-cds rules contain many concepts using QCRs of the form
= 2 has.A;, with no interaction between (A;): all reasoners except Racer performed well.
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Next... HEC.

MONTREAL

» This is an ongoing work! So far, we've only focused on mappings and proof of concept.

» The normalization of non-basic axioms is taking longer than expected, however according
to the DL literature should be possible in polynomial time. To be investigated.

» Conjecture, if proved, can simplify the implementation and presentation to non-OR
communities.
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Recording at GERAD Youtube Channel HEC

MONTREAL
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