A bilevel approach for compensation and routing decisions in last-mile delivery

Martina Cerulli¹, Claudia Archetti², Elena Fernandez³, Ivana Ljubic²

> ¹University of Salerno ²ESSEC Business School ³University of Cadiz

ArXiv preprint

Application

Peer-to-peer logistic platforms

Our scenario

A set I of items to be delivered to a set V of costumers. Given a set K of potential **carriers** (e.g., occasional drivers), the platform searches for carriers that can deliver subsets of I, and **pays to carrier k a compensation** \bar{p}_i^k for each delivered item, i.e., for each served customer. Each carrier k pays c_{ij}^k to go from costumer i to costumer j.

A **platform** receives a price p_i for each item to be delivered.

Our scenario

The **platform** proposes to each carrier k a set of items P_k to serve and a compensation for each item \overline{p}_i^k .

Each **carrier** k receives the proposal, and, based on her net profit, decides on a subset of customers $Q_k \subseteq P_k$ to accept to serve.

Our scenario

The **platform** proposes to each carrier k a set of items P_k to serve and a compensation for each item \overline{p}_i^k .

Each **carrier** k receives the proposal, and, based on her net profit, decides on a subset of customers $Q_k \subseteq P_k$ to accept to serve.

Optimization problem

How the **platform** maximizes its own profit if it has no direct control over the **carriers**?

Bilevel Programming

Reformulations

Value function reformulation

One way to reformulate the bilevel problem is considering the so-called *value function* of the lower-level problem:

$$\varphi(x) = \min_{y'} \{ f(x, y') | g(x, y') \le 0 \},\$$

obtaining the following single-level reformulation:

$$\min_{x,y} F(x,y)$$

s.t. $G(x,y) \le 0$
 $g(x,y) \le 0$
 $f(x,y) \le \varphi(x)$
 $x \in \mathcal{X}, y \in \mathcal{Y}.$

The bilevel formulation

The bilevel framework

In our problem, the platform acts as the leader. The carriers act as the |K| followers.

Parameters and sets:

- V set of customers to be served (or equivalently items to be delivered)
- K set of independent carriers
- p_i price the customer i pays to the platform
- c_{ii}^k routing cost that carrier k pays to go from customer i to customer j
- b^k maximum number of customers carrier k can serve Decisions:
- The **platform** proposes to each carrier k a set of items P_k to serve and a compensation for each item \overline{p}_i^k .
- Each **carrier** k receives the proposal, and, based on her net profit, decides on a subset of customers $Q_k \subseteq P_k$ to accept to serve.

The bilevel framework

The goal of each carrier k is maximizing her net profit:

$$\sum_{i \in Q_k} \bar{p}_i^k - \sum_{i \in Q_k} \sum_{j \in Q_k} c_{ij}^k.$$

The goal of the leader is making a call to the carriers, so as to maximize his profit, which is defined as:

$$\sum_{k \in K} \sum_{i \in Q_k} (p_i - \bar{p}_i^k).$$

Do we really need bilevel optimization?

Do we really need bilevel optimization?

The bilevel framework: compensation decisions

The profit of the leader is:

$$\sum_{k \in K} \sum_{i \in Q_k} (p_i - \bar{p}_i^k).$$

We assume that the leader cannot decide on \bar{p}_i^k directly, but has |M| different possible categories of profit margins that can choose to gain for each item. The profit margin $m = \frac{(p_i - \bar{p}_i^k)}{p_i}$. Thus, for an item i and a vehicle k, the net profit $(p_i - \bar{p}_i^k)$ is, for a margin m, $p_{mi} := m \cdot p_i$ Thus, for an item i and a carrier k, the compensation \bar{p}_i^k is, for a margin m,

$$\bar{p}_{mi} = p_i - p_{mi}$$

Variables

Upper-level variables for all $i \in V$:

 X^k_{mi} 1 iff the margin selected by the leader for item i and carrier k is m

Lower-level variables for all $i \in V$:

- y_i^k 1 iff carrier k **accepts** to serve item i, i.e. if $i \in Q_k$
- z_{ij}^k 1 iff arc (i, j) is traversed by carrier k to deliver items i and j from Q_k

Objective functions

Being $m = \frac{(p_i - \bar{p}_i^k)}{p_i}$ and $p_{mi} = mp_i = p_i - \bar{p}_i^k$, and $\bar{p}_{mi} = p_i - p_{mi}$:

• The goal of the leader is making a call to the carriers, so as to maximize his net profit:

$$\sum_{k \in K} \sum_{i \in Q_k} \left(p_i - \bar{p}_i^k \right) = \sum_{k \in K} \sum_{m \in M} \sum_{i \in V} p_{mi} X_{mi}^k y_i^k$$

• The goal of each follower k is maximizing her net profit:

$$\sum_{i \in Q_k} \bar{p}_i^k - \sum_{i \in Q_k} \sum_{j \in Q_k} c_{ij}^k = \sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k y_i^k - \sum_{(i,j) \in A} c_{ij}^k z_{ij}^k.$$

The bilevel formulation

$$\begin{split} \max_{X,y} & \sum_{k \in K} \sum_{i \in V} \sum_{m \in M} p_{mi} X_{mi}^k y_i^k \\ \text{s.t.} & \sum_{k \in K} \sum_{m \in M} X_{mi}^k \leq 1 & \forall i \in V \setminus \{0\} \\ & y^k \in S_{\Phi}^k(X^k) & \forall k \in K \\ & y^k, X_m^k \in \{0,1\}^n & \forall m \in M, k \in K \end{split}$$

where $S^k_{\Phi}(X^k)$ is the set of optimal solutions of the k-th follower problem.

Follower's problem (the Profitable Tour Problem)

The carrier (follower) k problem for a given \tilde{X}^k is formulated as:

$$\begin{split} \Phi^k(\tilde{X}^k) &= \max_{y,z} \sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} \tilde{X}^k_{mi} y^k_i - \sum_{(i,j) \in A} c^k_{ij} z^k_{ij} \\ \text{s.t.} \quad y^k_i &\leq \sum_{m \in M} \tilde{X}^k_{mi} \qquad \forall i \in V \\ \sum_{i \in V} y^k_i &\leq b^k \\ & (y^k, z^k) \text{ is a route} \\ & y^k \in \{0, 1\}^{n+1}, z^k \in \{0, 1\}^{|A|} \end{split}$$

Optimistic setting

We assume that we are in an optimistic setting, i.e., for a given choice of \tilde{X}^k , if follower k has multiple optimal responses determined by different sets Q_k of items to be delivered, she will accept to deliver the items which are more favorable to the leader:

$$\tilde{Q}_k = \arg\max_{Q_k} \{ \sum_{i \in Q_k} p_{mi} \tilde{X}_{mi}^k : Q_k \in S_{\Phi}^k(\tilde{X}^k) \}.$$

Dealing with bilinear terms

We can linearize this bilevel MINLP using the McCormick's inequalities. We introduce additional binary variables w_{mi}^k defined as $X_{mi}^k y_i^k$ and adjoin the following inequalities to the upper-level model:

$$\begin{aligned} X_{mi}^{k} + y_{i}^{k} &\leq w_{mi}^{k} + 1 \quad \forall \ m \in M, i \in V, k \in K \\ w_{mi}^{k} &\leq X_{mi}^{k} \quad \forall \ m \in M, i \in V, k \in K \\ w_{mi}^{k} &\leq y_{i}^{k} \quad \forall \ m \in M, i \in V, k \in K \end{aligned}$$

Single-level reformulations

Value function reformulation $\max_{X,w,y,z} \quad \sum_{k \in K} \sum_{i \in V} \sum_{m \in M} p_{mi} w_{mi}^k$ s.t. $\sum \sum X_i^k \le 1$ $\forall i \in V \setminus \{0\}$ $k \in K m \in M$ $\sum y_i^k \le b^k$ $\forall k \in K$ $i \in V$ McCormick ineq. $\forall m \in M, i \in V, k \in K$ $y_i^k \leq \sum X_{mi}^k$ $\forall i \in V, k \in K$ $m \in M$ (y^k, z^k) is a route $\forall k \in K$ $\sum \sum \bar{p}_{mi} w_{mi}^k - \sum c_{ij}^k z_{ij}^k \ge \Phi^k(X^k) \quad \forall k \in K$ $i \in V m \in M$ $(i,j) \in A$

Value function reformulation $\max_{X,w,y,z} \quad \sum_{k \in K} \sum_{i \in V} \sum_{m \in M} p_{mi} w_{mi}^k$ s.t. $\sum \sum X_i^k \le 1$ $\forall i \in V \setminus \{0\}$ $k \in K m \in M$ $\sum y_i^k \leq b^k$ $\forall k \in K$ $i \in V$ McCormick ineq. $\forall m \in M, i \in V, k \in K$ $y_i^k \leq \sum X_{mi}^k$ $\forall i \in V, k \in K$ $m \in M$ (y^k, z^k) is a route $\forall k \in K$ $\sum \sum \bar{p}_{mi} w_{mi}^k - \sum c_{ij}^k z_{ij}^k \ge \Phi^k(X^k) \quad \forall k \in K$ $i \in V m \in M$ $(i,j) \in A$

Value function reformulation $\max_{X,w,y,z} \quad \sum_{k \in K} \sum_{i \in V} \sum_{m \in M} p_{mi} w_{mi}^k$ s.t. $\sum \sum X_i^k \leq 1$ $\forall i \in V \setminus \{0\}$ $k \in K m \in M$ $\sum \sum X_{mi}^k \le b^k$ $\forall k \in K$ $i \in V m \in M$ McCormick ineq. $\forall m \in M, i \in V, k \in K$ $y_i^k \leq \sum X_{mi}^k$ $\forall i \in V, k \in K$ $m \in M$ (y^k, z^k) is a route $\forall k \in K$ $\sum \sum \bar{p}_{mi} w_{mi}^k - \sum c_{ij}^k z_{ij}^k \ge \Phi^k(X^k) \quad \forall k \in K$ $i \in V m \in M$ $(i,j) \in A$

Proposition

$$\begin{split} \Phi^k(\tilde{X}^k) &= \max_{y,z} \sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} \tilde{X}^k_{mi} y^k_i - \sum_{(i,j) \in A} c^k_{ij} z^k_{ij} \\ \text{s.t.} \quad y^k_i &\leq \sum_{m \in M} \tilde{X}^k_{mi} \qquad \forall i \in V \\ \sum_{i \in V} y^k_i &\leq b^k \\ & (y^k, z^k) \text{ is a route} \\ & y^k \in \{0, 1\}^{n+1}, z^k \in \{0, 1\}^{|A|} \end{split}$$

Proposition

There always exists an optimal solution of the following problem, which is also optimal for $\Phi^k(\tilde{X}^k)$: $\bar{\Phi}^k(\tilde{X}^k) = \max_{y,z} \sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} \tilde{X}^k_{mi} y^k_i - \sum_{(i,j) \in A} c^k_{ij} z^k_{ij}$ s.t. (y^k, z^k) is a route $y^k \in \{0, 1\}^{n+1}, z^k \in \{0, 1\}^{|A|}$

Single-level reformulation

Let P_{ext}^k denote the set of all the extreme points (y^k, z^k) of the convex hull of the profitable tour feasible solutions determined by constraints " (y^k, z^k) is a route". It holds:

$$\Phi^{k}(X^{k}) = \max_{(\hat{y}^{k}, \hat{z}^{k}) \in P_{ext}^{k}} \sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^{k} \hat{y}_{i}^{k} - \sum_{(i,j) \in A} c_{ij}^{k} \hat{z}_{ij}^{k}$$

Thus, by replacing value function constraint for each k

$$\sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} w_{mi}^k - \sum_{(i,j) \in A} c_{ij}^k z_{ij}^k \ge \Phi^k(X^k)$$

Single-level reformulation

Let P_{ext}^k denote the set of all the extreme points (y^k, z^k) of the convex hull of the profitable tour feasible solutions determined by constraints " (y^k, z^k) is a route". It holds:

$$\Phi^{k}(X^{k}) = \max_{(\hat{y}^{k}, \hat{z}^{k}) \in P_{ext}^{k}} \sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^{k} \hat{y}_{i}^{k} - \sum_{(i,j) \in A} c_{ij}^{k} \hat{z}_{ij}^{k}$$

Thus, by replacing value function constraint for each k

$$(\star) \sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} w_{mi}^k - \sum_{(i,j) \in A} c_{ij}^k z_{ij}^k \ge \sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_i^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_{ij}^k, \quad \forall \; (\hat{y}^k, \hat{z}^k) \in P_{ext}^k$$

we obtain a single-level reformulation of our problem.

Single-level reformulation

Let P_{ext}^k denote the set of all the extreme points (y^k, z^k) of the convex hull of the profitable tour feasible solutions determined by constraints " (y^k, z^k) is a route". It holds:

$$\Phi^{k}(X^{k}) = \max_{(\hat{y}^{k}, \hat{z}^{k}) \in P_{ext}^{k}} \sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^{k} \hat{y}_{i}^{k} - \sum_{(i,j) \in A} c_{ij}^{k} \hat{z}_{ij}^{k}$$

Thus, by replacing value function constraint for each k

$$(\star) \sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} w_{mi}^k - \sum_{(i,j) \in A} c_{ij}^k z_{ij}^k \ge \sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_i^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_{ij}^k, \quad \forall \; (\hat{y}^k, \hat{z}^k) \in P_{ext}^k$$

we obtain a single-level reformulation of our problem.

Exponentially many!

Separation procedure

- Relax constraints (*) from the bilevel problem, finding solution $(\tilde{X}^k, \tilde{w}^k, \tilde{y}^k, \tilde{z}^k)$
- Solve the profitable tour problem (lower level) for $X^k = \tilde{X}^k$ for each k, obtaining solution (\hat{y}^k, \hat{z}^k) with optimal value $\hat{\Phi}^k$
- o If it exists a k such that

$$\sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} \tilde{w}_{mi}^k - \sum_{(i,j) \in A} c_{ij}^k \tilde{z}_{ij}^k < \hat{\Phi}^k$$

add the cut

$$\sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} w_{mi}^k - \sum_{(i,j) \in A} c_{ij}^k z_{ij}^k \ge \sum_{i \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_i^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_i^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_i^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_i^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_i^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_i^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_i^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_i^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_i^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_i^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_i^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_j^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_j^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_j^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k - \sum_{(i,j) \in A} c_{ij}^k \hat{z}_j^k \sum_{j \in V} \sum_{m \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k \sum_{j \in V} \sum_{j \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k \sum_{j \in V} \sum_{j \in M} \bar{p}_{mi} X_{mi}^k \hat{y}_j^k \sum_{j \in M} \bar{p}_{mi} X_{mi}^k \sum_{j \in M} \bar{p}_{mi} X_{mi}^k \sum_{j \in M} \bar{p}_{mi} X_{mi}^k \sum_{j \in M} \bar{p}_{mi}$$

to the master problem. Otherwise, the obtained solution is optimal for the original bilevel formulation.
Projection of z variable

Projecting out the z variable

Since the platform profit is not depending on the route followed by each carrier, there is no need to consider z variables at the master level:

 $\sum \sum \sum p_{mi} w_{mi}^k$ max X, w, y, z $k \in K \ i \in V \ m \in M$ s.t. $\sum \sum X_i^k \le 1$ $\forall i \in V \setminus \{0\}$ $k \in K m \in M$ $\sum y_i^k \le b^k$ $\forall k \in K$ $i \in V$ $\forall m \in M, i \in V, k \in K$ McCormick ineq. $y_i^k \leq \sum X_{mi}^k$ $\forall i \in V, k \in K$ $m \in M$ $(y^k, \boldsymbol{z^k})$ is a route $\forall k \in K$ $\sum \sum \bar{p}_{mi} w_{mi}^k - \sum c_{ij}^k z_{ij}^k \ge \Phi^k(X^k) \quad \forall \ k \in K$ $i \in V m \in M$ $(i,j) \in A$

Projecting out the z variable

Since the platform profit is not depending on the route followed by each carrier, there is no need to consider z variables at the master level:

 $\sum \sum \sum p_{mi} w_{mi}^k$ max X, w, y, θ $k \in K i \in V m \in M$ s.t. $\sum \sum X_i^k \leq 1$ $\forall i \in V \setminus \{0\}$ $k \in K m \in M$ $\sum y_i^k \le b^k$ $\forall k \in K$ $i \in V$ McCormick ineq. $\forall m \in M, i \in V, k \in K$ $y_i^k \leq \sum X_{mi}^k$ $\forall i \in V, k \in K$ $m \in M$ $\theta^k \ge c_{TSP}(y^k)$ $\forall k \in K$ $\sum \sum \bar{p}_{mi} w_{mi}^k - \theta^k \ge \Phi^k(X^k) \qquad \forall k \in K$ $i \in V m \in M$

Projecting out the z variable

Since the platform profit is not depending on the route followed by each carrier, there is no need to consider z variables at the master level:

 $\sum \sum \sum p_{mi} w_{mi}^k$ max X, w, y, θ $k \in K \ i \in V \ m \in M$ s.t. $\sum \sum X_i^k \leq 1$ $\forall i \in V \setminus \{0\}$ $k \in K m \in M$ $\sum y_i^k \le b^k$ $\forall k \in K$ $i \in V$ McCormick ineq. $\forall m \in M, i \in V, k \in K$ $y_i^k \leq \sum X_{mi}^k$ $\forall i \in V, k \in K$ $m \in M$ $(\star\star) \quad \theta^k \ge c_{TSP}(y^k)$ Exponentially many! $\forall k \in K$ $\sum \sum \bar{p}_{mi} w_{mi}^k - \theta^k \ge \Phi^k(X^k)$ (\star) $\forall k \in K$ $i \in V m \in M$

Heuristic warm-start procedure

Heuristic algorithm

- We solve the problem without margin decision, setting the compensation to $\bar{p}_i^k = (1 m_{min})p_i$ for all i and k.
- We obtain the optimal solution in terms of assignment of the leader \hat{x}^k , and acceptance and routing decisions of the followers \hat{T}^k .
- We solve the "only-pricing problem":

$$\begin{aligned} \max_{X} \sum_{k \in K} \sum_{m \in M} \sum_{i \in V(\hat{T}^{k})} p_{mi} X_{mi}^{k} \\ \text{s.t.} \sum_{m \in M} X_{mi}^{k} = \hat{x}_{i}^{k} & \forall i \in V, k \in K \\ \sum_{m \in M} \sum_{i \in V(\hat{T}^{k})} p_{mi} X_{mi}^{k} \leq \sum_{i \in V(\hat{T}^{k})} p_{i} - C(\hat{T}^{k}) & \forall k \in K, \end{aligned}$$
o We obtain the optimal solution in terms of margin decisions \check{X} .

• We solve the problem without margin decision, setting the compensation to $\bar{p}_i^k = p_i - \sum_{m \in M} \check{X}_{mi}^k p_{mi}$ for all i and k.

Computational results

Instances

- **Chao**'s instances for the OP: number of customers ranging from 21 to 66
- **Solomon** instances for the VRPTW: number of customers ranging from 20 to 35
 - ° 2, 3 or 4 carriers
 - Different margins sets: {0.2,0.5}; {0.5,0.9}; {0.2,0.5,0.8}; {0.5,0.7,0.9} * these are the margins
 to the platform
 - Time limit 1hour
 - CPLEX 22.1.0.0

	Heuristic	Model (BPMD)						Model (BPMD-z)									
	LB_h	#opt	LB	UB	gap	time	septime	# sep	#nodes	#opt	LB	UB	gap	time	septime	# sep	#nodes
Chao instances																	
$\{0.2, 0.5\}$	1076	15	1076	1076	0.00	6.3	0.0	1	0	15	1076	1076	0.00	6.8	1.6	3	0
$\{0.5, 0.9\}$	1876	0	1892	1937	2.36	3600	1254	384	193346	0	1907	1937	1.60	3600	2541	4472	121306
$\{0.2, 0.5, 0.8\}$	1716	11	1719	1722	0.18	1477	723	309	36777	11	1719	1722	0.17	1337	1037	2337	19481
$\{0.5, 0.7, 0.9\}$	1881	0	1893	1937	2.33	3600	1310	430	170169	0	1911	1937	1.34	3600	2397	4844	143357
Solomon instances																	
$\{0.2, 0.5\}$	672	9	675	676	0.20	904	114	98	50971	9	676	676	0.08	986	827	1409	18437
$\{0.5, 0.9\}$	770	2	898	1003	9.04	3163	245	377	579250	0	875	1068	17.0	3600	980	6279	435079
$\{0.2, 0.5, 0.8\}$	790	5	945	1010	5.25	2584	145	235	571582	0	918	1059	12.4	3600	981	5947	434403
$\{0.5, 0.7, 0.9\}$	773	5	929	1015	6.92	2714	218	342	579739	0	915	1083	14.5	3600	948	5051	489491

Solutions structure

	Leader's Profit	%high	%medium	%low	%served	time
R20_2						
$\{0.2, 0.5\}$	487.5	100	-	0	100	0.1
$\{0.5, 0.9\}$	675.7	41.2	-	58.8	89.5	456
$\{0.2, 0.5, 0.8\}$	691.8	68.8	31.2	0	84.2	70
$\{0.5, 0.7, 0.9\}$	731.8	33.3	44.4	22.2	90	223
R20_3						
$\{0.2, 0.5\}$	487.5	100	-	0	100	0.2
$\{0.5, 0.9\}$	661.3	41.2	-	58.8	89.5	1490
$\{0.2, 0.5, 0.8\}$	675	62.5	37.5	0	84.2	431
$\{0.5, 0.7, 0.9\}$	705.6	22.2	50	27.8	90	745

Conclusions

- The problem becomes harder to solve when margins are such that mix of them is made in the optimal solution
- Solomon's instances are harder probably related to the geography of customers
- Projecting out z variables pays off on Chao's instances, but not on Solomon's ones

Thank you! Any questions? ArXiv preprint mcerulli@unisa.it