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Problem definition

Consider

S = {(x ; y ; z) ∈ Σ×∆m × Rκ | xiyj = zij , ∀(i , j) ∈ N ×M} ,

where

I Σ = {x ∈ Rn |Ex ≥ f , 0 ≤ x ≤ u} is a network polytope
described by the flow-balance and arc capacity constraints

I ∆m =
{
y ∈ Rm

+

∣∣ 1ᵀy ≤ 1
}

is a simplex
I Naturally imposed: SOS1
I Reformulated: V-representation of polytopes



Applications

Structure of set S appears in various optimization models in
different application areas such as:

I Fixed-charge network flow problems

I Transportation problem with conflicts

I Bilevel network flow problems

I Network interdiction problems

I Optimization via decision diagrams

I ...

Studying convexification of S can lead to cutting planes that can
tighten existing relaxations and improve dual bounds.



Applications

Structure of set S appears in various optimization models in
different application areas such as:

I Fixed-charge network flow problems

I Transportation problem with conflicts

I Bilevel network flow problems

I Network interdiction problems

I Optimization via decision diagrams

I ...

Studying convexification of S can lead to cutting planes that can
tighten existing relaxations and improve dual bounds.



Motivation

McCormick relaxation [McCormick, 1976]

I Replace z = xy with z ≥ 0, z ≥ x + y − 1, z ≤ x , z ≤ y for
unit box domain on x and y .

I Provides convex hull over box domains [Al-Khayal & Falk, 1983].

I Often leads to weak relaxations when the domain is more
general [Luedtke et. al., 2012], [Gupte et. al., 2013].

Disjunctive programming [Balas, 1985] or special structure RLT [Sherali et.

al., 1998]

I Describes convex hull in a higher dimension.

I Can be computationally expensive due to large size of
extended formulation.

I Uses separation to generate cuts in the original space of
variables.

I Does not provide explicit forms of facet-defining inequalities in
the original space of variables.



Goal

Design a systematic procedure to obtain an explicit form of the
convex hull description in the original space of variables
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An aggregation procedure

We use a specialized aggregation procedure, called Extended
Cancel & Relax (EC&R), to obtain valid inequalities for conv(S)
[Davarnia, Richard, Tawarmanali, 2017]

Step 1: Assign weights

I Pick a bilinear constraint with weight ±1 (base constraint)

(±1)× (xkyl − zkl = 0)

I Pick linear constraints from Σ with the following weights:

β


y1
...
ym

1−
∑

j∈M yj

×
 Et.x ≥ ft

xi ≥ 0
1− xi ≥ 0

 I
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An aggregation procedure

Step 2: Aggregate the above weighted inequalities such that at
least |I| bilinear terms cancel

Step 3: Relax the remaining bilinear term using McCormick
bounds or bilinear constraints

I Replace xiyj with
I uiyj
I xi
I zij

I Replace −xiyj with
I 0
I xi + uiyj − ui
I −zij
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EC&R theorem - proof sketch

Theorem

A linear description of conv (S) is given by:

I the inequalities defining Σ,

I the inequalities defining ∆m,

I all EC&R inequalities.

Proof sketch:
I Observe that S is bounded.

I The vertices of S are such that y = ei or y = 0.

I The restriction of S to y = ei (y = 0) is polyhedral.

I The convex hull of S can be obtained in higher dimension using disjunctive
programming.

I The rays of the projection cone of the disjunctive programming formulation have
structure.

I The components of the rays can be interpreted as “dual” weights on the initial
constraints of the system that “cancel” product variables.
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Level-1 generalization of McCormick

McCormick relaxation:
xy = z

over

I x ∈ [0, u]

I y ∈ [0, 1]

Level-1 generalization:

xiy = zi , ∀i ∈ A

over

I x ∈ Σ = {x ∈ Rn |Ex ≥ f , 0 ≤ x ≤ u}
I y ∈ [0, 1]
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Determining aggregation weights

Proposition

Let a>x + by + c>z ≥ d be a non-trivial facet-defining inequality
of conv(S) that is obtained from the EC&R procedure. Then, the
weights β of all network constraints used in the aggregation are
equal to 1.

Proof sketch:

I The projection problem for the disjunctive programming
formulation has the following form[

E
ᵀ −E ᵀ ±I ±I I −I

]
π = ±ek .

I The coefficient matrix is TU

I The RHS is a unit vector

I The weights π are non-negative
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Graphical structure of EC&R inequalities

Theorem

Consider

I S with m = 1 defined over a network G = (V ,A),

I a>x + by + c>z ≥ d to be a non-trivial facet-defining
inequality of conv(S) that is obtained from the EC&R
procedure.

I I to be the set of flow-balance constraints used in the
aggregation.

Then,

I The nodes corresponding to constraints in I form a tree in G .



Graphical structure of EC&R inequalities

Proof sketch (part I):

I From previous proposition, to cancel a bilinear term xiy for
some i ∈ A, we need to use 2 flow-balance constraints at
nodes t(i) and h(i)

1× y ×

 ∑
j∈δ+(t(i))\{i}

xj −
∑

j∈δ−(t(i))

xj + xi ≥ ft(i)


1× y ×

 ∑
j∈δ+(h(i))

xj −
∑

j∈δ−(h(i))\{i}

xj − xi ≥ fh(i)



I The nodes whose flow-balance constraints are used in the
aggregation must be adjacent



Graphical structure of EC&R inequalities

Proof sketch (part II):

I This subnetwork must be connected.

I Contradiction: for a disconnected subnetwork, the basis has
the following form.[

±E1 ±I1 0 0

0 0 ±E2 ±I2

] [
1
1

]
=

[
±e i

0

]
.

I Columns in second part are linearly dependent.



Example

Consider set S defined over the following network. Assume that we
are interested in finding EC&R inequalities with base constraint
−x1,5y + z1,5 = 0.
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Level-2 generalization of McCormick

McCormick relaxation:
xy = z

over

I x ∈ [0, u]

I y ∈ [0, 1]

Level-2 generalization:

xiyj = zij , ∀i ∈ A, j ∈ M

over

I x ∈ Σ = {x ∈ Rn |Ex ≥ f , 0 ≤ x ≤ u}
I y ∈ ∆m =

{
y ∈ Rm

+

∣∣ 1ᵀy ≤ 1
}
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A more complicated structure

The coefficient matrix in the projection problem for the disjunctive
programming formulation has the following form


E

ᵀ
0 . . . 0 −E ᵀ ±I ±I 0 . . . 0

0 E
ᵀ

. . . 0 −E ᵀ ±I 0 ±I . . . 0
...

...
. . .

...
...

...
...

...
. . .

...

0 0 . . . E
ᵀ −E ᵀ ±I 0 0 . . . ±I



I The TU property does not hold.

I The aggregation weights for facet-defining EC&R inequalities
are not necessarily 1.
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A class of facet-defining inequalities

Consider the class of non-trivial facet-defining EC&R inequalities
of conv(S) with pairwise cancellation property.

Definition

An EC&R inequality has pairwise cancellation property if each
cancellation of bilinear terms is obtained by aggregation two
constraints.



Determining aggregation weights

Proposition

Let a>x + by + c>z ≥ d be a non-trivial facet-defining inequality
of conv(S) that is obtained from the EC&R procedure through
pairwise cancellation. Then, the weights β of all network
constraints used in the aggregation are equal to 1.

Proof sketch:

I The projection problem for the disjunctive programming
formulation has the following form

±1 0 · · · 0

{0,±1} ±1 · · · 0
...

...
. . .

...

{0,±1} {0,±1} · · · ±1

π = ±e1

I All (positive) weights must be 1.
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New definitions for network structures

Definition

Consider set S defined over network G = (V,A). We define a
parallel network Gj = (Vj ,Aj) for j ∈ {1, . . . ,m} to be a replica of
G that represents the multiplication of network constraints with yj
during the aggregation procedure.

Definition

Consider S defined over network G = (V,A). Let Ĝj = (V̂j , Âj),
for j = 1, 2, be a subnetwork of parallel network Gj .

I We say that subnetworks Ĝ1 and Ĝ2 are vertically connected
through connection node v ∈ V if the replica of v in parallel
network Gj is adjacent to a node of subnetwork Ĝj for
j = 1, 2.

I We say that subnetworks Ĝ1 and Ĝ2 are vertically connected
through connection arc a ∈ A if the replica of a in parallel
network Gj is incident to a node of subnetwork Ĝj for j = 1, 2.
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Graphical structure of EC&R inequalities

Theorem

Consider

I S defined over a network G = (V ,A),

I a>x + by + c>z ≥ d to be an EC&R facet-defining inequality
of conv(S) with the pairwise cancellation property.

I I j to be the set of flow-balance constraints used in the
aggregation multiplied with yj .

I J to be the set of flow-balance constraints used in the
aggregation multiplied with 1−

∑m
j=1 yj .

I K to be the set of variable bound constraints used in the
aggregation multiplied with 1−

∑m
j=1 yj .

Then,

I The nodes corresponding to I j form a forest Fj in G j .

I The forests Fj are vertically connected through the connection
nodes in J and connection arcs in K.



Graphical structure of EC&R inequalities

Proof sketch (part I):

From previous proposition, to cancel a bilinear term xiyj for some
i ∈ A and j ∈ M, one of the following cases should occur:

I Two flow-balance constraints at nodes t(i) and h(i) are used
in the aggregation:

1× yj ×

 ∑
j∈δ+(t(i))\{i}

xj −
∑

j∈δ−(t(i))

xj + xi ≥ ft(i)


1× yj ×

 ∑
j∈δ+(h(i))

xj −
∑

j∈δ−(h(i))\{i}

xj − xi ≥ fh(i)


I The nodes whose flow-balance constraints are used in the

aggregation must be adjacent, forming a forest structure in
parallel network G j .



Graphical structure of EC&R inequalities

Proof sketch (part II):

I Two flow-balance constraints at nodes t(i) and h(i) are used
in the aggregation:

1× yj ×

 ∑
j∈δ+(t(i))\{i}

xj −
∑

j∈δ−(t(i))

xj + xi ≥ ft(i)


1×

(
1−

m∑
k=1

yk

)
×

− ∑
j∈δ+(h(i))

xj +
∑

j∈δ−(h(i))\{i}

xj + xi ≥ −fh(i)



I One of the nodes whose flow-balance constraint is used in the
aggregation must be a connection node.



Graphical structure of EC&R inequalities

Proof sketch (part III):

I A flow-balance constraint at node t(i) and a bound constraint
for variable xi are used in the aggregation:

1× yj ×

 ∑
j∈δ+(t(i))\{i}

xj −
∑

j∈δ−(t(i))

xj + xi ≥ ft(i)


1×

(
1−

m∑
k=1

yk

)
× (xi ≥ 0)

I The arc whose bound constraint is used in the aggregation
must be a connection arc.



Example

Consider set S with y1 + y2 ≤ 1 defined over the following
network. Assume that we are interested in finding EC&R
inequalities obtained through pairwise cancellation with base
constraint x1,5y1 − z1,5 = 0.
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Example

Aggregate the corresponding constraints with appropriate weights.

1× (x1,5y1 − z1,5 = 0)

y1 × (x4,1 + x2,1 − x1,5 ≥ −f1)

y1 × (−x2,1 − x2,3 + x6,2 ≥ −f2)

y1 × (−x6,2 ≥ −f6)

y1 × (−x8,4 ≥ −f8)

y2 × (x4,1 + x2,1 − x1,5 ≥ −f1)

y2 × (−x4,1 − x4,3 + x8,4 ≥ −f4)

1− y1 − y2 × (−x2,3 − x4,3 + x3,7 ≥ −f3)

1− y1 − y2 × (−x8,4 ≥ −u8,4)
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Example

The aggregated bilinear inequality is

− y1x4,5 − y1x3,7 + y1x4,3

− y2x1,5 + y2x4,5 + y2x2,3 − y2x3,7

+ (f1 + f2 + f3 + f6 + f8 − u8,4)y1

+ (f1 + f3 + f4 − u8,4)y2 − z1,5

+ x3,7 − x2,3 − x4,3 − x8,4 − f3 + u8,4

+0x1,5y1 + 0x2,1y1 + 0x6,2y1 + 0x8,4y1

+0x2,3y1 + 0x4,1y2 + 0x4,3y2 + 0x8,4y2 ≥ 0.

Relaxing the remaining bilinear terms will yield linear EC&R
inequalities.
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Application I: Fixed-charge network flow problems

min
∑
i∈S

∑
j∈D

((
cij +

tij
εij

)
xij + tijyij −

tij
εij

zij

)
xijyij = zij , ∀i ∈ S , j ∈ D∑
j∈D

xij ≤ si , ∀i ∈ S

∑
i∈S

xij ≥ dj , ∀j ∈ D

0 ≤ xij ≤ uij , ∀i ∈ S , j ∈ D∑
i∈S

∑
j∈D

yij ≤ b,

0 ≤ yij ≤ 1, ∀i ∈ S , j ∈ D



Application I: Fixed-charge network flow problems

I Used settings from [Rebennack, Nahapetyan, Pardalos, (2009)]

I Number of nodes in bipartite graph: {50, 100}

I Breakpoint value: {0.2, 0.5}

I 10 instances for each size category

I Number of y variables: 20% of the arc number

I Used Gurobi to solve different relaxations

I Used EC&R inequalities for up to 3 constraint aggregations

I Used separation to add most violated cuts



Application I: Fixed-charge network flow problems

Node # Frac. Solver Tree EC&R RLT
Opt. Time Root Gap Gap Time Gap Time

50 0.2 467.42 0.62 0.75 2.44 0.78 1479.29
50 0.5 186.7 0.63 0.8 2.26 0.84 238.89

100 0.2 ≥ 1000 0.41 0.49 8.87 – ≥ 5000
100 0.5 ≥ 1000 0.57 0.66 8.89 – ≥ 5000

I The table shows average results over 10 instances for each
size category (row)



Application II: Transportation problem with conflicts

min
∑
i∈S

∑
j∈D

(
cijxij +

∑
k∈K

rkij z
k
ij

)
xijyk = zkij , ∀i ∈ S , j ∈ D, k ∈ K∑
j∈D

xij ≤ si , ∀i ∈ S

∑
i∈S

xij ≥ dj , ∀j ∈ D

0 ≤ xij ≤ uij , ∀i ∈ S , j ∈ D∑
k∈L

yk ≤ 1, ∀L ∈ C

yk ∈ {0, 1}, ∀k ∈ K



Application II: Transportation problem with conflicts

I Used settings from [Vancroonenburg, Della Croce, Goossens, Spieksma, (2014)]

I Number of nodes in bipartite graph: {50, 100}

I Number of transportation services: {20, 30}

I 10 instances for each size category

I Number of pairwise conflicts: 10% of total pairwise
combinations

I Used Gurobi to solve different relaxations

I Used EC&R inequalities for up to 3 constraint aggregations

I Used separation to add most violated cuts



Application II: Transportation problem with conflicts

Node # Service # Solver Forest EC&R RLT
Opt. Time Root Gap Gap Time Gap Time

50 20 70.74 0.1 0.53 46.01 0.65 37.61
50 30 341.2 0.19 0.54 82.77 0.69 103.13

100 20 1981.57 0.1 0.44 333.6 0.41 1590.55
100 30 ≥ 5000 0.18 0.49 1164.84 0.46 2037.06

I The table shows average results over 10 instances for each
size category (row)



Conclusion

Summary:

I Developed a convexfication method for bilinear set S to obtain
facet-defining inequalities in the original space of variables.

I Showed that for m = 1, these inequalities correspond to tree
structures in the underlying graph.

I Showed that for case with m > 1, these inequalities
correspond to special forest structures in the underlying graph.

I Presented computational results to show the effectiveness of
the developed methods in improving dual bounds.

Reference:
Khademnia E. and D. D. (2024) Convexification of bilinear terms
over network polytopes. Mathematics of Operations Research.


