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Decision trees for classification

I Binary Tree

I Highly Interpretable

I Branching nodes B and
leaf nodes L

I At each branching node a
branching rule

I At each leaf node a class label

I Tree depth D
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Univariate vs multivariate branching rules
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al. (2020), Lawless & Günlük 2021, Boutilier et al.(2022, 2023).

Two main ingredients:

?

?

1. How to route

2. How to split

Big-M

GOAL: stronger formulation, polyhedral study



Previous approaches to compute optimal decision trees

I MIP: Bertsimas & Dunn (2017), Aghaei et al. (2019, 2021), Günlük et
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Problem setting

INPUT:

I N (distinct) datapoints, K classes

I Training set (x i , y i ) ∈ [0, 1]p × [K ], i ∈ [N]

I Max tree depth D

OUTPUT:

I Multivariate decision tree maximizing training accuracy

DECISIONS:

I ∀t ∈ B: branching rule?

(at , bt) ∈ Rp+1

I ∀t ∈ L: class label?

ckt ∈ {0, 1} k ∈ [K ], t ∈ L

I ∀i ∈ [N]: route of x i?

wit ∈ {0, 1} i ∈ [N], t ∈ B ∪ L

I ∀i ∈ [N]: is x i correctly classified?

zit ∈ {0, 1} i ∈ [N], t ∈ L
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Binary routings

L

B
t

2t 2t+1

D

xi

wi,t = 1

wi,2t = 0 wi,2t+1 = 1

Routing constraints:∑
t∈L wit = 1 ∀i ∈ [N],

wit = wi ,2t + wi ,2t+1 ∀i ∈ [N], t ∈ B,



Realizable routings

L

B
t

2t 2t+1

D

xi

wi,t = 1

wi,2t = 0 wi,2t+1 = 1

a⊤t x ≤ bt

{
(at , bt) ∈ Rp+1 : a>t x

i≤bt − 1 ∀ i ∈ [N] : wi ,2t = 1,

a>t x
i≥bt + 1 ∀ i ∈ [N] : wi ,2t+1 = 1} 6= ∅.

[∃ mv branching rules realizing the routings]



Realizable routings

For a tree of depth D, let RD be the set of realizable routings, and
define WD = conv(RD).

GOAL: Polyhedral characterization of WD?

QUESTIONS:

1. Facets of W1?

2. From W1 to WD?

3. From WD to a polyhedral description of multivariate decision
trees.



Problem formulation

Let PD be a polyhedron such that RD = PD ∩ {0, 1}[N]×(B∪L).

maximize
w ,c,z

∑
i∈[N]

∑
t∈L

zit

subject to w ∈ PD ∩ {0, 1}[N]×(B∪L)∑
k∈[K ]

ctk = 1 ∀t ∈ L,

zit ≤ min{wit , ct,y i} ∀i ∈ [N], t ∈ L,
ctk ∈ {0, 1} ∀t ∈ L, k ∈ [K ],

zit ∈ {0, 1} ∀i ∈ [N], t ∈ L.

Let S be the feasible set of the above problem.

Lemma. conv(S) = conv(S ′).
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Possible choices for PD : baseline formulation

Define PD as the projection on the w variables of the (w , a, b) s.t.:

‖at‖1 ≤ 1, bt ≤ 1 t ∈ B
a>t x

i ≤ bt + Mi (1− wi ,2t) i ∈ [N], t ∈ B
a>t x

i − ε ≥ bt − (Mi + ε)(1− wi ,2t+1) i ∈ [N], t ∈ B
[w satisfies the routing constraints]

where ε is a small positive constant and the big-M values are

Mi = max
j∈[p]
{x ij }+ 1 ∀i ∈ [N].

Similar to Bertsimas and Dunn (2017), but tighter LP relaxation
(Boutilier, M. & Zhou, 2023)



Possible choices for PD : shattering inequalities

Let I be the set of pairs (IL, IR) ∈ [N]2 such that:

1. IL ∩ IR = ∅ are disjoint

2. {x i}i∈IL and {x i}i∈IR are NOT linearly separable

3. ∀j ∈ IL ∪ IR , {x i}i∈IL \ {j} and {x i}i∈IR \ {j} are linearly
separable

Shattering inequalities [Boutilier, M. & Zhou, 2022] at node t ∈ B:∑
i∈IL

wi ,2t +
∑
i∈IR

wi ,2t+1 ≤ |IL|+ |IR | − 1, ∀(IL, IR) ∈ I, t ∈ B.

Define PD as the w vectors s.t.: [w satisfies the routing constraints]
[w satisfies all shattering inequalities]

The binary vectors in PD are the realizable routings.
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Our contributions

QUESTIONS:

1. Facets of W1?

Main result 1. If the dataset is in general position, then the
shattering inequalities are facets of W1.

2. From W1 to WD?

Main result 2. A facet of W1 involving at least two variables
is also a facet of WD , for D ≥ 2.

3. From WD to a polyhedral description of conv(S)?

Main result 3. A facet of WD is a facet of conv(S) iff it is
not contained in {w : wit = 0}, i ∈ [N], t ∈ L.
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The general position assumption

I A finite set of points in Rp are in general position if no n
points lie in an (n − 2)-dimensional affine subspace for
n = 2, . . . , p + 1.

NOT in general position in general position

I The dataset is in general position if x1, . . . , xN are in general
position.

I If the dataset is in general position each shattering inequality
has p + 2 nonzero coefficients (related to VC dimension of
linear classifiers [Vapnik, 1998]).
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Dimension of WD

Theorem. dim(WD) = N(|L| − 1).

Proof sketch. ∃a ∈ Rp s.t. a>x i 6= a>x j for all distinct i , j ∈ [N].
Suppose wlog that a>x i < a>x i+1 ⇒ ∀i ∈ [N − 1] we can linearly
separate the first i datapoints from the rest.
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⇒
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Proof sketch. ∃a ∈ Rp s.t. a>x i 6= a>x j for all distinct i , j ∈ [N].
Suppose wlog that a>x i < a>x i+1 ⇒ ∀i ∈ [N − 1] we can linearly
separate the first i datapoints from the rest.

a

⇒N(|L| − 1) + 1 affinely
independent points

L



Very good partitions

(IL, IR) ∈ I is a good partition if ∀i /∈ IL ∪ IR , there exists a
hyperplane a>x = b that traverses x i and correctly separates all
but one datapoint in (IL, IR).

A good partition is called very good if, a>xk 6= b for all
k ∈ [N] \ (IL ∪ IR ∪ {i})

Lemma. Good partition ⇒ very good partition
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Very good partitions

Theorem. If I = (IL, IR) ∈ I is a very good partition, then the
shattering inequality associated with (IL, IR) and t = 1 is
facet-defining for W1.

Proof sketch. ∀i ∈ I , define a routing that partitions all the
points in IL ∪ IR correctly, except for x i ⇒ A has full affine rank

⇒ ( C D )− ( C D ′ ) = ( 0 I )
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Theorem. If I = (IL, IR) ∈ I is a very good partition, then the
shattering inequality associated with (IL, IR) and t = 1 is
facet-defining for W1.

Proof sketch. ∀j ∈ [N] \ I , ∃ hyperplane through x j and i ∈ I
s.t. all the points in IL ∪ IR but x i are correctly separated.
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Very good partitions

Theorem. If I = (IL, IR) ∈ I is a very good partition, then the
shattering inequality associated with (IL, IR) and t = 1 is
facet-defining for W1.

Proof sketch. By shifting this hyperplane, define two routings
that route all observations identically, except for x j
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Facets of W1

Theorem. If the dataset is in general position, then every
(IL, IR) ∈ I is a good partition.

⇓
Main result 1. If the dataset is in general position, then the
shattering inequalities are facets of W1.
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Facets of W1

Theorem. If the dataset is in general position, then every
(IL, IR) ∈ I is a very good partition.

⇓
Main result 1. If the dataset is in general position, then the
shattering inequalities are facets of W1.

But even when the dataset is not in general position, shattering
inequalities could be facets of W1.

very good partition very good partition



Computational experiments

I The numerical experiments by Boutilier, M. and Zhou (2022,
2023) have shown that the MIP formulations using shattering
inequalities outperform other MIP formulations in terms of
solution time and relative gap.

Depth 2 Depth 3 Depth 4
0

100

200

300

400

500

600

700

So
lu

tio
n 

tim
e 

(s
)

OCT
FlowOCT
FlowOCT-Benders
OCT-H
SOCT-baseline
SOCT-benders-last-1
SOCT-benders-last-10
SOCT-init-1
SOCT-init-5



Computational experiments

I The numerical experiments by Boutilier, M. and Zhou (2022,
2023) have shown that the MIP formulations using shattering
inequalities outperform other MIP formulations in terms of
solution time and relative gap.

Depth 2 Depth 3 Depth 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
la

tiv
e 

ga
p

OCT
FlowOCT
FlowOCT-Benders
OCT-H
SOCT-baseline
SOCT-benders-last-1
SOCT-benders-last-10
SOCT-init-1
SOCT-init-5



Computational experiments

I The numerical experiments by Boutilier, M. and Zhou (2022,
2023) have shown that the MIP formulations using shattering
inequalities outperform other MIP formulations in terms of
solution time and relative gap.

I To validate our theoretical findings, we perform numerical
experiments that specifically exploit shattering inequalities
defined at the root node —the only ones that are guaranteed
to be facets of WD if the dataset is in general position.
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Computational experiments

I The numerical experiments by Boutilier, M. and Zhou (2022,
2023) have shown that the MIP formulations using shattering
inequalities outperform other MIP formulations in terms of
solution time and relative gap.

I To validate our theoretical findings, we perform numerical
experiments that specifically exploit shattering inequalities
defined at the root node —the only ones that are guaranteed
to be facets of WD if the dataset is in general position.

I We use both numerical and categorical datasets to test
whether having a datapoints in general position impacts
computational performance.

I We compare against the baseline model.



Decomposition

? ? ? ?
......

MASTER PROBLEM

FEASIBILITY SUBPROBLEMS

computes candidate routings

add shattering inequalities

determines if there are multivariate branching rules that realize the routings

baseline with
big-M constraints

only on B′ ⊆ B



Separation

∀t ∈ B \ B′, given candidate routing w∗, check feasibily of (?):

a>t x
i≤bt − 1 ∀ i ∈ [N] : w∗i ,2t = 1

a>t x
i≥bt + 1 ∀ i ∈ [N] : w∗i ,2t+1 = 1

(at , bt) ∈ Rp+1

If the system is infeasible, each Irreducible Infeasible Subsystem
(IIS) provides:

I a subset I of datapoints that cannot be shattered

I a partition of I that cannot be separated

⇒
∑

i∈I :w∗i,2t=1

wi ,2t +
∑

i∈I :w∗i,2t+1=1

wi ,2t+1 ≤ |I | − 1



Separation

∀t ∈ B \ B′, given candidate routing w∗, check feasibily of (?):

a>t x
i≤bt − 1 ∀ i ∈ [N] : w∗i ,2t = 1

a>t x
i≥bt + 1 ∀ i ∈ [N] : w∗i ,2t+1 = 1

(at , bt) ∈ Rp+1

If the system is infeasible, each Irreducible Infeasible Subsystem
(IIS) provides:

I a subset I of datapoints that cannot be shattered

I a partition of I that cannot be separated

⇒ For a binary w∗ yielding an infeasible system (?), each vertex of
the dual of (?) corresponds to an IIS [Gleeson and Ryan, 1990]



Separation

We define Separation(w , nodes, n cuts):

I w is the candidate routing to separate (possibly fractional)

I nodes is the subset of B for which we generate shattering
inequalities

I n cuts is the maximum number of cuts to generate for each
t ∈ nodes.

Note: If w is binary, then the separation is exact.



Separation

We define Separation(w , nodes, n cuts):

I w is the candidate routing to separate (possibly fractional)

I nodes is the subset of B for which we generate shattering
inequalities

I n cuts is the maximum number of cuts to generate for each
t ∈ nodes.

Two models:

1. Root-x calls Separation(w ,1,x), x ∈ {1, 5, 10, 15, 20} over the LP
relaxation of the master problem, adding cuts up front as initial
cuts.

2. Root-x-Ben-y uses hybrid decomposition approach with B′ = ∅.
Calls Separation(w ,1,x) to add initial cuts to the master problem.
Additional cuts are iteratively added to the master problem by
calling Separation(w ,B,y); x , y ∈ {1, 5, 10}.



Experimental setup

I 15 datasets from the UCI Machine Learning Repository

I Python 3.8.10, Gurobi 10.0, 3.00 GHz 6-core Intel
Corei5-8500 processor and 16 GB RAM

I 10 minute time limit

I Code available at
https://github.com/zachzhou777/S-OCT

https://github.com/zachzhou777/S-OCT


First set of experiments

GOAL: does adding shattering inequalities at the root node improve
computational performance?

We compared:

I baseline model: only big-M constraints

I Root-x , x ∈ {1, 5, 10, 15, 20}
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Second set of experiments

GOAL: does adding shattering inequalities at all the nodes improve
computational performance?

We compared:

I Root-x , x ∈ {1, 5, 10, 15, 20}
I All-x , x ∈ {1, 5, 10, 15, 20}
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Second set of experiments

GOAL: does adding shattering inequalities at all the nodes improve
computational performance?

We compared:

I baseline model

I Root-x , x ∈ {1, 5, 10}
I Root-x-Ben-y , x , y ∈ {1, 5, 10}
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Conclusion

I Shattering inequalities are sparse and capture the
combinatorial structure of the problem.

I We have established conditions s.t. the shattering inequalities
are facets (dataset in general position, very good partitions).

I Computational experiments show that shattering inequalities
at the root node are useful to reduce MIP gap.

I Future directions: more (combinatorial) cuts, robust
multivariate decision trees.
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