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Application



Peer-to-peer logistic platforms



Peer-to-peer logistic platforms



Peer-to-peer logistic platforms



Our scenario

A set I of items to be 
delivered to a set V of 
costumers.

A platform receives a price pi for each item to 
be delivered.

Given a set K of potential carriers (e.g., 
occasional drivers), the platform searches 
for carriers that can deliver subsets of I, 
and pays to carrier k a compensation pi

k 
for each delivered item, i.e., for each served 
customer. Each carrier k pays cij

k to go from 
costumer i to costumer j.



Our scenario
The platform proposes to each carrier k a 
set of items Pk to serve and a 
compensation for each item pi

k.

Each carrier k receives the proposal, and, based 
on her net profit, decides on a subset of 
customers Qk ⊆ Pk to accept to serve.
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set of items Pk to serve and a 
compensation for each item pi

k.

Each carrier k receives the proposal, and, based 
on her net profit, decides on a subset of 
customers Qk ⊆ Pk to accept to serve.



Optimization problem

How the platform maximizes its own profit if it has 
no direct control over the carriers?



Bilevel Programming



Bilevel programming

“min
x∈X

” F (x, y)

s.t. G(x, y) ≤ 0

y ∈ arg min
y′∈Y

{f(x, y′) | g(x, y′) ≤ 0}

Optimistic approach
min
x∈X

min
y∈S(x)

F (x, y)
Pessimistic approach

min
x∈X

max
y∈S(x)

F (x, y)



Reformulations
One way to reformulate the bilevel problem is considering the so-called 
value function of the lower-level problem:

ϕ(x) = min
y′

{f(x, y′)|g(x, y′) ≤ 0},

obtaining the following single-level reformulation: 

min
x,y

F (x, y)

s.t. G(x, y) ≤ 0

g(x, y) ≤ 0

f(x, y) ≤ ϕ(x)

x ∈ X , y ∈ Y .

Value function 
reformulation



The bilevel formulation



The bilevel framework
In our problem, the platform acts as the leader. The carriers act as the |K| followers.

Parameters and sets:

• V set of customers to be served (or equivalently items to be delivered)
• K set of independent carriers
• pi price the customer i pays to the platform
• cij

k routing cost that carrier k pays to go from customer i to customer j
• bk maximum number of customers carrier k can serve
Decisions:

• The platform proposes to each carrier k a set of items Pk to serve and a 
compensation for each item pi

k.
• Each carrier k receives the proposal, and, based on her net profit, decides on a 

subset of customers Qk ⊆ Pk to accept to serve.



∑

k∈K

∑

i∈Qk

(pi − p̄
k
i ).

The goal of each carrier k is maximizing her net profit:∑

i∈Qk

p̄
k
i −

∑

i∈Qk

∑

j∈Qk

c
k
ij .

The goal of the leader is making a call to the carriers, so as to maximize his profit, 
which is defined as:

The bilevel framework



Do we really need bilevel optimization?
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The objective function (1a) represents the net profit of the platform to be maximized. The first

constraints (1b) impose that each item is served by at most one carrier; the second ones (1c) are

the capacity constraints; constraints (1d) state that each carrier should have a nonnegative profit;

finally, constraints (1e) ensure that zk is the incidence vector of a route that visits the depot and

all customers i such that ↵k
i = 1.

Another single-level formulation is obtained if a profit-sharing between the platform and the set

of carriers is considered. This situation arises when dealing with the so-called Urban Consolidation

centers (UCC), or City Logistics Centers, i.e., logistics facilities strategically located within urban

areas to optimize the e�ciency of last-mile deliveries (Handoko et al., 2015). In this case, the

carriers are integrated in the platform, and the objective function is the total profit of the whole

set of carriers. The single-level formulation we end up with is:

max
↵,z

X

k2K

X

i2V

p̄ki↵
k
i �

X

(i,j)2A

ckijz
k
ij (2a)

s.t.
X

k2K

↵k
i  1 8 i2 V (2b)

X

i2V

↵k
i  bk 8 k 2K (2c)

(↵k, zk) is a route 8 k 2K (2d)

↵k 2 {0,1}n+1, zk 2 {0,1}|A| 8 k 2K (2e)

This single-level formulation, which we can define as UCC-PTP, can be used to obtain a lower

bound on the profit of our independent delivery platform (i.e., on the optimal value of the BPFM).

The one we discussed in our last meeting does not give a lower bound! It is a lower-bound of

an upper-bound of (1). Moreover, I think this is the formulation suggested by the reviewer.

With the following example, we better clarify the relationships between these formulations and

the bilevel version of the problem.

(10,8) (10,0.4) (5.5,5) (5.5,5.1)

3.2. Mathematical formulations of the Bilevel PTP with Fixed Margins

In this section, we introduce a formulation for the BPFM with a limit on the number of packages.

We recall that in the BPFM the leader does not decide on the compensations to be paid to the

carriers, i.e., p̄ki is fixed and given a-priori.

To model the leader’s decision on the proposal to each carrier, we use binary decision variables

xk
i , i 2 V , k 2K, which take the value 1, i↵ the platform assigns customer i to carrier k, i.e., if

i2 Pk. In addition, we define the lower-level binary variable yk
i for each i2 V0 and k 2K, to model

the acceptance decision of the carriers. yk
i is 1, i↵ carrier k accepts to serve customer i, i.e., i2Qk;

Cerulli, Archetti, Fernández, Ljubić: Bilevel optimization for peer-to-peer delivery
10 Article submitted to Transportation Science; manuscript no. TS-2023-0129

The objective function (1a) represents the net profit of the platform to be maximized. The first

constraints (1b) impose that each item is served by at most one carrier; the second ones (1c) are

the capacity constraints; constraints (1d) state that each carrier should have a nonnegative profit;

finally, constraints (1e) ensure that zk is the incidence vector of a route that visits the depot and

all customers i such that ↵k
i = 1.

Another single-level formulation is obtained if a profit-sharing between the platform and the set

of carriers is considered. This situation arises when dealing with the so-called Urban Consolidation

centers (UCC), or City Logistics Centers, i.e., logistics facilities strategically located within urban

areas to optimize the e�ciency of last-mile deliveries (Handoko et al., 2015). In this case, the

carriers are integrated in the platform, and the objective function is the total profit of the whole

set of carriers. The single-level formulation we end up with is:

max
↵,z

X

k2K

X

i2V

p̄ki↵
k
i �

X

(i,j)2A

ckijz
k
ij (2a)

s.t.
X

k2K

↵k
i  1 8 i2 V (2b)

X

i2V

↵k
i  bk 8 k 2K (2c)

(↵k, zk) is a route 8 k 2K (2d)

↵k 2 {0,1}n+1, zk 2 {0,1}|A| 8 k 2K (2e)

This single-level formulation, which we can define as UCC-PTP, can be used to obtain a lower

bound on the profit of our independent delivery platform (i.e., on the optimal value of the BPFM).

The one we discussed in our last meeting does not give a lower bound! It is a lower-bound of

an upper-bound of (1). Moreover, I think this is the formulation suggested by the reviewer.

With the following example, we better clarify the relationships between these formulations and

the bilevel version of the problem.

(10,8) (10,0.4) (5.5,5) (5.5,5.1)

3.2. Mathematical formulations of the Bilevel PTP with Fixed Margins

In this section, we introduce a formulation for the BPFM with a limit on the number of packages.

We recall that in the BPFM the leader does not decide on the compensations to be paid to the

carriers, i.e., p̄ki is fixed and given a-priori.

To model the leader’s decision on the proposal to each carrier, we use binary decision variables

xk
i , i 2 V , k 2K, which take the value 1, i↵ the platform assigns customer i to carrier k, i.e., if

i2 Pk. In addition, we define the lower-level binary variable yk
i for each i2 V0 and k 2K, to model

the acceptance decision of the carriers. yk
i is 1, i↵ carrier k accepts to serve customer i, i.e., i2Qk;
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c ij 
 =

 0
.5

• V = {1, 2, 3, 4, 5, 6}
• K = {a, b}
• bk is 2 for all k

For each i:
(pi , pi

k) for all k

cij   = 1



Do we really need bilevel optimization?
In a single-level setting, the leader assigns parcels so as to maximize the profit and 
such that each carrier has a non-negative net profit.

The platform assigns items
- 1 and 2 to carrier A 
- 3 and 4 to carrier B 
Profit = 25.5

In the bilevel setting:
- carrier A accepts only 1
- carrier B accepts both 3 
and 4
Profit = 16

OVERESTIMATION
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Do we really need bilevel optimization?

In the bilevel setting:
- carrier A accepts 4 and 5
- carrier B accepts 1 and 6
Profit = 8.9

UNDERESTIMATION

In another single-level setting, we discard the role of the platform and we only 
maximize the profit of the total set of carriers.

- carrier A serves items 4, and 5
- carrier B serves items 1 and 6 
Total profit of the carriers’ 
alliance = 19.1 In the optimal solution, 

the leader would assign 
items 3, 4, 1 and 6.
Profit = 16.5

0

(10, 2)

(10, 4)

2 3

4

56

1
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To model the leader’s decision on the proposal to each carrier, we use binary decision variables

xk
i , i 2 V , k 2K, which take the value 1, i↵ the platform assigns customer i to carrier k, i.e., if

i2 Pk. In addition, we define the lower-level binary variable yk
i for each i2 V0 and k 2K, to model

the acceptance decision of the carriers. yk
i is 1, i↵ carrier k accepts to serve customer i, i.e., i2Qk;
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The objective function (1a) represents the net profit of the platform to be maximized. The first

constraints (1b) impose that each item is served by at most one carrier; the second ones (1c) are

the capacity constraints; constraints (1d) state that each carrier should have a nonnegative profit;

finally, constraints (1e) ensure that zk is the incidence vector of a route that visits the depot and

all customers i such that ↵k
i = 1.

Another single-level formulation is obtained if a profit-sharing between the platform and the set

of carriers is considered. This situation arises when dealing with the so-called Urban Consolidation

centers (UCC), or City Logistics Centers, i.e., logistics facilities strategically located within urban

areas to optimize the e�ciency of last-mile deliveries (Handoko et al., 2015). In this case, the

carriers are integrated in the platform, and the objective function is the total profit of the whole

set of carriers. The single-level formulation we end up with is:

max
↵,z

X

k2K

X

i2V

p̄ki↵
k
i �

X

(i,j)2A

ckijz
k
ij (2a)

s.t.
X

k2K

↵k
i  1 8 i2 V (2b)

X

i2V

↵k
i  bk 8 k 2K (2c)

(↵k, zk) is a route 8 k 2K (2d)

↵k 2 {0,1}n+1, zk 2 {0,1}|A| 8 k 2K (2e)

This single-level formulation, which we can define as UCC-PTP, can be used to obtain a lower

bound on the profit of our independent delivery platform (i.e., on the optimal value of the BPFM).

The one we discussed in our last meeting does not give a lower bound! It is a lower-bound of

an upper-bound of (1). Moreover, I think this is the formulation suggested by the reviewer.

With the following example, we better clarify the relationships between these formulations and

the bilevel version of the problem.

(10,8) (10,0.4) (5.5,5) (5.5,5.1)

3.2. Mathematical formulations of the Bilevel PTP with Fixed Margins

In this section, we introduce a formulation for the BPFM with a limit on the number of packages.

We recall that in the BPFM the leader does not decide on the compensations to be paid to the

carriers, i.e., p̄ki is fixed and given a-priori.

To model the leader’s decision on the proposal to each carrier, we use binary decision variables

xk
i , i 2 V , k 2K, which take the value 1, i↵ the platform assigns customer i to carrier k, i.e., if

i2 Pk. In addition, we define the lower-level binary variable yk
i for each i2 V0 and k 2K, to model

the acceptance decision of the carriers. yk
i is 1, i↵ carrier k accepts to serve customer i, i.e., i2Qk;

(10,0.5)



∑

k∈K

∑

i∈Qk

(pi − p̄
k
i ).

∑

k∈K

∑

i∈Qk

(pi − p̄
k
i ).

The bilevel framework: compensation decisions

The profit of the leader is:

We assume that the leader cannot decide on       directly, but has |M| different 
possible categories of profit margins that can choose to gain for each item.

p̄
k
i

The profit margin   m =               . 
Thus, for an item i and a vehicle k, the net profit                   is, for a margin m, 

(pi−p̄
k

i
)

pi

(pi − p̄
k
i )

pmi := m · pi

Thus, for an item i and a carrier k, the compensation       is, for a margin m, p̄
k
i

p̄mi = pi − pmi



Variables

Upper-level variables for all          :i ∈ V

Lower-level variables for all          :i ∈ V

Xk
mi

1 iff the margin selected by the leader for item   and carrier k is m

y
k
i

1 iff carrier k accepts to serve item   , i.e. if i ∈ Qki

i

z
k
ij 1 iff arc         is traversed by carrier k to deliver items   and   from i j(i, j) Qk



Objective functions

Being                            and                                                             :m =
(pi−p̄

k

i
)

pi
pmi = mpi = pi − p̄

k
i , and p̄mi = pi − pmi

• The goal of the leader is making a call to the carriers, so as to maximize his net 
profit:

• The goal of each follower k is maximizing her net profit:

∑

k∈K

∑

i∈Qk

(pi − p̄ki ) =
∑

k∈K

∑

m∈M

∑

i∈V

pmiX
k
miy

k
i .

∑

i∈Qk

p̄ki −

∑

i∈Qk

∑

j∈Qk

ckij =
∑

i∈V

∑

m∈M

p̄miX
k
miy

k
i −

∑

(i,j)∈A

ckijz
k
ij .



The bilevel formulation

max
X,y

∑

k∈K

∑

i∈V

∑

m∈M

pmiX
k
miy

k
i

s.t.
∑

k∈K

∑

m∈M

Xk
mi ≤ 1 ∀ i ∈ V \ {0}

yk ∈ Sk
Φ(X

k) ∀ k ∈ K

yk, Xk
m ∈ {0, 1}n ∀ m ∈ M,k ∈ K

where                  is the set of optimal solutions of the k-th follower problem.Sk
Φ
(Xk)



Follower’s problem (the Profitable Tour Problem) 

The carrier (follower) k problem for a given         is formulated as:

Φk(X̃k) = max
y,z

∑

i∈V

∑

m∈M

p̄miX̃
k
miy

k
i −

∑

(i,j)∈A

ckijz
k
ij

s.t. yki ≤
∑

m∈M

X̃k
mi ∀ i ∈ V

∑

i∈V

yki ≤ bk

(yk, zk) is a route

yk ∈ {0, 1}n+1, zk ∈ {0, 1}|A|

X̃k



Optimistic setting

We assume that we are in an optimistic setting, i.e., for a given choice of       , if 
follower k has multiple optimal responses determined by different sets Qk of items 
to be delivered, she will accept to deliver the items which are more favorable to 
the leader:

Q̃k = argmax
Qk

{
∑

i∈Qk

pmiX̃
k
mi : Qk ∈ Sk

Φ(X̃
k)}.

X̃k



Dealing with bilinear terms
We can linearize this bilevel MINLP using the McCormick’s inequalities. We 
introduce additional binary variables        defined as            and adjoin the 
following inequalities to the upper-level model: 

Xk
mi + yki ≤ wk

mi + 1 ∀ m ∈ M, i ∈ V, k ∈ K

wk
mi ≤ Xk

mi ∀ m ∈ M, i ∈ V, k ∈ K

wk
mi ≤ yki ∀ m ∈ M, i ∈ V, k ∈ K

w
k
mi Xk

miy
k
i



Linearized bilevel model

max
X,w,y

∑

k∈K

∑

i∈V

∑

m∈M

pmiw
k
mi

s.t.
∑

k∈K

∑

m∈M

Xk
mi ≤ 1 ∀ i ∈ V \ {0}

yk ∈ Sk
Φ(X

k) ∀ k ∈ K

McCormick Inequalities

Xk
m, wk

m ∈ {0, 1}n ∀ m ∈ M,k ∈ K

yk ∈ {0, 1}n+1 ∀ k ∈ K



Single-level reformulations



Value function reformulation
max

X,w,y,z

∑

k∈K

∑

i∈V

∑

m∈M

pmiw
k
mi

s.t.
∑

k∈K

∑

m∈M

Xk
i ≤ 1 ∀ i ∈ V \ {0}

∑

i∈V

yki ≤ bk ∀ k ∈ K

McCormick ineq. ∀m ∈ M, i ∈ V, k ∈ K

yki ≤
∑

m∈M

Xk
mi ∀ i ∈ V, k ∈ K

(yk, zk) is a route ∀ k ∈ K
∑

i∈V

∑

m∈M

p̄miw
k
mi −

∑

(i,j)∈A

ckijz
k
ij ≥ Φk(Xk) ∀ k ∈ K
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k
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Value function reformulation
max

X,w,y,z

∑

k∈K

∑

i∈V

∑

m∈M

pmiw
k
mi

s.t.
∑

k∈K

∑

m∈M

Xk
i ≤ 1 ∀ i ∈ V \ {0}

∑

i∈V

∑

m∈M

Xk
mi ≤ bk ∀ k ∈ K

McCormick ineq. ∀m ∈ M, i ∈ V, k ∈ K

yki ≤
∑

m∈M

Xk
mi ∀ i ∈ V, k ∈ K

(yk, zk) is a route ∀ k ∈ K
∑

i∈V

∑

m∈M

p̄miw
k
mi −

∑

(i,j)∈A

ckijz
k
ij ≥ Φk(Xk) ∀ k ∈ K



Φk(X̃k) = max
y,z

∑

i∈V

∑

m∈M

p̄miX̃
k
miy

k
i −

∑

(i,j)∈A

ckijz
k
ij

s.t. yki ≤
∑

m∈M

X̃k
mi ∀ i ∈ V

∑

i∈V

yki ≤ bk

(yk, zk) is a route

yk ∈ {0, 1}n+1, zk ∈ {0, 1}|A|

Proposition



Proposition

There always exists an optimal solution of the following problem, which is also 
optimal for                  :Φk(X̃k)
Φ̄k(X̃k) = max

y,z

∑

i∈V

∑

m∈M

p̄miX̃
k
miy

k
i −

∑

(i,j)∈A

ckijz
k
ij

s.t. (yk, zk) is a route

yk ∈ {0, 1}n+1, zk ∈ {0, 1}|A|



Single-level reformulation

Φk(Xk) = max
(ŷk,ẑk)∈Pk

ext

∑

i∈V

∑

m∈M

p̄miX
k
miŷ

k
i −

∑

(i,j)∈A

ckij ẑ
k
ij

Let          denote the set of all the extreme points              of the convex hull of the 
profitable tour feasible solutions determined by constraints                                 . It 
holds:

P k
ext (yk, zk)

“(yk, zk) is a route”

Thus, by replacing value function constraint for each k
∑

i∈V

∑

m∈M

p̄miw
k
mi −

∑

(i,j)∈A

ckijz
k
ij ≥ Φk(Xk)



Single-level reformulation

Φk(Xk) = max
(ŷk,ẑk)∈Pk

ext

∑

i∈V

∑

m∈M

p̄miX
k
miŷ

k
i −

∑

(i,j)∈A

ckij ẑ
k
ij

Let          denote the set of all the extreme points              of the convex hull of the 
profitable tour feasible solutions determined by constraints                                 . It 
holds:

P k
ext (yk, zk)

“(yk, zk) is a route”

Thus, by replacing value function constraint for each k

(!)
∑

i∈V

∑

m∈M

p̄miw
k
mi−

∑

(i,j)∈A

ckijz
k
ij ≥

∑

i∈V

∑

m∈M

p̄miX
k
miŷ

k
i −

∑

(i,j)∈A

ckij ẑ
k
ij , ∀ (ŷk, ẑk) ∈ P k

ext

we obtain a single-level reformulation of our problem.



Single-level reformulation

Φk(Xk) = max
(ŷk,ẑk)∈Pk

ext

∑

i∈V

∑

m∈M

p̄miX
k
miŷ

k
i −

∑

(i,j)∈A

ckij ẑ
k
ij

Let          denote the set of all the extreme points              of the convex hull of the 
profitable tour feasible solutions determined by constraints                                 . It 
holds:

P k
ext (yk, zk)

“(yk, zk) is a route”

Thus, by replacing value function constraint for each k

we obtain a single-level reformulation of our problem.

(!)
∑

i∈V

∑

m∈M

p̄miw
k
mi−

∑

(i,j)∈A

ckijz
k
ij ≥

∑

i∈V

∑

m∈M

p̄miX
k
miŷ

k
i −

∑

(i,j)∈A

ckij ẑ
k
ij , ∀ (ŷk, ẑk) ∈ P k

ext

Exponentially many!



Separation procedure
o Relax constraints      from the bilevel problem, finding solution
o Solve the profitable tour problem (lower level) for                      for each k, 

obtaining solution              with optimal value       
o If it exists a k such that

     add the cut

     to the master problem. Otherwise, the obtained solution is optimal for the original
     bilevel formulation.

(!) (X̃k, w̃k, ỹk, z̃k)

Xk = X̃k

(ŷk, ẑk) Φ̂k

∑

i∈V

∑

m∈M

p̄miw̃
k
mi −

∑

(i,j)∈A

c
k
ij z̃

k
ij < Φ̂

k
,

∑

i∈V

∑

m∈M

p̄miw
k
mi −

∑

(i,j)∈A

ckijz
k
ij ≥

∑

i∈V

∑

m∈M

p̄miX
k
miŷ

k
i −

∑

(i,j)∈A

ckij ẑ
k
ij



Projection of z variable



Projecting out the z variable
Since the platform profit is not depending on the route followed by each carrier, 
there is no need to consider z variables at the master level:

max
X,w,y,z

∑

k∈K

∑

i∈V

∑

m∈M

pmiw
k
mi

s.t.
∑

k∈K

∑

m∈M

Xk
i ≤ 1 ∀ i ∈ V \ {0}

∑

i∈V

yki ≤ bk ∀ k ∈ K

McCormick ineq. ∀m ∈ M, i ∈ V, k ∈ K

yki ≤
∑

m∈M

Xk
mi ∀ i ∈ V, k ∈ K

(yk, zk) is a route ∀ k ∈ K
∑

i∈V

∑

m∈M

p̄miw
k
mi −

∑

(i,j)∈A

ckijz
k
ij ≥ Φk(Xk) ∀ k ∈ K



Projecting out the z variable
Since the platform profit is not depending on the route followed by each carrier, 
there is no need to consider z variables at the master level:

max
X,w,y,θ

∑

k∈K

∑

i∈V

∑

m∈M

pmiw
k
mi

s.t.
∑

k∈K

∑

m∈M

Xk
i ≤ 1 ∀ i ∈ V \ {0}

∑

i∈V

yki ≤ bk ∀ k ∈ K

McCormick ineq. ∀m ∈ M, i ∈ V, k ∈ K

yki ≤
∑

m∈M

Xk
mi ∀ i ∈ V, k ∈ K

θk ≥ cTSP (y
k) ∀ k ∈ K

∑

i∈V

∑

m∈M

p̄miw
k
mi − θk ≥ Φk(Xk) ∀ k ∈ K



Projecting out the z variable
Since the platform profit is not depending on the route followed by each carrier, 
there is no need to consider z variables at the master level:

max
X,w,y,θ

∑

k∈K

∑

i∈V

∑

m∈M

pmiw
k
mi

s.t.
∑

k∈K

∑

m∈M

Xk
i ≤ 1 ∀ i ∈ V \ {0}

∑

i∈V

yki ≤ bk ∀ k ∈ K

McCormick ineq. ∀m ∈ M, i ∈ V, k ∈ K

yki ≤
∑

m∈M

Xk
mi ∀ i ∈ V, k ∈ K

θk ≥ cTSP (y
k) ∀ k ∈ K

∑

i∈V

∑

m∈M

p̄miw
k
mi − θk ≥ Φk(Xk) ∀ k ∈ K

Exponentially many!

(!)

(!!)



Heuristic warm-start procedure



Heuristic algorithm
o We solve the problem without margin decision, setting the compensation to  
      for all i and k.
o We obtain the optimal solution in terms of assignment of the leader     , and 

acceptance and routing decisions of the followers     .
o We solve the “only-pricing problem”:

o We obtain the optimal solution in terms of margin decisions 
o We solve the problem without margin decision, setting the compensation to
         for all i and k. 

p̄
k
i = (1−mmin)pi

x̂
k

T̂ k

max
X

∑

k∈K

∑

m∈M

∑

i∈V (T̂k)

pmiX
k
mi

s.t.
∑

m∈M

Xk
mi = x̂k

i ∀ i ∈ V, k ∈ K

∑

m∈M

∑

i∈V (T̂k)

pmiX
k
mi ≤

∑

i∈V (T̂k)

pi − C(T̂ k) ∀ k ∈ K,

p̄ki = pi −
∑

m∈M

X̌k
mipmi

X̌.



Computational results



q Chao’s instances for the OP: number of customers ranging from 21 to 66

q Solomon instances for the VRPTW: number of customers ranging from 20 to 35

o 2, 3 or 4 carriers

o Different margins sets: {0.2,0.5}; {0.5,0.9}; {0.2,0.5,0.8}; {0.5,0.7,0.9} * these are the margins 

to the platform

o Time limit 1hour

o CPLEX 22.1.0.0

Instances





Solutions structure



q The problem becomes harder to solve when margins are such that mix 

of them is made in the optimal solution

q Solomon’s instances are harder – probably related to the geography of 

customers

q Projecting out z variables pays off on Chao’s instances, but not on 

Solomon’s ones

Conclusions



Thank you!
Any questions?

mcerulli@unisa.it
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