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Peer-to-peer logistic platforms




Our scenario

A set | of items to be
delivered to a set V of
co rs.

y
|
L

A platform receives a price p; for each item to

be delivered.

Given a set K of potential carriers (e.g.,
occasional drivers), the platform searches
for carriers that can deliver subsets of |,
and pays to carrier k a compensation p;
for each delivered item, i.e., for each served
customer. Each carrier k pays cijk to go from
costumer i to costumer j.




Our scenario

The platform proposes to each carrie;k a
set of items P, to serve and a
compensation for each item p*.

Each carrier k receives the proposal, and, based
on her net profit, decides on a subset of
customers Q, € P, to accept to serve.




Our scenario

The platform proposes to each carrie;k a
set of items P, to serve and a
compensation for each item p*.

Each carrier k receives the proposal, and, based
on her net profit, decides on a subset of
customers Q, € P, to accept to serve.




Optimization problem

How the platform maximizes its own profit if it has
no direct control over the carriers?




Bilevel Programming




Bilevel programming

min” F(z,y)
sit. G(x,y) <0

y € arg min{f(z,y") | g(z,y") < 0}
y' ey

Optimistic approach

min min F'(x,
reX yeS(x) ( y)

Pessimistic approach

min max F(x,
:cEXyES(};) ( y)




Reformulations

VGlue fU ﬂCTiOn One way to reformulate the bilevel problem is considering the so-called
value function of the lower-level problem:

reformulation

p(T) = I%%n{f(af,y’)w(w,y’) < 0},
obtaining the following single-level reformulation:

min F'(z,y)
z,y

s.t. G(z,y) <0
g(z,y) <0

flz,y) < o(x)
re X, ye).




The bilevel formulation




The bilevel framework

In our problem, the platform acts as the leader. The carriers act as the |K| followers.

Parameters and sets:

 V set of customers to be served (or equivalently items to be delivered)
« K setof independent carriers
* p; price the customer i pays to the platform

* ¢ routing cost that carrier k pays to go from customer i to customer j
* bk maximum number of customers carrier k can serve

Decisions:

 The platform proposes to each carrier k a set of items P, to serve and a
compensation for each item pkX.

* Each carrier k receives the proposal, and, based on her net profit, decides on a
subset of customers Q, € P, to accept to serve.




The bilevel framework

The goal of each carrier k is maximizing her net profit:

_k k
D> Bi=D, ). cy
1€Qk 1€EQE JEQK
The goal of the leader is making a call to the carriers, so as to maximize his profit,

which is defined as:
SN -,

keK 1€Qy




Do we redlly need bilevel optimization?

(10,0.5) (10,2)
V={1,23,4,5,06}
K ={a, b}
bkis 2 for all k K
For each i: )
(p:, P for all k <1078>/ (10,4)
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Do we redlly need bilevel optimization?

In a single-level setting, the leader assigns parcels so as to maximize the profit and
such that each carrier has a non-negative net profit.

(10,0.5) ) In the bilevel setting:
2 3 .
- carrier A accepts only 1
The platform assigns items i czr:er B accepts both 3
- 1 and 2 to carrier A l?,n fit = 16
- 3 and 4 to carrier B romt =

Profit = 25.5

(10,8) (10, 4)
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Do we redlly need bilevel optimization?

In another single-level setting, we discard the role of the platform and we only

maximize the profit of the total set of carriers.
(10,0.5)
2

- carrier A serves items 4, and 5
- carrier B serves items 1 and 6
Total profit of the carriers’
alliance = 19.1

(10.8)

|

6
(5.5,5)

(10, 2)
3

(5.5,5.1)

In the bilevel setting:

- carrier A accepts 4 and 5
- carrier B accepts 1 and 6
Profit = 8.9

In the optimal solution,
the leader would assign
items 3,4, 1 and 6.

(10, 4)
4

/ Profit = 16.5

UNDERESTIMATION




The bilevel framework: compensation decisions

The profit of the leader is:

> o 7).

ke K i€Qy

We assume that the leader cannot decide on ﬁ,lf directly, but has |M| different
possible categories of profit margins that can choose to gain for each item.

The profit margin m = (pi;??).
Thus, foranitemiand a vcfﬁicle k, the net profit(pi — ﬁf)is, for a margin m,
Pmi := 11 - Pj
Thus, for an item i and a carrier k, the compensation ﬁf is, for a margin m,

Pmi = Pi — Pmi




Variables

Upper-level variables for all z € V-

X,,],fu 1 iff the margin selected by the leader for item ¢ and carrier k is m

Lower-level variables for all z € V-

yf 1 iff carrier k accepts to serve item i, i.e. if 7 € Qx

zfj 1 iff arc (4, j) is traversed by carrier k to deliver items ¢ and j from Qx




Obijective functions

(pi—pF)
Pi
* The goal of the leader is making a call to the carriers, so as to maximize his net

profit:
YD =) =) > ) pmiXkt

keK 1€Qyg keK meM eV

Being M = and Dmi = mp; = p; — DY, and P = Pi — Prmi:

 The goal of each follower k is maximizing her net profit:

Z Py — S: S: ij = S: S: i Xomi¥li — Z CZZZ

1€Qk 1€Qr JEQK 1€V meM (i,5)€A




The bilevel formulation

max S: S: S: pminfm-yqlfC

X,y :
keK 1€V meM
st Y Y Xh.<1 vieV\ {0}
ke K meM
y" € SE(XF) VEkekK
y*, X7 € {0,1}" VmeMkekK

where S{f) (Xk) Is the set of optimal solutions of the k-th follower problem.




Follower’s problem (the Profitable Tour Problem)

The carrier (follower) k problem for a given Xk is formulated as:
kivky __ — vk ok k _k
P (X") = Igix S: S: Pri X miYi — Z Cij~ij
i€V meM (i,j)€EA

s.t. yr < Z)Z'fm VieV

meM

Sk <ot

eV

(y*, 2%) is a route

y* € {0,1}", 2% e {0,134




Opftimistic setting

We assume that we are in an optimistic setting, i.e., for a given choice of Xk if
follower k has multiple optimal responses determined by different sets Q, of items
to be delivered, she will accept to deliver the items which are more favorable to

the leader:

O, = arg %ax{ > pmiX) + Qr € SE(XF)}
g 1€QK




Dealing with bilinear ferms

We can linearize this bilevel MINLP using the McCormick’s inequalities. We
introduce additional binary variablesw? ; defined as X* ,y*and adjoin the
following inequalities to the upper-level model:

Xk pyb<wkt. +1 YmeM,ieVkeK
wh < XFo VYmeM,icV,ke K
wh <yt VYmeM,icVkeK




L inearized bilevel model

k
max SJ SJ SJ Pri Wy

X,w,
Y keKieV meM

S.t. S: S: Xk o<1

keK meM

y" € Sg(X")
McCormick Inequalities
Xk wk e {0,1}"

y* e {0,1}"

VieV\ {0}

Vke K

VmeMkeK
Vke K




Single-level reformulations




Value function reformulation

max
X7w7y)z

S.t.

DD D Pmitl

keK i€V meM

>y e

ke K meM

ok < b

eV

McCormick ineq.
<y X
meM
(y*, 2%) is a route

Z Z pijmZ Z ck z’€ > pF Xk)

i€V meM (i,j)EA

VieV\{0}
VkeK

Vme M, € V.ke K
VieV ke K

Vke K
Vke K




Value function reformulation

max
X7w7y)z

S.t.

DD D Pmitl

keK i€V meM

>y e

ke K meM

Sk < v

eV

McCormick ineq.
<y X
meM
(y*, 2%) is a route

Z Z pijmZ Z ck z’€ > pF Xk)

i€V meM (i,j)EA

VieV\{0}
Vke K

Vme M,1 € V.ke K
VieV ke K

Vke K
Vke K




Value function reformulation

max
X7w7y)z

S.t.

DD D Pmitl

keK i€V meM

> Y xi<

ke K meM

2 2 X<t

1€V meM

McCormick ineq.

meM

(y*, 2%) is a route

VieV\{0}
Vke K

Vme M,ieV ke K
VieV,ke K

VEe K

YD Py, — Z ckak > OF(XY) VkeK




Proposition

P = e S kbt - X ik

(y", 2¥) is a route

yk c {O, 1}n+1jzk c {O, 1}|A|

VieV




Proposition

There always exists an optimal solution of the following problem, which is also
optimal for % (Xk

OF(XF) = mas: S‘ S‘ Prri X it — Z cszfj

1€V meM (i,7)EA

s.t. (y", 2") is a route
y* € {0,1}"+, 2% € {0,114




Single-level reformulation

Let Pk ext denote the set of all the extreme points (y*, 2%) of the convex hull of the
profitable tour feasible solutions determined by constraints “(y*, %) is a route” It

holds:
PF(XF) =  max T Y Prmi X5 — Z ng

sk
(y )E e:z:t i€V meM (’L,j)EA

Thus, by replacing value function constraint for each k

ST Piwk— > CZZZ > OF(XF)
1€V meM (i,j)EA




Single-level reformulation

Let Pekxt denote the set of all the extreme points (y*, 2¥) of the convex hull of the

profitable tour feasible solutions determined by constraints “(y*, %) is a route” It
holds:

krvky S ‘ S 5k ok E k 2k
¢ (X ) N IAIklakaf J D meszyZ - Cijzij
(y )% )E ext sV meM (’i,j)EA

Thus, by replacing value function constraint for each k

(%) Z Z ﬁmiwfm_ Z C?jzfj 2 Z Z ﬁminanf— Z ijéfja v (Qkaék) = Pekcct

eV meM (i,j)€A 1€V meM (i,j)€A

we obtain a single-level reformulation of our problem.




Single-level reformulation

Let Pk ext denote the set of all the extreme points (y*, 2¥) of the convex hull of the
profitable tour feasible solutions determined by constraints “(y*, %) is a route” It
holds:

PF(XF) =  max T Y Prmi X5 — Z ng

k
(9%,2)ePgy i€V meM (i,j) €A

Thus, by replacing value function constraint for each k

Z Z pmzwmz Z C : 2 Z Z ﬁmz ﬁuﬁf Z C ,Lj, ) c PPATf

1€V meM (i,j)€A 1€V meM (i,j)€A

: : : Exponentially many!
we obtain a single-level reformulation of our problem. . / /




Separation procedure

o Relax constraints () from the bilevel problem, finding solution (X*,@", %, £*)

o Solve the profitable tour problem (lower level) for X* = X*foreach k,
obtaining solution (4¥, 2%) with optimal value ®*
o If it exists a k such that

S pithi— Y ek <,

i€V meM (i,5)€EA
add the cut
_ k k _k _ N k sk
Z Z DmiWy; — Z L = Z Z PmiXpmi¥i — Z Cij%ij
1€V meM (i,j)EA 1€V meM (i,j)€EA

to the master problem. Otherwise, the obtained solution is optimal for the original
bilevel formulation.




Projection of z variable




Projecting out the z variable

Since the platform profit is not depending on the route followed by each carrier,
there is no need to consider z variables at the master level:

k
max SJ SJ SJ PmiWyn;

X7w7y7z .
keKieV meM
sty Yy Xf<l1 VieV\{0}
keK meM
D> yp < Vkec K
i€V
McCormick ineq. Vme M,i e V.ke K
yr< Y Xy, VieVke K
meM
(y*, 2") is a route Vke K

SN Bk - Y k> k(XY VheK

ieV meM (i,j)€A




Projecting out the z variable

Since the platform profit is not depending on the route followed by each carrier,
there is no need to consider z variables at the master level:

ok
X%E?J;G SJ SJ SJ PmiWypy;

keK 1€V meM

st Yy > XF<1 vieV\{0}
ke K meM
> yr <t Vkec K
eV
McCormick ineq. VmeM,ieV,ke K
yr< Y o XE, VieVke K
meM
Qk Zchp(yk) Vke K

SN Bk, - 0" > 08 (X%)  Vikek

1€V meM




Projecting out the z variable

Since the platform profit is not depending on the route followed by each carrier,
there is no need to consider z variables at the master level:

S‘S‘S‘ ok
Xn;luazcg W i mezwmi

kEK i€V meEM
sty Yy X< VieV\ {0}
ke K meM
> yr <t VkeK
eV
McCormick ineq. Vme M,i1eV.ke K
yr< Y o XE, VieV,ke K
me M
(%) OF > CTSP(yk) Vike K Exponentially many!

G DY Pmwh, — 0" >F(XF)  VkeK

1€V meM




Heuristic warm-start procedure




Heuristic algorithm

We solve the problem without margin decision, setting the compensation to
¥ = (1 — Manin)ps for alliand k.

We obtain the optimal solution in terms of assignment of the leader % and
acceptance and routing decisions of the followers T,

We solve the “only-pricing problem”:

max » > > pmiXpy

ke K meM iEV(T’“)

st Yy X, =4F VieVke K
meM
Y. D PmiXp < ), pi—C(TY) VEkeK,
meM eV (T*) i€V (TF)

We obtain the optimal solution in terms of margin decisions X .
We solve the problem without margin decision, setting the compensation to

pr=p;i— > XE.pmi foralliand k.
meM




Computational results
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Instances

Chao’s instances for the OP: number of customers ranging from 21 to 66
Solomon instances for the VRPTW: number of customers ranging from 20 to 35
o 2,3 o0r4carriers
- Different margins sets: {0.2,0.5}; {0.5,0.9}; {0.2,0.5,0.8}; {0.5,0.7,0.9} * these are the margins
to the platform
o Time limit 1hour

o CPLEX 22.1.0.0




Heuristic Model (BPMD) Model (BPMD-z)

LB, | #opt LB UB gap time septime #sep #nodes | #opt LB UB gap time septime #sep #nodes
Chao instances
{0.2, 0.5} 1076 15 1076 1076 0.00 6.3 0.0 1 0 15 1076 1076 [0.00| 6.8 1.6 3 0
{0.5, 0.9} 1876 0 1892 1937 2.36 3600 1254 384 193346 0 1907 1937 | 1.60 | 3600 2541 4472 121306
{0.2, 0.5, 0.8} 1716 11 1719 1722 0.18 1477 723 309 36777 11 1719 1722 | 0.17 | 1337 1037 2337 19481
{0.5, 0.7, 0.9} 1881 0 1893 1937 2.33 3600 1310 430 170169 0 1911 1937 [1.34] 3600 2397 4844 143357
Solomon instances
{0.2, 0.5} 672 9 675 676 0.20 904 114 98 50971 9 676 676 0.08 986 827 1409 18437
{0.5, 0.9} 770 2 898 1003 | 9.04] 3163 245 377 579250 0 875 1068 17.0 3600 980 6279 435079
{0.2, 0.5, 0.8} 790 5 945 1010 | 5.25| 2584 145 235 571582 0 918 1059 12.4 3600 981 5947 434403
{0.5, 0.7, 0.9} 773 5 929 1015 | 6.92| 2714 218 342 579739 0 915 1083 14.5 3600 948 5051 489491




Solutions structure

Leader’s Profit | %high %medium %low | %served | time
R20_2
0.2, 0.5) 4875 100 0 100] 0.1
{0.5, 0.9} 675.7 41.2 . 588|  89.5| 456
{0.2, 0.5, 0.8} 691.8 68.8 31.2 0 84.2 70
{0.5, 0.7, 0.9} 731.8 33.3 444 222 90| 223
R20_3
{0.2, 0.5} 487.5 100 - 0 100 | 0.2
{0.5, 0.9} 661.3 41.2 . 588|  89.5|1490
{0.2, 0.5, 0.8} 675 62.5 375 0| 842 431
{0.5, 0.7, 0.9} 705.6 22.2 50 27.8 90 | 745




Conclusions

o The problem becomes harder to solve when margins are such that mix

of them is made in the optimal solution

o Solomon’'s instances are harder — probably related to the geography of

customers

o Projecting out z variables pays off on Chao’s instances, but not on

Solomon’s ones
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