The Treewidth-Convex Hull Theorem and DP for Cut Generation in MINLP

Summary

We provide an alternative proof for tree-width convex hull theorem. Next, in a column generation setting, we use dynamic programming to solve pricing problem for solving cut generating problems for non-linear problems with multilinear intermediates.

Unconstrained Binary Problem

$$\min_{\mathbf{b}\in\{0,1\}^n}\sum_{T\subseteq N}c_T\prod_{i\in T}b_i,$$

Unconstrained binary optimization has many applications ranging from finance, communication, theoretical physics to economics and machine learning.

Graph and Tree-Decomposition

 $\min b_1 b_2 b_3 - 4b_2 b_3 b_4 b_5 + 2b_2 b_5 + 4b_3 b_6$

Figure 1. Tree-decomposition of a graph

MIP 2024

Santanu S. Dey¹ Sourabh K Choudhary¹

¹Georgia Institute of Technology

Resulting Simplification

- Theorem: Consider an UBP with treewidth d and number of variables n. This problem can be reframed as an LP with $O(n2^d)$ nonnegative variables and constraints. [2].
- **Contribution:** We show that the LP can be converted into a DP formulation and hence the integrality can be proven. A corollary is that the LP is Totally Dual Integral (TDI).

Multilinear Intermediates and Adding Cuts

Next, consider a multilinear intermediate

$$z = L(x) = \sum_{T \subset N} c_T \prod_{i \in T} x_i$$

where $N = \{1, 2, 3, ..., n\}$ which is defined over a box $\mathcal{H} = \prod_{j=1}^{n} [l_j, u_j].$

• Given a relaxation solution (x^*, z^*) , the dual to cut generation LP is: [1]:

$$\min_{\lambda} \sum_{i \in I} \lambda_i L(v^i)$$
$$\sum_{i \in I} \lambda_i v^i = x^*$$
$$\sum_{i \in I} \lambda_i = 1$$
$$\lambda_i \ge 0$$

• Let $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ be the dual optimal to the first and second constraints. We add the cut $z \ge ax + b \text{ if } z^* < ax^* + b.$

Nikolaos V. Sahinidis¹

The Framework

We propose a column generation strategy to solve the dual to cut generation LP.

Proposed DP strategy for pricing: Solve the unconstrained binary problem $L(\mathbf{b}) - \pi^T \mathbf{b} - \pi_0$ using dynamic programming.

40 monomial case 50 17 Number of variables 20 DP gray code 80 monomials 80 (s) 60 40 בל 15 Number of variables DP gray code

Computational Results

Type1^a

25

26

27

28

29

28

29

Type2

We proposed a new proof for treewidth convex hull theorem and a framework for solving CGLP in NLPs. Future work involves integrating this within the Branch and Bound (B&B) tree of standard solvers.

- Tawarmalani.

Figure 2. Comparison of time taken to solve CGLP

Example instances

d	Basic relaxation	Time(s)	BARON LB	Better by
	with our cuts	to add cuts	(20 min)	
10	-14804	95	-42949	65.5%
10	-15622	111	-40100	61.0%
10	-16852	140	-47023	64.2%
10	-17862	149	-45524	60.8%
10	-18560	169	-56249	67.0%
10	-20286	184	-58543	65.3%
10	-12682	76	-23246	45.4%
10	-13481	93	-24864	45.8%
10	-14178	111	-26130	45.7%
10	-14973	124	-26358	43.2%
10	-15733	163	-30518	48.4%
10	-16506	163	-33234	50.3%

^a Unconstrained NLP.

^b Linearly constrained NLP.

[•] Instances generated from a known tree-decomposition.

Conclusion and Future Direction

References

- [1] Xiaowei Bao, Aida Khajavirad, Nikolaos V Sahinidis, and Mohit
 - Global optimization of nonconvex problems with multilinear intermediates.
 - Mathematical Programming Computation, 7(1):1–37, 2015.
- [2] Daniel Bienstock and Gonzalo Muñoz.
 - LP formulations for polynomial optimization problems.
 - SIAM Journal on Optimization, 28(2):1121–1150, 2018.

schoudhary66@gatech.edu