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Problem Statement
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• Multiperiod security constrained AC unit commitment
– Nonlinear AC power flow / balance

• Real/reactive power production/consumption and balance
• Voltage magnitude/angle
• Discrete shunt steps
• Topology optimization

– Branch contingencies using linear real power flow / balance
– Detailed generator/load modeling

• Startup/shutdown
• Reactive power limits determined by real power output
• Minimum up/down requirements

– Suite of reserve products (both generators and loads)
• Objective: Find the best solution

Problem Statement
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Problem Statement

https://gocompetition.energy.gov/sites/default/file
s/Challenge3_Problem_Formulation_20230515.pdf

• 62 pages
• 320 equations
• ~400 pieces of 

nomenclature

• Solution evaluation 
code provided by 
PNNL

https://gocompetition.energy.gov/sites/default/files/Challenge3_Problem_Formulation_20230515.pdf
https://gocompetition.energy.gov/sites/default/files/Challenge3_Problem_Formulation_20230515.pdf
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• Four Events
– January 2023 
– April 2023 
– June 2023              (Prize Money)
– September 2023  (Prize Money)

• Code is submitted to Pacific 
Northwest National Laboratory 
(PNNL) and evaluated using a single 
node on their cluster
– 64-cores (2 AMD EPYC 7502 

CPUs)
– 256 GB memory
– Linux (Centos 7.8)

Competition Format
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• Three Divisions
– Real Time Unit Commitment (D1)

• 10-minute time limit
• 18 time-periods

– Day-Ahead Unit Commitment (D2)
• 120-minute time limit
• 48 time-periods

– Week-Ahead Unit Commitment (D3)
• 240-minute time limit
• 44 time-periods

Problem Instances



Solution Approach
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• University of Tennessee
– Jim Ostrowski
– Ethan Deakins

• Lawrence Livermore National Laboratory
– Jean-Paul Watson
– Jonathan Schrock

• Sandia National Laboratories
– Bill Hart

Competition Team (The Blackouts)
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Solution Approach

• Multiperiod security constrained AC unit commitment
– Nonlinear AC power flow / balance

• Real/reactive power production/consumption and balance
• Voltage magnitude/angle
• Discrete shunt steps
• Topology optimization

– Branch contingencies using linear real power flow / balance
– Detailed generator/load modeling

• Startup/shutdown
• Reactive power limits determined by real power output
• Minimum up/down requirements

– Suite of reserve products (both generator and load)

NLP / Ipopt

Custom 
Lazy 
Evaluation

MIP / Gurobi
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Solution Approach

Unit 
Commitment 

Engine
(Gurobi)

AC Power 
Flow Analysis

(Ipopt)

ADMM real power

Reactive power setpoints

commitments

AC PF Approximation, Linearization, 
and Sensitivity Calculation

Real / reactive setpoints

Loss Approximation
Active Line Constraints

Contingency 
Evaluation, 
Selection, 

and 
Sensitivity 
Calculation

Real net power injections

Active contingency constraints

Reactive
power flow
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• Implemented in C++
• Gurobi 10
• Coek modeling library
• Ipopt

– HSL MA97
– AMPL ASL

• UMFPACK
• Eigen
• MPI

Software Stack



AC Power Flow
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AC Power Flow / Balance

�
𝑐𝑐∈𝐶𝐶𝑖𝑖

𝑝𝑝𝑐𝑐 + �
𝑙𝑙∈𝐿𝐿𝑖𝑖

𝑓𝑓𝑓𝑓

𝑝𝑝𝑙𝑙fr + �
𝑙𝑙∈𝐿𝐿𝑖𝑖

𝑡𝑡𝑡𝑡

𝑝𝑝𝑙𝑙to = �
𝑔𝑔∈𝐺𝐺𝑖𝑖

𝑝𝑝𝑔𝑔  ∀𝑖𝑖

�
𝑐𝑐∈𝐶𝐶𝑖𝑖

𝑞𝑞𝑐𝑐 + �
𝑙𝑙∈𝐿𝐿𝑖𝑖

𝑓𝑓𝑓𝑓

𝑞𝑞𝑙𝑙fr + �
𝑙𝑙∈𝐿𝐿𝑖𝑖

𝑡𝑡𝑡𝑡

𝑞𝑞𝑙𝑙to = �
𝑔𝑔∈𝐺𝐺𝑖𝑖

𝑞𝑞𝑔𝑔  ∀𝑖𝑖

𝑝𝑝𝑙𝑙fr = 𝐺𝐺𝑙𝑙𝑣𝑣𝑖𝑖(𝑙𝑙)2 − 𝐺𝐺𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 cos 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑖𝑖 𝑗𝑗 − 𝐵𝐵𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 sin 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑗𝑗 𝑙𝑙  ∀𝑙𝑙
𝑝𝑝𝑙𝑙to = 𝐺𝐺𝑙𝑙𝑣𝑣𝑗𝑗(𝑙𝑙)

2 − 𝐺𝐺𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 cos 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑖𝑖 𝑗𝑗 + 𝐵𝐵𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 sin 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑗𝑗 𝑙𝑙  ∀𝑙𝑙
𝑞𝑞𝑙𝑙fr = −𝐵𝐵𝑙𝑙𝑣𝑣𝑖𝑖(𝑙𝑙)2 + 𝐵𝐵𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 cos 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑖𝑖 𝑗𝑗 − 𝐺𝐺𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 sin 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑗𝑗 𝑙𝑙  ∀𝑙𝑙
 𝑞𝑞𝑙𝑙to = −𝐵𝐵𝑙𝑙𝑣𝑣𝑗𝑗(𝑙𝑙)

2 + 𝐵𝐵𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 cos 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑖𝑖 𝑗𝑗 + 𝐺𝐺𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 sin 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑗𝑗 𝑙𝑙  ∀𝑙𝑙

𝑣𝑣𝑖𝑖min ≤ 𝑣𝑣𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖max ∀𝑖𝑖 

min �
𝑐𝑐∈𝐶𝐶

 −𝑤𝑤𝑐𝑐𝑝𝑝𝑐𝑐 + ⁄𝜌𝜌 2 𝑝𝑝𝑐𝑐 −�𝑝𝑝𝑐𝑐
𝑈𝑈𝑈𝑈 2 

+ �
𝑔𝑔∈𝐺𝐺

−𝑤𝑤𝑔𝑔𝑝𝑝𝑔𝑔 + ⁄𝜌𝜌 2 𝑝𝑝𝑔𝑔 − �𝑝𝑝𝑔𝑔
𝑈𝑈𝑈𝑈 2 

commitments from UC 
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Unit Commitment: Transmission Limits & ADDM

�
𝑐𝑐∈𝐶𝐶

𝑝𝑝𝑐𝑐 + 𝑝𝑝loss = �
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔 

min −𝑧𝑧ms +�
𝑐𝑐∈𝐶𝐶

 𝑤𝑤𝑐𝑐𝑝𝑝𝑐𝑐 + ⁄𝜌𝜌 2 𝑝𝑝𝑐𝑐 −�𝑝𝑝𝑐𝑐
𝐴𝐴𝐴𝐴 2 

+ �
𝑔𝑔∈𝐺𝐺

𝑤𝑤𝑔𝑔𝑝𝑝𝑔𝑔 + ⁄𝜌𝜌 2 𝑝𝑝𝑔𝑔 − �𝑝𝑝𝑔𝑔
𝐴𝐴𝐴𝐴 2 

 +�
𝑐𝑐∈𝐶𝐶

 ⁄𝜌𝜌 2 𝑞𝑞𝑐𝑐 −�𝑞𝑞𝑐𝑐
𝐴𝐴𝐴𝐴 2 

+ �
𝑔𝑔∈𝐺𝐺

⁄𝜌𝜌 2 𝑞𝑞𝑔𝑔 − �𝑞𝑞𝑔𝑔
𝐴𝐴𝐴𝐴 2 

hundreds more constriants…

Questions: What to do about loss term 𝑝𝑝loss?     

subject to:

Transmission Limits?
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Transmission Limits

𝑝𝑝𝑙𝑙fr
2

+ 𝑞𝑞𝑙𝑙fr
2 1/2

≤ 𝑠𝑠𝑙𝑙max + 𝑠𝑠𝑙𝑙+ ∀𝑙𝑙

𝑝𝑝𝑙𝑙to 2 + 𝑞𝑞𝑙𝑙to 2
1/2

≤ 𝑠𝑠𝑙𝑙max + 𝑠𝑠𝑙𝑙+ ∀𝑙𝑙

• 𝑠𝑠𝑙𝑙+ is a nonnegative slack variable which allows for violation of 
transmission constraints

• Loads are completely relaxed as dispatchable
• Violating transmission constraints could be optimal! 

• Delegate ALL economic tradeoffs to the unit commitment problem
• Approximate AC line flows, then linearize
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Approximating Flow

𝑝𝑝𝑙𝑙fr = 𝐺𝐺𝑙𝑙𝑣𝑣𝑖𝑖(𝑙𝑙)2 − 𝐺𝐺𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 cos 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑖𝑖 𝑗𝑗 − 𝐵𝐵𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 sin 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑗𝑗 𝑙𝑙
𝑝𝑝𝑙𝑙to = 𝐺𝐺𝑙𝑙𝑣𝑣𝑗𝑗(𝑙𝑙)

2 − 𝐺𝐺𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 cos 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑖𝑖 𝑗𝑗 + 𝐵𝐵𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 sin 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑗𝑗 𝑙𝑙

• Approximate: Midline flow (Garcia et al. 2019)

0.5
−0.5

𝑝𝑝𝑙𝑙
fr,avg = ⁄𝐺𝐺𝑙𝑙 𝑣𝑣𝑖𝑖 𝑙𝑙

2 − 𝑣𝑣𝑗𝑗 𝑙𝑙
2 2 − 𝐵𝐵𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 sin 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑗𝑗 𝑙𝑙

• Linearize w.r.t 𝜃𝜃:

�𝑝𝑝𝑙𝑙
fr,avg = ⁄𝐺𝐺𝑙𝑙 �𝑣𝑣𝑖𝑖 𝑙𝑙

2 − �𝑣𝑣𝑗𝑗 𝑙𝑙
2 2 − 𝐵𝐵𝑙𝑙 �𝑣𝑣𝑖𝑖 𝑙𝑙 �𝑣𝑣𝑗𝑗 𝑙𝑙 sin 𝜃̂𝜃𝑖𝑖 𝑙𝑙 − 𝜃̂𝜃𝑗𝑗 𝑙𝑙

                                       −𝐵𝐵𝑙𝑙 �𝑣𝑣𝑖𝑖 𝑙𝑙 �𝑣𝑣𝑗𝑗 𝑙𝑙 cos 𝜃̂𝜃𝑖𝑖 𝑙𝑙 − 𝜃̂𝜃𝑗𝑗 𝑙𝑙 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑗𝑗 𝑙𝑙  
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Approximating Loss

𝑝𝑝𝑙𝑙fr = 𝐺𝐺𝑙𝑙𝑣𝑣𝑖𝑖(𝑙𝑙)2 − 𝐺𝐺𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 cos 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑖𝑖 𝑗𝑗 − 𝐵𝐵𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 sin 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑗𝑗 𝑙𝑙
𝑝𝑝𝑙𝑙to = 𝐺𝐺𝑙𝑙𝑣𝑣𝑗𝑗(𝑙𝑙)

2 − 𝐺𝐺𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 cos 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑖𝑖 𝑗𝑗 + 𝐵𝐵𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 sin 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑗𝑗 𝑙𝑙

• Calculate Loss:

+

𝑝𝑝𝑙𝑙loss = 𝐺𝐺𝑙𝑙 𝑣𝑣𝑖𝑖 𝑙𝑙
2 + 𝑣𝑣𝑗𝑗 𝑙𝑙

2 − 2𝐺𝐺𝑙𝑙𝑣𝑣𝑖𝑖 𝑙𝑙 𝑣𝑣𝑗𝑗 𝑙𝑙 cos 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑗𝑗 𝑙𝑙

• Linearize w.r.t 𝜃𝜃:

�𝑝𝑝𝑙𝑙loss = 𝐺𝐺𝑙𝑙 �𝑣𝑣𝑖𝑖 𝑙𝑙
2 − �𝑣𝑣𝑗𝑗 𝑙𝑙

2 − 2𝐺𝐺𝑙𝑙 �𝑣𝑣𝑖𝑖 𝑙𝑙 �𝑣𝑣𝑗𝑗 𝑙𝑙 cos 𝜃̂𝜃𝑖𝑖 𝑙𝑙 − 𝜃̂𝜃𝑗𝑗 𝑙𝑙
                                       +2𝑙𝑙 �𝑣𝑣𝑖𝑖 𝑙𝑙 �𝑣𝑣𝑗𝑗 𝑙𝑙 sin 𝜃̂𝜃𝑖𝑖 𝑙𝑙 − 𝜃̂𝜃𝑗𝑗 𝑙𝑙 𝜃𝜃𝑖𝑖 𝑙𝑙 − 𝜃𝜃𝑗𝑗 𝑙𝑙  

• Summary:
𝑝𝑝𝑙𝑙fr ≈ �𝑝𝑝𝑙𝑙

fr,avg + 0.5 �𝑝𝑝𝑙𝑙loss

𝑝𝑝𝑙𝑙to ≈ − �𝑝𝑝𝑙𝑙
fr,avg + 0.5 �𝑝𝑝𝑙𝑙loss
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Power Balance

• Bus power balance:

• Sum across all buses 𝑖𝑖: �
𝑐𝑐∈𝐶𝐶

𝑝𝑝𝑐𝑐 + �
𝑙𝑙∈𝐿𝐿

�𝑝𝑝𝑙𝑙loss = �
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔

�
𝑐𝑐∈𝐶𝐶𝑖𝑖

𝑝𝑝𝑐𝑐 + �
𝑙𝑙∈𝐿𝐿𝑖𝑖

𝑓𝑓𝑓𝑓

�𝑝𝑝𝑙𝑙
fr,avg + 0.5 �𝑝𝑝𝑙𝑙loss − �

𝑙𝑙∈𝐿𝐿𝑖𝑖
𝑡𝑡𝑡𝑡

�𝑝𝑝𝑙𝑙
fr,avg − 0.5 �𝑝𝑝𝑙𝑙loss = �

𝑔𝑔∈𝐺𝐺𝑖𝑖

𝑝𝑝𝑔𝑔  ∀𝑖𝑖

𝑝𝑝loss

• Project out 𝜃𝜃 (lots of linear algebra):

�𝑝𝑝𝑙𝑙
fr,avg = 𝛼𝛼𝑙𝑙0 + �

𝑐𝑐∈𝐶𝐶

𝛼𝛼𝑙𝑙𝑐𝑐𝑝𝑝𝑐𝑐 + �
𝑔𝑔∈𝐺𝐺

𝛼𝛼𝑙𝑙
𝑔𝑔𝑝𝑝𝑔𝑔 𝑝𝑝loss = 𝛼𝛼loss + �

𝑐𝑐∈𝐶𝐶

𝛼𝛼loss
𝑐𝑐 𝑝𝑝𝑐𝑐 + �

𝑔𝑔∈𝐺𝐺

𝛼𝛼loss
𝑔𝑔 𝑝𝑝𝑔𝑔
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Transmission Limits

𝑝𝑝𝑙𝑙fr
2

+ 𝑞𝑞𝑙𝑙fr
2 1/2

≤ 𝑠𝑠𝑙𝑙max + 𝑠𝑠𝑙𝑙+ ∀𝑙𝑙

𝑝𝑝𝑙𝑙to 2 + 𝑞𝑞𝑙𝑙to 2
1/2

≤ 𝑠𝑠𝑙𝑙max + 𝑠𝑠𝑙𝑙+ ∀𝑙𝑙

To incorporate in UC:
1. Replace 𝑝𝑝𝑙𝑙fr / 𝑝𝑝𝑙𝑙to with their approximation �𝑝𝑝𝑙𝑙

fr,avg / −�𝑝𝑝𝑙𝑙
fr,avg

2. Use �𝑞𝑞𝑙𝑙fr / �𝑞𝑞𝑙𝑙to from AC base point
3. Linearize around 𝑝̂𝑝𝑙𝑙fr / 𝑝̂𝑝𝑙𝑙to / 𝑠̂𝑠𝑙𝑙+ calculated from AC base point: 

2𝑝̂𝑝𝑙𝑙fr �𝑝𝑝𝑙𝑙
fr,avg + 0.5𝛼𝛼𝑙𝑙loss𝑝𝑝loss  − 𝑝̂𝑝𝑙𝑙fr

2
+ �𝑞𝑞𝑙𝑙fr

2
≤ 𝑠𝑠𝑙𝑙max 2 + 2𝑠𝑠𝑙𝑙max𝑠𝑠𝑙𝑙+ + 2𝑠̂𝑠𝑙𝑙+𝑠𝑠𝑙𝑙+ − 𝑠̂𝑠𝑙𝑙+ 2

2𝑝̂𝑝𝑙𝑙to �𝑝𝑝𝑙𝑙
fr,avg − 0.5𝛼𝛼𝑙𝑙loss𝑝𝑝loss  − 𝑝̂𝑝𝑙𝑙to 2 + �𝑞𝑞𝑙𝑙to 2 ≤ 𝑠𝑠𝑙𝑙max 2 + 2𝑠𝑠𝑙𝑙max𝑠𝑠𝑙𝑙+ + 2𝑠̂𝑠𝑙𝑙+𝑠𝑠𝑙𝑙+ − 𝑠̂𝑠𝑙𝑙+ 2

Only add violated constraints!

Full details are in Eldridge 2020, Chapter 4
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Contingency Analysis
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• Electrical Engineering Requirement:
– System needs to survive the loss of a single element
– If a transmission line fails unexpectedly, other lines can 

become overloaded and trip off automatically, setting off a 
cascading series of failures

• Practice:
– Only Monitor contingencies which do not disconnect the 

network
– Maintain a watchlist of critical transmission contingencies
– Typically, each contingency is just a single line failure

Transmission Contingencies
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• In the GO3 formulation, transmission contingencies are linearized:
𝑝𝑝𝑙𝑙𝑘𝑘 = −𝐵𝐵𝑙𝑙 𝜃𝜃𝑙𝑙 𝑖𝑖

𝑘𝑘 − 𝜃𝜃𝑙𝑙 𝑗𝑗
𝑘𝑘  ∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑘𝑘 ∈ 𝐾𝐾 

𝑝𝑝𝑘𝑘𝑘𝑘 = 0 ∀𝑘𝑘 ∈ 𝐾𝐾

�
𝑐𝑐∈𝐶𝐶𝑖𝑖

𝑝𝑝𝑐𝑐 + �
𝑙𝑙∈𝐿𝐿𝑖𝑖

𝑓𝑓𝑓𝑓

𝑝𝑝𝑙𝑙𝑘𝑘 − �
𝑙𝑙∈𝐿𝐿𝑖𝑖

𝑡𝑡𝑡𝑡

𝑝𝑝𝑙𝑙𝑘𝑘 + 𝛼𝛼𝑖𝑖𝑝𝑝loss = �
𝑔𝑔∈𝐺𝐺𝑖𝑖

𝑝𝑝𝑔𝑔  ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑘𝑘 ∈ 𝐾𝐾

𝑝𝑝𝑙𝑙𝑘𝑘
2 + 𝑞𝑞𝑙𝑙fr

2 1/2
≤ 𝑠𝑠𝑙𝑙

max,ctg + 𝑠𝑠𝑙𝑙,𝑘𝑘+  ∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑘𝑘 ∈ 𝐾𝐾

𝑝𝑝𝑙𝑙𝑘𝑘
2 + 𝑞𝑞𝑙𝑙to 2

1/2
≤ 𝑠𝑠𝑙𝑙

max,ctg + 𝑠𝑠𝑙𝑙,𝑘𝑘+  ∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑘𝑘 ∈ 𝐾𝐾

Transmission Contingencies
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• Too many constraints!
• Objective penalizes the average total line violation in each 

contingency plus the 𝑘𝑘 ∈ 𝐾𝐾 with worst total line violations
– Need to identify worst 𝑘𝑘, can leave the rest out of the UC model

• Still leaves a lot of constraints to check!

Transmission Contingencies
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𝑝𝑝𝑙𝑙𝑘𝑘 = −𝐵𝐵𝑙𝑙 𝜃𝜃𝑙𝑙 𝑖𝑖
𝑘𝑘 − 𝜃𝜃𝑙𝑙 𝑗𝑗

𝑘𝑘  ∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑘𝑘 ∈ 𝐾𝐾 
𝑝𝑝𝑘𝑘𝑘𝑘 = 0 ∀𝑘𝑘 ∈ 𝐾𝐾

�
𝑐𝑐∈𝐶𝐶𝑖𝑖

𝑝𝑝𝑐𝑐 + �
𝑙𝑙∈𝐿𝐿𝑖𝑖

𝑓𝑓𝑓𝑓

𝑝𝑝𝑙𝑙𝑘𝑘 − �
𝑙𝑙∈𝐿𝐿𝑖𝑖

𝑡𝑡𝑡𝑡

𝑝𝑝𝑙𝑙𝑘𝑘 + 𝛼𝛼𝑖𝑖𝑝𝑝loss = �
𝑔𝑔∈𝐺𝐺𝑖𝑖

𝑝𝑝𝑔𝑔  ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑘𝑘 ∈ 𝐾𝐾

𝑝𝑝𝑙𝑙𝑘𝑘
2 + 𝑞𝑞𝑙𝑙fr

2 1/2
≤ 𝑠𝑠𝑙𝑙

max,ctg + 𝑠𝑠𝑙𝑙,𝑘𝑘+  ∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑘𝑘 ∈ 𝐾𝐾

𝑝𝑝𝑙𝑙𝑘𝑘
2 + 𝑞𝑞𝑙𝑙to 2

1/2
≤ 𝑠𝑠𝑙𝑙

max,ctg + 𝑠𝑠𝑙𝑙,𝑘𝑘+  ∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑘𝑘 ∈ 𝐾𝐾

Transmission Contingencies

Critical observation: parts in blue are identical in every contingency
• Compute base-case flow under no contingency
• Contingency evaluation amounts to a rank-1 update to the base-case flow

• This can be very fast, approximately the cost of |𝐾𝐾| simplex iterations on 
the base-case flow

• See Alsec et al. (1983) for details 
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• Once you evaluate the constraints, do some similar linear algebra to 
project out 𝜃𝜃𝑘𝑘:

 𝑝𝑝𝑙𝑙𝑘𝑘 = 𝛼𝛼𝑙𝑙,𝑘𝑘0 + �
𝑐𝑐∈𝐶𝐶

𝛼𝛼𝑙𝑙,𝑘𝑘𝑐𝑐 𝑝𝑝𝑐𝑐 + �
𝑔𝑔∈𝐺𝐺

𝛼𝛼𝑙𝑙,𝑘𝑘
𝑔𝑔 𝑝𝑝𝑔𝑔  ∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑘𝑘 ∈ 𝐾𝐾

𝑝𝑝𝑙𝑙𝑘𝑘 + 𝛼𝛼𝑙𝑙,𝑘𝑘loss𝑝𝑝loss
2

+ 𝑞𝑞𝑙𝑙fr
2 1/2

≤ 𝑠𝑠𝑙𝑙
max,ctg + 𝑠𝑠𝑙𝑙,𝑘𝑘+  ∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑘𝑘 ∈ 𝐾𝐾

𝑝𝑝𝑙𝑙𝑘𝑘 + 𝛼𝛼𝑙𝑙,𝑘𝑘loss𝑝𝑝loss
2

+ 𝑞𝑞𝑙𝑙to 2
1/2

≤ 𝑠𝑠𝑙𝑙
max,ctg + 𝑠𝑠𝑙𝑙,𝑘𝑘+  ∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑘𝑘 ∈ 𝐾𝐾

• Compute a similar linearization / approximate of the line limits
• Cap the total number of contingency constraints allowed in UC

Transmission Contingencies
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Unit Commitment Engine
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• Solved using Gurobi
• Competition formulation needed a 

few adjustments
– Minimum up and downtime 

constraints were strengthened
– Ramping constraints were 

simplified and strengthened
– Result: initial copper plate UC 

was nearly integer feasible at 
root node (e.g., 50-100 
fractional binaries out of 
~100,000)

• Problem: solving the LP relaxation

Unit Commitment Engine

– Larger cases have thousands of 
dispatchable devices, which is an order 
of magnitude more than typical 
literature UC problems
– Each device has ~20 constraints / 
variables *per time period*.

– 18-period problem with 5,000 devices: 1.8 
million variables / constraints

– Preprocessing is key:
– Do as much of it as possible when creating 

the model
– Redundant reserve constraints, max energy 

constraints, ramping constraints, etc.
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• Solve single-time step UCs in parallel (1UC)
• Check contingencies for each time step in parallel
• Solve 1UC with contingency constraints
• Run AC PF analysis
• Check contingencies
• Solve 1UC with AC constraints and updated 

contingencies
• Fix generators whose commitment status 

changes at most once across the time horizon
• Warmstart full UC w and contingency constraints

Heuristic Fixings & Warmstarting 1UC 1UC 1UC 1UC

1UC 1UC 1UC 1UC

1UC 1UC 1UC 1UC

CC CC CC CC

CC CC CC CC

AC AC AC AC

Fix commitments

UC
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Main Loop

Initial UC

CC CC CC CC

AC AC AC AC

ADMM UCSolution 
Recovery

Write 
Solution if 
Improving



Event 4

Competition Results
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Competition Scores

Six divisions total
• Div 1–3: D1, D2, D3 sum of 

objective function values
• Div 4–6: D1, D2, D3 total 

number of best scores
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Competition Scores

Six divisions total
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objective function values
• Div 4–6: D1, D2, D3 total 

number of best scores
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• Undiagnosed Gurobi 
Error on PNNL’s 
machines:
– Tested code at UTK, 

NREL, LLNL – could 
not reproduce

– PNNL compute node 
not obviously 
running out of 
memory

Failure Modes



NREL    |    37

• Failed to solve or took too much time for AC PF:
– Winning team (YongOptimization) wrote their own 

interior point method

Failure Modes
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• ???
– No output written to console
– Software logs output before even reading instance file

Failure Modes
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Suboptimality

• Multiperiod security constrained AC unit commitment
– Nonlinear AC power flow / balance

• Real/reactive power production/consumption and balance
• Voltage magnitude/angle
• Discrete shunt steps
• Topology optimization

– Branch contingencies using linear real power flow / balance
– Detailed generator/load modeling

• Startup/shutdown
• Reactive power limits determined by real power output
• Minimum up/down requirements

– Suite of reserve products (both generator and load)

NLP / Ipopt

Custom 
Lazy 
Evaluation

MIP / Gurobi
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Suboptimality

Not enough iterations
• Need around 10 for a high-quality solution
• Sometimes UC is too slow / too big
• Sometimes AC PF is slow



Reflections
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Reflections

• Competitions go very, very quickly
• Never had enough time to thoroughly test and evaluate

• Compiling and executing software on a system without direct 
access to debug is exceedingly difficult
• Debugging MPI code is also hard!

• Many competitors implemented simpler, one-shot heuristics
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Reflections

• Despite the various difficulties, our method performed well

• Biggest holdups:
• Undiagnosed Gurobi error
• Lack of transmission switching method

• Future work:
• Establish baseline for submitted code
• Enable / enhance transmission switching
• More robust AC power flow solves
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