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Interpretability and Explainability in Machine Learning

When training a machine learning model,
accuracy of its predictions matters, as does its interpretability/explainability

(Rudin et al., 2022; European Commission, 2020; Panigutti et al., 2023)
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Interpretability in Machine Learning

E.g., optimal trees, see our recent review
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Interpretability in Machine Learning

Sparse models, e.g., Carrizosa et al. (2022) for categorical variables
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Interpretability in Machine Learning

and many more at the playlist of the Online Seminar Series ML NeEDS MO
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Explainability in Binary Classification
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Explainability in Binary Classification

Wlog, we assume that we have a binary classification problem on X ⊂ RJ with
classes, ‘+1’ and ‘-1’. The positive class, ‘+1’, implies something good for the
individual, e.g., getting a loan, social benefits or parole.

Suppose we have a classifier and an individual x0 classified as ‘-1’, and we want to
give insights on how to change the features to be classified as ‘+1’.
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Wlog, we assume that we have a binary classification problem on X ⊂ RJ with
classes, ‘+1’ and ‘-1’. The positive class, ‘+1’, implies something good for the
individual, e.g., getting a loan, social benefits or parole.

Suppose we have a classifier and an individual x0 classified as ‘-1’, and we want to
give insights on how to change the features to be classified as ‘+1’.

Your loan has been denied. Had your salary been 30k instead of 25k and had you had
2 accounts open instead of 4, your loan would have been accepted (Martens and
Provost, 2014; Wachter et al., 2017) 6 / 37



Counterfactual explanations

We are given a probabilistic classifier P : X → [0, 1], P(x) : probability of
belonging to class +1, and

x0 ∈ X ,

the goal is to find the changes (to some x ∈ X (x0) ⊂ X ) with minimum cost
C(x , x0) that cause x0 to increase the probability P(x0) to P(x)

minx C(x , x0)
s.t. P(x) ≥ ν

x ∈ X (x0)

minx
(
C(x , x0),−P(x)

)
s.t. x ∈ X (x0)

minx (1 − λ)C(x , x0)− λP(x)
s.t. x ∈ X (x0)
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Counterfactual explanations

X
▶ Defined by features (tabular data), or
▶ More complex data such as functional one (Carrizosa et al., 2023)

X (x0)
▶ Points from some training set −→ discrete optimization models
▶ Synthetic data −→ (mixed integer) nonlinear optimization models

If P(x) = φ(f (x)) and φ ↑, then

P(x) ≥ ν ⇐⇒ f (x) ≥ φ−1(ν)

These are known as score-based classifiers, e.g., LR, SVM, NN, RF, XGBoost

C(x , x0) = Dissimilarity(x , x0) + λcComplexity(x , x0)

▶ Dissimilarity(x , x0) is usually modeled with ℓp norms, but need to extend, e.g., to
asymmetric gauges as in Carrizosa et al. (2024a) for asymmetric costs (Karimi et al.,
2021). Also, embeddings may be needed for more complex data

▶ Complexity(x , x0) can be measured with the zero norm, or more complex sparsity
measures (Blanquero et al., 2023)
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Counterfactual explanations for Logistic Regression

min
x∈X (x0)

∥x0 − x∥2
2 + λind∥x0 − x∥0

s.t. f LR(x) ≥ φ−1(ν)
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Counterfactual explanations for Logistic Regression

Housing dataset with Logistic Regression. CEs
to be predicted in ‘+1’ class. Heatmap indicates
perturbations

min
x∈X (x0)

∥x0 − x∥2
2 + λind∥x0 − x∥0

s.t. wx + b ≥ − log

(
1 − ν

ν

)
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Counterfactual explanations for Additive Tree Models (RF, XGBoost, etc)

min
x∈X (x0)

∥x0 − x∥2
2 + λind∥x0 − x∥0

s.t. f ATM(x) ≥ ν
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Counterfactual explanations for Additive Tree Models (RF, XGBoost, etc)

Housing dataset with Random Forest. CEs to be
predicted in ‘+1’ class. Heatmap indicates
perturbations

min
x∈X (x0)

∥x0 − x∥2
2 + λind∥x0 − x∥0

s.t.
T∑

t=1

∑
l∈Lt

+

w tz t
l ≥ ν

z routing of CE in trees of ATM
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Counterfactual explanations

Different types of optimization problems:

smooth opt, e.g., Joshi et al. (2019); Ramakrishnan et al. (2020); Wachter et al.
(2017); Mothilal et al. (2020); Lucic et al. (2022)

MIP, e.g., Cui et al. (2015); Fischetti and Jo (2018); Kanamori et al. (2020, 2021);
Maragno et al. (2022); Parmentier and Vidal (2021); Russell (2019)

multi-objective opt, e.g., Dandl et al. (2020); Del Ser et al. (2022); Raimundo
et al. (2022),

robust opt, e.g., Maragno et al. (2024)

Most of the literature focuses on the single-instance single-counterfactual setting

(Guidotti, 2022; Karimi et al., 2022; Verma et al., 2022)
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Group Counterfactual Analysis in Machine Learning
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Group Counterfactual Analysis in Machine Learning

Motivation
linking constraints may exist
between CEs, e.g., CEs for
close individuals should also
be close

several CEs may be sought,
sufficiently far (diverse) from
each other (Wachter et al.,
2017)

a set of critical features is
sought for CEs (Eckstein
et al., 2021; Sharma et al.,
2020)

benchmarks for records are
sought, i.e., same CE for a
group of instances
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Group Counterfactual Analysis in Machine Learning

Jasone Ramírez Ayerbe
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Group Counterfactual Explanations. Allocation Rules

(a) One-for-one (b) Many-for-one (c) One-for-all (d) One-for-many

Figure: Allocation rules between instances (in red) and their counterfactual explanations (in blue)
in group counterfactual analysis

For each s ∈ {1, 2, . . . ,S}, define Rs : set of indices r ∈ {1, 2, . . . ,R} s.t.
counterfactuals xr are associated with instance x0

s

For each r ∈ {1, 2, . . . ,R}, define Sr : set of indices s ∈ {1, 2, . . . ,S} s.t.
instances x0

s are associated with counterfactual xr

Note: r ∈ Rs iff s ∈ Sr

Rs, Sr : given? decision variables?
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Group Counterfactual Explanations. Ingredients

minx
(
C(x0, x),−P(x)

)
s.t. x ∈ X (x0),

where

x0 = (x0
1 , . . . , x

0
S) : S instances for which counterfactuals are sought

x = (x1, . . . , xR) : R counterfactuals

x ∈ X (x0) ⊂ X := X R

C(x0, x) : cost incurred when x0 is perturbed to yield x
P(x) : component-wise nondecreasing function of the probabilities P(x) of the
counterfactuals

15 / 37



Cost function C

C(x0, x) = Dissimilarity(x0, x) + λcComplexity(x0, x)

Dissimilarity: A plausible choice would be
∑S

s=1

∑
r∈Rs

Dissimilarity(x0
s , xr )

Complexity : At instance level with the zero norm, group level, etc

γ0(x0, x) =

∥∥∥∥∥
(
max

i
|x0

ij − xij |
)J

j=1

∥∥∥∥∥
0
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Probabilities P

P(x) = minr=1,...,R P(xr )

P(x) = 1
R

∑R
r=1 |Sr |P(xr )

P(x) =
(∏R

r=1 P(xr )
|Sr |

)1/R
(log(P(x)) : concave for logistic classifier!)

. . .
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One-for-one CEs in Carrizosa et al. (2024b)

One-for-one CEs
local and global sparsity are sought for CEs

linking constraints, such as Lipschitz continuity

min
x∈X(x0)

S∑
s=1

∥x0
s − xs∥2

2 + λind

S∑
s=1

∥x0
s − xs∥0 + λglobγ0(x0, x)

s.t. f (xs) ≥ φ−1(ν) ∀s = 1, 2, . . . ,S
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One-for-One CEs in Carrizosa et al. (2024b)

Housing dataset with Logistic Regression. CEs to be
predicted in ‘+1’ class. Heatmap indicates perturbations

Housing dataset with Logistic Regression. Features
that need to be perturbed (in red) for instances to be

predicted in ‘+1’ class

19 / 37



One-for-One with Lipschitz continuity in Carrizosa et al. (2024a)
For some threshold value τ

d(xi , xj) ≤ τd(x0
i , x

0
j ), ∀i, j (1)

(a) Perturbations without (1) (b) Perturbations with (1)

(c) Feature values without (1) (d) Feature values with (1)

Housing dataset with Random Forest. CEs to be predicted in ‘+1’ class. Features perturbations are displayed

on the two pictures on the top, with the Lipschitz continuity constraint for τ = 10 and without this constraint,

respectively, whereas in the two bottom pictures the corresponding features values are displayed

20 / 37



Many-for-one CEs in Carrizosa et al. (2024b)

min
xr∈X r (x0

s )
∥x0

s − xr∥2
2 + λind∥x0

s − xr∥0

s.t. f (xr ) ≥ φ−1(ν)
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Many-for-one CEs in Carrizosa et al. (2024b)

(xr )LSTAT ≤ Q1 or Q1 < (xr )LSTAT ≤ Q3 or (xr )LSTAT > Q3

(a) Perturbations for x0
1 (b) Perturbations for x0

2

Housing dataset with Logistic Regression. Many-for-one counterfactual explanations with R = 3 for instances

two instances.
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One-for-all and one-for-many CEs in Carrizosa et al. (2024a)

One-for-all and one-for-many CEs
Identify R CEs for I instances, with R < I

min
x∈X ,y

R∑
r=1

S∑
s=1

ysr∥x0
s − xr∥2

2

s.t. wxr + b ≥ φ−1(ν) ∀r = 1, 2, . . . ,R
R∑

r=1

ysr = 1 ∀s = 1, 2, . . . ,S

ysr ∈ {0, 1} ∀s = 1, 2, . . . ,S ∀r = 1, 2, . . . ,R.
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One-for-all CE in Carrizosa et al. (2024a)

Housing dataset with Logistic Regression. R = 1 cluster and corresponding CEs predicted in ‘+1’ class.
Heatmaps indicate feature values
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One-for-many CEs in Carrizosa et al. (2024a)

Housing dataset with Logistic Regression. R = 3 clusters and corresponding CEs predicted in ‘+1’ class.
Heatmaps indicate feature values
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Counterfactual Analysis in Benchmarking in Bogetoft et al. (2024)

Given a benchmarking model and an inefficient firm, we find a CE, i.e., a counterfactual
firm with a better efficiency → Bilevel Optimization
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Counterfactual Explanations for DEA models

It is about minimizing the distance to a complement of a convex set (Thach, 1988)

Counterfactual explanation to be at least E∗ efficient

min
x̂,E

C(x0, x̂)

s.t. x̂ ∈ RI
+

E ≥ E∗

E ∈ argmin
Ē,λ0,...,λK

{ Ē : Ē x̂ ≥
K∑

k=0

λk xk , y0 ≤
K∑

k=0

λk yk ,

Ē ≥ 0, λ ∈ RK+1
+ }
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From bilevel to single level

min
x̂,F,β,γ,u,v,w

C(x0
, x̂)

s.t. F ≤ F∗
β ≤ Mf w

x̂ ≥
K∑

k=0

β
k xk

γ
T
I xk − γ

T
O yk ≤ Mf (1 − wk )∀k

Fy0 ≤
K∑

k=0

β
k yk

γ
T
O y0 = 1

γI ≤ MIu γ
T
I xk − γ

T
O yk ≥ 0 k = 0, . . . , K

x̂ −
K∑

k=1

β
k xk ≤ MI(1 − u) γI ,γO , F ,β ≥ 0

γO ≤ MOv u, v, w ∈ {0, 1}

− Fy0 +
K∑

k=1

β
k yk ≤ MO(1 − v) x̂ ∈ RI

+

With the cost function

C(x0, x̂) = ν0∥x0 − x̂∥0 + ν1∥x0 − x̂∥1 + ν2∥x0 − x̂∥2
2,

we obtain a Mixed Integer Convex Quadratic with Linear Constraints formulation
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Results for banking branches
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Results for banking branches

(a) C = ℓ0 + (ℓ2) (b) C = ℓ0 + ℓ2 (c) C = ℓ2

Figure: The inputs that change when we impose a desired efficiency of E∗ = 0.8
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Counterfactual Analysis for Supervised Discretization

We study in Piccialli et al. (2024) ...
... how to detect with Counterfactual Analysis critical thresholds of features for a
given black-box classifier to derive

Feature discretization Surrogate white/gray box classifier
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Conclusions

MIP (and more) for Group Counterfactual Analysis

Connections with Locational Analysis

Ability to handle decision-making settings beyond ML, such as those arising in
Benchmarking

New opportunities for the community to develop bespoke algorithms
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