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Linear Programming (LP)

min{c,x) : Ax=b,x >0, A e R™"

LP can be solved in time poly (m, s1ze(A, b, C)) .
(Khachiyan "79 (Ellipsoid Method), Karmarkar "84 | + PSPACE

(Interior Point Methods),...
Note: Any LP can be written

with at most three nonzero
[s there a strongly polynomial algorithm for LP? | F55iics per column

...1.e. an algorithm with running time poly(m)... N

opt

Dadush, Koh, N., Olver, Végh “24:
There exists a strongly polynomial time algorithm for LP with at most two
nonzero entries per column.



The minimum-cost generalized flow problem

Primal: min{c,x) : Ax=,x>0 Dual: max(y, ) :Aly<c¢
Primal: min(c,x) : Z VX, — Z x,=,Vieln], x>0
ecd (i) ecd™ (i)

Dual: max(y, ) - VY — )i <, Ve = (i,j)

Hochbaum ’04: LP with 2 variables
per column can be reduced to
minimum-cost generalized flow




Prior strongly polynomial special cases
min{c, x) : Z VX, — Z x,=0,Vie[n], x20 (MCGF)

ecod (i) ecd™ (i)
Special gains y
y =1 = Minimum cost flow problem
=
y € Z" and log(|l7ll,) = O(poly(m))
=

Primal feasibility
o Végh '13: O(m”n”) answering
longstanding open question

e Olver, Végh "20: “Simpler and faster”
now in O(m”n)

Dual feasibility

e First strongly polynomial algorithm: Seminal work
by Megiddo 83 introducing parametric search
technigue (Meta algorithm, binary search on steroids)

e Hochbaum-Naor '94: O(mn?) fastest deterministic

e First algorithm not relying on parametric search:
Dadush, Koh, N. and Végh "21: usage of Discrete
Newton method



Our Road to solve the MCGF problem

“A Simpler and Faster Strongly Polynomial Algorithm for Generalized Flow Maximization” - Olver, Végh
STOC "17, JACM "20. Fastest/ Cleanest (combinatorial) primal feasibility algorithm
v

Question: Find a more combinatorial / structured algorithm that solves 2VPI? (Somewhen in 2019)

v
Discrete Newton Method (DN) is strongly polynomial for dual feasibility- Dadush, Koh, N., Végh "20
First combinatorial dual feasibility algorithm.

/

Question: Combine combinatorial primal
feasibility and dual feasibility algorithms
to tackle optimization MCGF problem?

Question: IPM are usually most efficient methods for LP. Is
there an IPM with running time f(m, n)?

No progress :(




Predictor - Corrector Path Following

Mizuno-Todd-Ye ‘93

0

e Givenx" in ‘neighborhood” around x, for some y > 0

1

e Compute iterates x ', ..., x' by alternating between

e Predictor steps: decrease y by moving ‘down’ the central

path

e Corrector steps: move back “closer’ to the central path
for the same y (Newton step).

Each iteration takes O(1) linear system solves

*

X

Standard analysis: Decrease u by a factor of 2 in O(ﬁ) iterations




Prior Exact Interior Point Methods

min{c, x) : Ax = b,x > 0, m variables, n equalities

Layer 1 Layer 2 Layer 3

Number of iterations to solve LP exactly depends on condition number of matrix A

Layered-least-squares (LLS)
Vavasis-Ye '96, Monteiro-Tsuchiya "03 - "05,

Trust-region based IPM
Lan-Monteiro-Tsuchiya "09

Scaling-invariant LLS
Dadush-Huiberts-N.-Végh ‘20




Straight Line ,
Complexity

x; ' (8)

Optimality gap &



The max central path

min{c,x) :Ax=b,x>0, A€eR"™" P:={x:Ax=b,x>0}

For any variable i € [m]...

Xi x"(g) :=max{x;: Ax = b,(c,x) — OPT < g,x > 0}

x;'(g) is:

*Concave

* Monotone increasing

* Piecewise linear

o fpieces < min(#edges of P, #vertices of P)

e Breakpoints of x;" correspond to vertices of P
e Line segments of x;"' correspond to edges of P



Straight line complexity

LP: miI.1<C,X> cAx = b,..x > O/ xim(g) ¢ — maX{Xi : Ax — b, <C, x> o OPT S 9. X Z O}
x™(g) m variables, n constraints

X;"(8)
Straight Line Complexity
(SLCY):
Minimum number of linear
segments between and
x" on [0,00].

g ...gap

Theorem (Allamigeon, Dadush, Loho, N., Végh "22):
Given a suitable initial point, there exists an IPM that solves an LP in strongly polynomial

many iterations if for all variables i € [m] we have that SLC(x.™) = O(poly(m, n)).



SLC for maximum flow

Instance: directed graph G = (V, E), capacities u : E — R, special arc s

Goal: max f,. : Zfe— Zfe=0‘v’vEV(G),O§f§u

ecd (v) ecdT(v)

Todo: Analyze the SLC of /" for some edge e. Recall: the segments of /" correspond to edges
of the flow polytope. Edges of the flow polytope correspond to cycles in the graph.

There are only two types of circuits involving the edge e:

involving the arc e not involving the arc e




SLC for maximum flow

Instance: directed graph G = (V, E), capacities u : E — R, special arc s

Goal: max f,. : Zfe— Zfe=0‘v’vEV(G),O§f§u

ecd (v) ecdT(v)

Todo: Analyze the SLC of /" for some edge e. Recall: the segments of /" correspond to edges
of the flow polytope. Edges of the flow polytope correspond to cycles in the graph.

involving the arc e
df'(g)

GOy a -

not involving the arc e

€

SR

0

dfg'(g)
t dg -
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Minimum cost generalized flow

min{c, x) : Z VX, — Z x,=0,Vie[n], x>0 (MCGF)

e
ecd (i) ecd (i)



Our Road to solve the MCGF problem

“A Simpler and Faster Strongly Polynomial Algorithm for Generalized Flow Maximization” - Olver, Végh
STOC "17, JACM "20. Fastest/ Cleanest (combinatorial) primal feasibility algorithm
v

Question: Find a more combinatorial / structured algorithm that solves 2VPI? (Somewhen in 2019)

v
Discrete Newton Method (DN) is strongly polynomial for dual feasibility- Dadush, Koh, N., Végh "20
First combinatorial dual feasibility algorithm.

/

Question: Combine combinatorial primal
feasibility and dual feasibility algorithms
to tackle optimization MCGF problem? v

Question: IPM are usually most efficient methods for LP. Is
there an IPM with running time f(m, n) ...even Simplex does it.

Allamigeon, Dadush, Loho, N., Végh 22 : Yes, f(m,n) = D0m),
“IPM are not worse than Simplex”

v

“ Question: Are IPM strongly polynomial for MCGF?

No progress :(




Circuits

... of linear subspaces...




Circuits in simple graphs

Circuits in general are vectors x s.t. Ax = 0 and Ay # 0 : Ay = 0, supp(y) C supp(x)

Circuits in undirected graphs Circuits in directed graphs

1 10000 -1 0

1 01 0 0 O 0
A=10 01 1 10 A= 0
000 0 11 I
010101

-1




Circuits in generalized flows
LP: min{c,x) : Ax = b,x > 0, m variables, constraints

Circuits in general are vectors x s.t. Ax = 0 and Ay # 0 : Ay = 0, supp(y) C supp(x)

For generalized flow: support-minimal vectors x such that 2 X, — Z x,=",Vi € [n]
ecd (i) ecod™ (i)
/1 “Flow conserving cycle”

/3
" Y4
- v, “Bicycles” o
A cycle is a circuit 0) J
iff y(C) = 1 ( -
y(CT) <1

r(C) = H Ve

eeE(C) }/(C+) |



Small circuit cover for MCGF

/3
1 “Flow conserving cycle” A(CH) > 1 /4
"2 Y1 “Bicycles” C™
¢ §)
/ A cycle is a circuit iff
y(C) = }/(C_) <1

Theorem (Dadush, Koh, N., Olver, Végh "24+):
In the extended residual graph induced by the optimal solution x*, there exists a collection of
O(mn) bicycles and flow conserving cycles that dominates all other bicycles and flow conserving cycles.



Path covers

Combinatorial problem: Given a directed graph Question 1: Is there an s-f walk W of length
G = (V, E) where edges have < n such that

gains  capacities  cost o gain(W) := H y(e) is maximum

eeW
32 0 o capacity(W) := flow sent to t without

M t violating capacities is maximum
e cost(W) := cost per unit of flow sent to 7 is
minimum ?
No!

Question 2: Is there a collection 7', | #" | = poly(m) of s-t walks W of length < n such that

for any s-t walk W of length < n there exists W* € %' s.t. N '
(gain(W), capacity(W), 1/ cost(W)) < (gain(W*), capacity(W*), 1/cost(W*))? 0.

Question 3: Is there a collection 7', | 7" | = poly(m) of s-t walks W of length such

that for any s-f walk W of length < n there exists W* € %" s.t. Y '
(gain(W), capacity(W), 1/cost(W)) < (gain(W#*), capacity(W*), 1/ cost(W*))? cS.



Our result

Question 3: Is there a collection 7', | #" | = poly(m) of s-t walks W of length such
that for any s-f walk W of length < n there exists W* € % s.t. Y '
(gain(W), capacity(W), 1/cost(W)) < (gain(W#*), capacity(W*), 1/cost(W*))? eS.

\U ...a lot of extra effort...

Theorem (Dadush, Koh, N., Olver, Végh "24+):
For every edge e € E(G) we have that, SLC(x)") = O(mn log(mn)).

_I_

Theorem (Allamigeon, Dadush, Loho, N., Végh "22):
Given a suitable initial point, there exists an IPM that solves an LP in strongly polynomial
many iterations if for all variables i € [m] we have that SLC(x;™) = O(poly(m, n)).

Initialized algorithm with strongly volynomially many iterations for minimum cost generalized flow



Initialization

...usually an afterthought...



Why standard initialization techniques have a hard time
Primal: min{c,x) : Ax=b,x >0, A€ R™" Dual: max(y,b) :A'y < c

Approach 1: A large bounding box around the feasible region

Problem of Approaches 1: How large has the box to be chosen? The computation model does not allow to access the bit
complexity of the numbers in the input.

Approach 2: Homogeneous self-dual initialization (Ye-Todd-Mizuno’94)

min (n+1)6
s.t. +Ax  —bt + b0 =0, Theorem (Ye-Todd-Mizuno ‘94):
-A'y +ct - 6 >0, The system on the left can be initialized
b’y —c'x +Z0 >0, on the central path and its optimal
b7y +&Tx -zt — _(n+1), solution isexactly the optimal solution of

yfree, x >0 1T >0, 0 free. the original system

Problem of Approaches 1 + 2: The introduction of new constraints and variables modifies the matrix structure so that the
systems does not have 2 nonzero entries per column anymore.



Multistage initialization
Primal: min{c,x) : Ax=b,x >0, A€ R™" Dual: max{y,b) :A'y <c

Stage 1: Conic feasibility Theorem: (Allamigeon, Dadush, Loho, N.,

Solve :min{1,x) : Ax—Ax=0,0<x<1,x>0 Végh22)
There exists an IPM that finds an optimal

= obtain x* such that x* > ) and Ax* = () solution x* to an LP in strongly polynomial
time iff for all variables i € [m] we have that
Stage 2: Dual feasibility SLC(x™) = O(poly(m, n)).
Furthermore, x* is near the analytic center

Solve : min(c,x) : Ax = 0, 0 <x < 1. Initialize with x* of the optimal facet.

Dual :min(1,z) :A'y—z<¢,2>0

= the set of dual solutions with objective value 0 correponds to feasible solutioff S STEEEETF

: : , o the modification of
= obtain y* as solution near the analytic center of the original dual system. [Haegis i i

is “harmless”.
Stage 3: Primal-dual optimization: Use y* to initialize the original system.



Future theory directions

e Combinatorial strongly polynomial time algorithm for minimum-cost generalized flow?
With improved running time?

e What is the true cost of making weakly polynomial algorithms strongly polynomial?

e How hard are Markov Decision Processes (MDP)?

e Why do IPM perform so well in practice?

e Universal exact methods for more general convex problems? Convex quadratic?



