ISE, The Ohio State University **Parallelized Conflict Graph Cut Generation**

Yongzheng Dai, Chen Chen

Abstract

We develop efficient parallel conflict graph management: conflict detection; maximal clique generation; clique extension; and clique merging. We leverage parallel computing to intensify computational effort on the conflict graph, thereby generating a much larger pool of cutting planes than what can be practically achieved in serial. Computational experiments demonstrate our parallel method led to substantial reductions in total MIP solve time.

Conflict Graph (CG)

A conflict [1] is an infeasible assignment of values to binary variables, e.g., $x_1 = 1, x_2 = 0$, (or $\overline{x_2} = 1 - x_2 = 1$).

CG can be used to guide branching decisions, fix variable values, generate cuts, etc.

Suppose m constraints (or cliques), n binary variables, k threads, and a probability p that one binary variable appearing in one clique in later complexity results. **Our focus:**

We modify the algorithm from [2] to generate even more cuts, set computation limits, and deploy cuts management:

- ~Break-even in serial
- Substantial advantage in parallel

THE OHIO STATE UNIVERSITY

GitHub Link

Gurobi Solver Time Comparison

- Runtime Comp.:

Bracket $\geq 1 \, \sec$

- > 10 sec $\geq 100 \text{ sec}$
- $\geq 1000 \text{ sec}$

Table1: Ignore CG procedure runtime

- Bra
- 1 T
- 2 T
- 8 T
- 32

BIBLIOGRAPHY

ACKNOWLEDGEMENTS

This work was funded by the Office of Naval Research under grant N00014-23-1-2632.

Preprint Link

99/173 cases are compared, and 3 of them have memory issues (clique size).

• 8 cases in which Gurobi 11.0.1 cannot solve the original MIPs within 3600 seconds; adding our CG procedure solves 1 of them.

• Faster or slower implies the runtime difference > 5% • Org Time: Gurobi solver time for the original model • Reduced Time: Gurobi solver time for the reduced mode

Reduced Time / Org Time.

Number of Cases	Runtime Comp.	Nodes Comp.	Faster	Slower
88	0.88	0.60	42	24
80	0.83	0.57	42	22
62	0.76	0.46	37	16
35	0.69	0.47	25	8
7	0.60	0.35	7	0

nThread Time: CG procedure time with n threads • Runtime Comp.:

(Reduced Time + nThread Time)/Org Time

				_
icket	Runtime Comp.	Faster	Slower	
hread	1.10	36	41	
hreads	1.04	38	40	
hreads	0.96	38	39	
hreads	0.93	38	36	
Threads	0.91	39	35	
Threads	0.90	39	34	
Threads	0.90	39	34	

 Table 2: Consider CG procedure runtime

Alper Atamturk, George L Nemhauser, and Martin WP Savelsbergh. Conflict graphs in solving integer programming problems. European Journal of Operational Research, 121(1):40–55, 2000

2. Brito SS, Santos HG. Preprocessing and cutting planes with conflict graphs. Computers & Operations Research. 128:105176, 2021.

3. Dai Y, Chen C. Parallelized Conflict Graph Cut Generation. arXiv preprint arXiv:2311.03706. 2023.

4. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.gurobi.com

5. Tobias Achterberg, Robert E Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger. Presolve reductions in mixed integer programming. INFORMS Journal on Computing, 32(2):473–506, 2020