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Interpretability and Explainability in Machine Learning

When training a machine learning model,
accuracy of its predictions matters, as does its interpretability/explainability

(Rudin et al., 2022; European Commission, 2020; Panigutti et al., 2023)
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Interpretability in Machine Learning

E.g., optimal trees, see our recent review
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Interpretability in Machine Learning

Sparse models, e.g., Carrizosa et al. (2022) for categorical variables
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Interpretability in Machine Learning
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Explainability in Binary Classification
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Explainability in Binary Classification

Wilog, we assume that we have a binary classification problem on X ¢ R’ with
classes, ‘+1’ and *-1’. The positive class, ‘+1’, implies something good for the
individual, e.g., getting a loan, social benefits or parole.

Suppose we have a classifier and an individual x° classified as -1’, and we want to
give insights on how to change the features to be classified as ‘+1’.
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Explainability in Binary Classification

Wilog, we assume that we have a binary classification problem on X c R’ with
classes, ‘+1’ and ‘-1’. The positive class, ‘+1’, implies something good for the
individual, e.g., getting a loan, social benefits or parole.

Suppose we have a classifier and an individual x° classified as -1’, and we want to
give insights on how to change the features to be classified as ‘+1’.

Why?
- o
1 would like to |I§
= —_
apply for a loan!
@ MODEL'S DECISION o
LOAN APPLICATION > <
Ve > AIBLACKBOX MODEL i
I
©
[\’ Got it!
& COUNTERFACTUAL EXPLANATIONS
U FOR MODEL’'S DECISION )
3 I
Feature | Original | Counterfactual s
e »  COUNTERFACTUAL  __ Salary 25Kk 30k N N
EXPLANATION
Ne accounts 4 2 I
o

Your loan has been denied. Had your salary been 30k instead of 25k and had you had
2 accounts open instead of 4, your loan would have been accepted (Martens and
Provost, 2014; Wachter et al., 2017)
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Counterfactual explanations

@ We are given a probabilistic classifier P : X — [0, 1], P(x) : probability of
belonging to class +1, and

7137



Counterfactual explanations

@ We are given a probabilistic classifier P : X — [0, 1], P(x) : probability of
belonging to class +1, and

@ X) € X,

7137



Counterfactual explanations

@ We are given a probabilistic classifier P : X — [0, 1], P(x) : probability of
belonging to class +1, and

@ X) € X,

@ the goal is to find the changes (to some x € X(x°) C &) with minimum cost
C(x, x°) that cause x° to increase the probability P(x°) to P(x)

minxy  C(x, x0) minx  (C(x, x°), —P(x)) miny (1 —X)C )x, x%) — AP(x)

st P(x)>v st.  x¢ X(XO) st xeX(x
x € xX(x0)
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Counterfactual explanations

o X
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o X
» Defined by features (tabular data), or

» More complex data such as functional one (Carrizosa et al., 2023)

e x(x9
» Points from some training set — discrete optimization models
» Synthetic data — (mixed integer) nonlinear optimization models

o If P(x) = ¢(f(x)) and ¢ 1, then
P(X)>v < f(x)>¢ ' (v)
These are known as score-based classifiers, e.g., LR, SVM, NN, RF, XGBoost
@ C(x, x°) = Dissimilarity(x, x°) + A;Complexity(x, x°)
» Dissimilarity(x, x°) is usually modeled with £, norms, but need to extend, e.g., to

asymmetric gauges as in Carrizosa et al. (2024a) for asymmetric costs (Karimi et al.,
2021). Also, embeddings may be needed for more complex data

» Complexity(x, x%) can be measured with the zero norm, or more complex sparsity
measures (Blanquero et al., 2023)

8/37



Counterfactual explanations for Logistic Regression

min_ ||x° — x||3 + Xina || X° — X]Jo
x€Xx(x9)

st. Rx) >0 ()
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Counterfactual explanations for Logistic Regression

Tl

| m

R .

| I

u 0 2 0

n min  [|x° = X]3 + Ainal| X° — X0
| o xeXx(x0)

u 1—v
2 s.t. wx+b2—|og( >

| 0 I v

Housing dataset with Logistic Regression. CEs
to be predicted in ‘+1’ class. Heatmap indicates
perturbations
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Counterfactual explanations for Additive Tree Models (RF, XGBoost, etc)

Instance

2 N S
N - Z
\ /. \
Tree-1 Tree-2 Tree-n

Class-A Class-B Class-B

Majority-Voting I

Final-Class

min — [1X° — X132 + Xing[| X° — X[lo
x€Xx(x9)

st A™(x) > v
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Counterfactual explanations for Additive Tree Models (RF, XGBoost, etc)

GRIM 2N NDUS GHAS NOX RM AGE DS RAD TAX PTRATIO B LSTAT Inz
02

o1

Housing dataset with Random Forest. CEs to be
predicted in ‘+1’ class. Heatmap indicates
perturbations
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NY BN e <
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Counterfactual explanations

Different types of optimization problems:

@ smooth opt, e.g., Joshi et al. (2019); Ramakrishnan et al. (2020); Wachter et al.
(2017); Mothilal et al. (2020); Lucic et al. (2022)

@ MIP, e.g., Cui et al. (2015); Fischetti and Jo (2018); Kanamori et al. (2020, 2021);
Maragno et al. (2022); Parmentier and Vidal (2021); Russell (2019)

@ multi-objective opt, e.g., Dandl et al. (2020); Del Ser et al. (2022); Raimundo
et al. (2022),

@ robust opt, e.g., Maragno et al. (2024)
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Counterfactual explanations

Different types of optimization problems:

@ smooth opt, e.g., Joshi et al. (2019); Ramakrishnan et al. (2020); Wachter et al.
(2017); Mothilal et al. (2020); Lucic et al. (2022)

@ MIP, e.g., Cui et al. (2015); Fischetti and Jo (2018); Kanamori et al. (2020, 2021);
Maragno et al. (2022); Parmentier and Vidal (2021); Russell (2019)

@ multi-objective opt, e.g., Dandl et al. (2020); Del Ser et al. (2022); Raimundo
et al. (2022),

@ robust opt, e.g., Maragno et al. (2024)

Most of the literature focuses on the single-instance single-counterfactual setting

(Guidotti, 2022; Karimi et al., 2022; Verma et al., 2022)
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Group Counterfactual Analysis in Machine Learning

I would like to
apply for a loan! Why?
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Dolores Romero Morales ® &
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Group Counterfactual Analysis in Machine Learning

Motivation
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Group Counterfactual Analysis in Machine Learning

I would like to
apply for a loan!
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Motivation

@ linking constraints may exist
between CEs, e.g., CEs for

i close individuals should also

be close

@ several CEs may be sought,
sufficiently far (diverse) from
each other (Wachter et al.,
2017)

@ a set of critical features is
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sought for CEs (Eckstein
et al., 2021; Sharma et al.,
2020)

@ benchmarks for records are
sought, i.e., same CE for a
group of instances
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Group Counterfactual Analysis in Machine Learning
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Group Counterfactual Explanations. Allocation Rules

(a) One-for-one (b) Many-for-one (c) One-for-all (d) One-for-many

Figure: Allocation rules between instances (in red) and their counterfactual explanations (in blue)
in group counterfactual analysis
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Figure: Allocation rules between instances (in red) and their counterfactual explanations (in blue)
in group counterfactual analysis

@ Foreachse {1,2,...,S}, define Rs : setof indices r € {1,2,..., R} s.t.
counterfactuals x; are associated with instance x?

@ Foreachre {1,2,...,R}, define S, : set of indices s € {1,2,...,S} s.t.
instances x? are associated with counterfactual x;

@ Note: re Rsiff s€ S,
@ Rs, Sr : given? decision variables?
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Group Counterfactual Explanations. Ingredients

miny (C(x° x), —P(x))
st X € X(x°), J
where
@ x°=(x?,...,x2) : Sinstances for which counterfactuals are sought
@ X = (X1,...,Xg) : R counterfactuals
o xecxX(x)ca:.=x"
@ C(x°, x) : cost incurred when x° is perturbed to yield x
@ P(x) : component-wise nondecreasing function of the probabilities P(x) of the

counterfactuals
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Cost function C

C(x°, x) = Dissimilarity(x°, x) + A\cComplexity(x°, x)
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Cost function C

C(x°, x) = Dissimilarity(x°, x) + A\cComplexity(x°, x)

@ Dissimilarity: A plausible choice would be Z; D rers Dissimilarity(x2, x;)

@ Complexity : At instance level with the zero norm, group level, etc

J
(max|x,? - Xijl)
1 /:1

Yo(x°, x) =

0
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Probabilities P

@ P(x) = min,_q

,,,,,
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Probabilities P

o P(K) = min,—1,.., R P(Xr)

e P(x) =L |S|P(x)
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Probabilities P

,,,,,

e P(x) =L |S|P(x)

R 15\ - s
@ P(x) = (H,:1 P(x;)'°r ) (log(P(x)) : concave for logistic classifier!)
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One-for-one CEs in Carrizosa et al. (2024b)

One-for-one CEs
@ local and global sparsity are sought for CEs
@ linking constraints, such as Lipschitz continuity

S S

8 0 2 0 0
min E Xs — Xs||5 + Aj E Xs — Xs|lo + A X, X
xER(x0) — || s s||2 ind - || s s||0 glob'YO(f af)

st. f(x)>¢ '(v) ¥Vs=1,2,...,8

18/37



One-for-One CEs in Carrizosa et al. (2024b)

Housing dataset with Logistic Regression. CEs to be
predicted in ‘+1’ class. Heatmap indicates perturbations

PTRATIO

B
e .-

2 3

4 5 & 7

8 o 0 1 1 1

Housing dataset with Logistic Regression. Features
that need to be perturbed (in red) for instances to be
predicted in ‘+1’ class
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One-for-One with Lipschitz continuity in Carrizosa et al. (2024a)

For some threshold value 7

d(X,',Xj) < Td(xlo7xjo)7 v’v/

CRIM 2N NDUS CHAS NOX RM AGE DIS RAD TAX PIRATIO B  LSTA

(a) Perturbations without (1)

08
CRM ZV NDUS GHAS NOX RM AGE DS RAD TAX PTRATIO B LSTAT

. . °
. . o

(c) Feature values without (1)

CRIM ZN NDUS CHAS NOX RM AGE DIS RAD TAX PIRATIO B  LSTAT

(b) Perturbations with (1)

CRM 2N NDUS GHAS NOX RM AGE DS RAD TAX PTRATIO B LSTAT

(d) Feature values with (1)

Housing dataset with Random Forest. CEs to be predicted in ‘+1’ class. Features perturbations are displayed

on the two pictures on the top, with the Lipschitz continuity constraint for - = 10 and without this constraint,

respectively, whereas in the two bottom pictures the corresponding features values are displayed
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Many-for-one CEs in Carrizosa et al. (2024b)

min_ [1x2 — X134 Ninal| X2 — X¢|Jo
xreX7(x9)

st f(x:) > ' (v)
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Many-for-one CEs in Carrizosa et al. (2024b)

(Xr)Lstar < @ or

Iua
CRIM 20 NOUSGHAS NOX R AGE DS RAD TAXPTRATIO B LsTAT g,

[

(a) Perturbations for x?

Qi < (X)Lstar < Qs or

(Xr)LsTar > Qs

06

CRIM ZN INDUSCHAS NOX RM AGE DIS RAD TAXPTRATIO B LSTAT [04
. -02

B -00

. -2

04

I

(b) Perturbations for x9

Housing dataset with Logistic Regression. Many-for-one counterfactual explanations with R = 3 for instances

two instances.
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One-for-all and one-for-many CEs in Carrizosa et al. (2024a)

One-for-all and one-for-many CEs

@ |dentify R CEs for /instances, with R < /

R S
. @ ,
lzglg?y jg:: :g:: J/Sr||)(S - )t}||2

s.t.

r=1 s=1

wx, +b>¢ ()

R
Z}/sr =1
r=1

Ysr € {0,1}

Vr =
Vs=1,2,...
Vs=1,2,...

1,2,...
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(2024a)

One-for-all CE in Carrizosa et al._

Housing dataset with Logistic Regression. R = 1 cluster and corresponding CEs predicted in ‘+1’ class.
Heatmaps indicate feature values
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One-for-many CEs in Carrizosa et al. (2024a)

Housing dataset with Logistic Regression. R = 3 clusters and corresponding CEs predicted in ‘+1’ class.
Heatmaps indicate feature values

25/37



Outline

@ Counterfactual Analysis Beyond Machine Learning
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Counterfactual Analysis in Benchmarking in Bogetoft et al. (2024)

Given a benchmarking model and an inefficient firm, we find a CE, i.e., a counterfactual
firm with a better efficiency — Bilevel Optimization J
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Counterfactual Analysis in Benchmarking in Bogetoft et al. (2024)

Given a benchmarking model and an inefficient firm, we find a CE, i.e., a counterfactual
firm with a better efficiency — Bilevel Optimization J
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Counterfactual Explanations for DEA models

It is about minimizing the distance to a complement of a convex set (Thach, 1988)

Counterfactual explanation to be at least E* efficient
0 0 -
r)r?nEn C(x",Xx)
st. XxeR,
E>E"

Ec argmin {E : Ex> Z)\kxk, y° < Neyk,

E N0, 2K

k=0
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From bilevel to single level

min c(x°, %)
X,F.B,v,u,v,w
st. F<F* B < Myw
K
x> pN ~ XK — Ly < Mi(1 — wi) vk
k=0
FyO S ﬁkyk ,ngo =1
k=0
¥ < Mu v X by >0 k=0,...,K
K
2= g% <Mt - w) ¥,70,F,82>0
k=1
Yo < Mov u,v,we {0,1}
K
—Fy* + 378y < Mo(1 - v) X eR,
k=1
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From bilevel to single level

)?,F,ErT]'ylf]u,v,w (X ,X)
st. F<F* B < Myw
K
x> pN ~ XK — Ly < Mi(1 — wi) vk
k=0
Fy' <> 6"y oy’ =1
k=0
¥ < Mu v X by >0 k=0,...,K
K
2= g% <Mt - w) ¥,70,F,82>0
k=1
Yo < Mov u,v,we {0,1}
K
—Fy* + 378y < Mo(1 - v) X eR,
k=1

With the cost function
C(x°, %) = 10| x° — Xllo + 11]|x° — R[]1 + 2| x° — %],

we obtain a Mixed Integer Convex Quadratic with Linear Constraints formulation

29/37



Results for banking branches
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Results for banking branches
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Figure: The inputs that change when we impose a desired efficiency of E* = 0.8
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Counterfactual Analysis for Supervised Discretization

We study in Piccialli et al. (2024) ...

... how to detect with Counterfactual Analysis critical thresholds of features for a
given black-box classifier to derive

@ Feature discretization @ Surrogate white/gray box classifier
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Counterfactual Analysis for Supervised Discretization

We study in Piccialli et al. (2024) ...

... how to detect with Counterfactual Analysis critical thresholds of features for a
given black-box classifier to derive

@ Feature discretization @ Surrogate white/gray box classifier
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Counterfactual Analysis for Supervised Discretization
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Outline

@ Conclusions
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Conclusions

@ MIP (and more) for Group Counterfactual Analysis
@ Connections with Locational Analysis

@ Ability to handle decision-making settings beyond ML, such as those arising in
Benchmarking

@ New opportunities for the community to develop bespoke algorithms
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