Stochastic Scheduling: Strategies for Abandonment Management

RICE UNIVERSITY

Georgia Institute of Technology

¹Computational Applied Mathematics & Operations Research, Rice University; ²Industrial and Systems Engineering, Georgia Tech

Motivation

Problem: Revenue-maximizing multi-stage stochastic scheduling problems comprising two sources of *uncertainty*

- Jobs have a stochastic service time
- Impatient customers may leave at a random time

The Model

- Single server (idle/busy), discrete time
- n jobs with values $v_1, \ldots v_n > 0$
- Unknown stochastic last available time D_i
- Unknown stochastic service time S_i

Dynamic

- At each time t, if server is idle, then we can run an available job and obtain a value of v_i
- Server remains busy for S_i units of time

$\mathbf{Time}\;(t)$	1	$1+S_i$	$1 + S_i + S_{i'}$
Available Jobs	[n]	R_{1+S_i}	$R_{1+S_i+S_{i'}}$
Job Run	i	i'	i''
Reward up to time t	v_i	$v_i + v_{i'}$	$v_i + v_{i'} + v_{i''}$

Goal

Aim to find policy/algorithm ALG that maximizes:

$$\mathbf{E}[V_{ALG}] \doteq \mathbf{E} \left[\sum_{i ext{ run by } ALG} v_i
ight]$$

- Can be solved via Dynamic Programming • An **NP-Hard** problem
- Curse of Dimensionality
- Find **Approximate** Solution!
- Approx. ratio α for a maximization problem is defined as:

$$\alpha = \min_{I} \left(\frac{V_{\text{ALG}}(I)}{\text{OPT}(I)} \right)$$

Looking Ahead

$\geq rac{1}{2} \cdot \left(1 - rac{1}{e} ight) \cdot ext{ OPT} \ ext{general service time}$	Greedy	OPT ▲
LP-Based Poly-time ALG	$\geq rac{1}{2} \cdot ext{OPT}$ service time is i.i.d.	LP

Yihua Xu¹; Rohan Ghuge²; Sebastian Perez-Salazar¹

For each job
$$i \in \{2, ..., n\}$$
, we have:
 $v_i = 1, D_i = n, S_i = 1$
Then: $\mathbb{E}[V_{\text{Greedy}}] = 1 + \epsilon \text{ v.s. } \mathbb{E}[\text{OPT}] = n - 1$

LP Bound and Algorithm

We can formulate the problem by using an LP where the variable $x_{i,t}$ denotes the $\Pr[\text{OPT runs } i \text{ at } t]$. We maximize the expected value, i.e.

$$oldsymbol{v_{LP}} = \max_{x \geq 0} \qquad \sum_{t=1}^T \sum_{i=1}^n v_i oldsymbol{x_{i,t}}$$

The problem is subject to following two constraints:

• Every job is run at most one time

$$\sum_{t=1}^T rac{oldsymbol{x_{i,t}}}{\Pr(D_i \geq t)} \leq 1 \qquad orall i \in [n]$$

• Each time is busy by at most one job

$$\sum_{i=1}^n oldsymbol{x_{i,t}} + \sum_{i=1}^n \sum_{ au=1}^{t-1} oldsymbol{x_{i, au}} \Pr(S_i > t - au) \leq 1 \qquad orall t \in [T]$$

Theorem 2

The value of the LP, $V_{LP} \geq V(OPT)$. Moreover, there is an efficiently computable algorithm ALG that guarantees $\mathbb{E}[V_{ALG}] \geq 1/2 \cdot (1 - 1/e - \epsilon)$. V(OPT), under mild assumptions on service time.

Prop 2 - Upper Bound on Approx. Ratio There exists an instance I such that: $OPT(I) < (1 - 1/e + \epsilon)V_{LP}(I)$

Problems Approximation Ratio $1/2 \cdot (1 - 1/e)$ Deadline Knapsack $|1/2 \cdot (1 - 1/e) \cdot (1 - e^{-B^2/(2nw_{max}^2)})|$ Cardinality $1/2 \cdot (1 - 1/e) \cdot (1 - e^{-k/6})$ Table 1:We use w_{max} to denote $\max_{i \in [n]} w_i$. B and k each represent the size of knapsack and cardinality respectively.

LP-Based Algorithm

note $f_{i,t}$: Probability that all three events hold:					
ob i not considered before t ;					
ob i not departed by t ;					
server idle at t					
can describe algorithm ${\tt ALG}$ as the following:					
iven any instance I , find x^* solution to LP					
or each $t = 1, 2, \ldots$ that server is idle					
If job <i>i</i> not considered before <i>t</i> and available pick it with probability $x_{i,t}^*/(2 \cdot f_{i,t})$					
Run highest-valued available job picked above					
Proof Intuitions					

We show that for each time horizon t,

$$rac{\mathbf{E}[V_{ALG,oldsymbol{t}}]}{\sum_{i=1}^n v_i oldsymbol{x_{i,oldsymbol{t}}}} \geq rac{1}{2}igg(1-rac{1}{e}igg)$$

• Factor 1/2: For all time t -

$$\Pr[\text{Server is free at time } t] \ge \frac{1}{2}$$

• Factor 1 - 1/e: Suppose each job is considered with probability p_i , we can find the following relationship between the greedy choice and the LP average for all time t -

$$\mathbf{E}iggl[\max_{oldsymbol{i}\in[n]} \{X_{oldsymbol{i}}\} iggr] \geq \left(1-rac{1}{e}
ight) \sum_{oldsymbol{i}=1}^n v_{oldsymbol{i}} p_{oldsymbol{i}}$$

Further Analysis

cop 1 - Tightness on Approx. Ratio	
here exists an instance I such that:	
$V_{\text{ALG}}(I) \leq (1 - 1/\sqrt{e} + \epsilon) V_{LP}(I)$	

Flexibility

Our algorithm is flexible to include deadlines, knapsack, and cardinality constraints with modified approx. ratio.

• ALG attains a high competitive ratio with consistent performances.

Instance Sy Syn

Syr

- Arrivals

Numerical Experiments

We test algorithms using both synthetic and real

e Type	ALG-S	ALG-E	ConSet	GREEDY
n- 5	8.07	0.65	1.04	0.57
n-25	76.82	4.56	5.92	4.08
n -50	614.82	18.27	26.10	14.06

Table 2:Runtime in select synthetic datasets. Column ALG-S represents the simulation time needed to retrieve $f_{i,t}$ values, and the column ALG-E) is the execution part to obtain values. • ALG takes considerably longer time, primarily due to the simulations needed for retrieving $f_{i,t}$ values. Another method (named CONSET):

• Leverage the structure of forming a consideration set • No simulations needed - diminish runtime

• Comparable performance

Future Work

• Hardness (#P, APX, PSPACE, etc) • Multiple Server & Multiple Resources