## Warm Starting of Mixed Integer Linear Optimization **Problems via Parametric Disjunctive Cuts**

**Shannon Kelley**<sup>1</sup>; Aleksandr M. Kazachkov<sup>2</sup>; Ted Ralphs<sup>1</sup> <sup>1</sup>Lehigh University, <sup>2</sup>University of Florida



## Can we parameterize disjunctive cuts to improve solver performance for a sequence of MILPs? If so, how?

### THEORY

**Input**: A sequence of mixed integer linear optimization problems (MILPs),  $\{IP_1, \dots, IP_K\}$ , sharing same variables.

$$(IP_k) \begin{bmatrix} \min_{x \in \mathbb{R}^n} & c^k x \\ & A^k x \ge b^k \end{bmatrix} (P^k) \\ & x_j \in \mathbb{Z} \quad \text{for } j \in I \end{bmatrix} (S^k)$$

Let  $\{X^t\}_{t\in[T]}$  be a **disjunction**, where  $X^t \coloneqq \{x \in \mathbb{R}^n : D^t \ge D_0^t\}$ .  $\{X^t\}_{t\in[T]}$  is valid for a set  $S \subseteq \mathbb{R}^n$  if  $S \subseteq \bigcup_{t=1}^T X^t$ . Let  $Q^{kt} \coloneqq P^k \cap X^t$ .

**Opportunity**: If the sequence varies little, a MILP solver might employ similar disjunctions in solving each instance.





 $(\pi^1, \pi_0^1)$  is a valid VPC for  $IP_1$ , but it is not valid for  $IP_2$  when applied directly.

**Lemma 1:** Let  $(\pi, \pi_0)$  be a valid cut for  $IP_k$ . Let  $A^{kt} \coloneqq \begin{bmatrix} A^k \\ D^t \end{bmatrix}$  and  $b^{kt} \coloneqq \begin{bmatrix} I \\ I \end{bmatrix}$ . Then there exists  $v^t$  such that



The same disjunction yields pairs of child problems that Branch-and-Bound might also generate for their respective instances.

Idea: Generate  $\mathcal{V}$ -Polyhedral Disjunctive Cuts (VPCs) via [1] for some instances and reapply them to the remaining instances.

**Problem:** VPCs can become invalid when constraints are perturbed.

**Solution**: After generating a VPC for  $IP_k$ , parameterize it to ensure its validity when applied to  $IP_{\ell}$  for  $\ell \geq k$ .

### $\begin{aligned} \pi^T &= v^t A^{kt} \\ \pi_0 &\leq v^t b^{kt} \\ v^t &\geq 0 \end{aligned}$ for all $t \in [T]$

We refer to  $\{v^t\}_{t \in [T]}$  as **Farkas multipliers.** 

**Lemma 2:** Let  $\{v^t\}_{t \in [T]}$  be a set of nonnegative Farkas multipliers for a disjunction  $\{X^t\}_{t\in[T]}$ . For  $\ell \in [K]$  and for all  $j \in [n]$ , let  $\alpha_j \coloneqq \max_{t\in[T]} \{v^t A_{j}^{\ell t}\}$  and  $\beta \coloneqq \min_{t \in [T]} \{v^t b^{\ell t}\}$ . Then  $\alpha^T x \ge \beta$  is valid for  $\bigcup_{t \in [T]} X^t$ .



Parameterizing  $(\pi^1, \pi_0^1)$  yields  $(\pi^2, \pi_0^2)$ , a valid disjunctive cut for  $IP_2$ .

## **COMPUTATION**

### **Experimental Setup**:

- The Base Set consists of 104 presolved MIPLIB 2017 instances with at most 5000 variables and 5000 constraints.
- The Experiment Set consists of 5 random perturbations of objective, RHS, and/or matrix for each instance in Base Set.

|                                                                          | 1     | Average Root Optimality Gap Closed |              |                 | Average Root Node Processing Time |              |                       | Average % Perturbed     |  |
|--------------------------------------------------------------------------|-------|------------------------------------|--------------|-----------------|-----------------------------------|--------------|-----------------------|-------------------------|--|
| Degree                                                                   | Terms | No VPCs                            | VPCs via [1] | Param. VPCs     | No VPCs                           | VPCs via [1] | Param. VPCs           | Terms Becoming Feasible |  |
| 0.5                                                                      | 4     | 61.87%                             | 62.35%       | 62.30%          | 0.929                             | 10.480       | 0.999                 | 0.000%                  |  |
|                                                                          | 16    | 61.87%                             | 62.96%       | 62.82%          | 0.936                             | 29.483       | 1.394                 | 0.102%                  |  |
|                                                                          | 64    | 61.87%                             | 63.55%       | 63.35%          | 0.921                             | 56.614       | 2.185                 | 0.201%                  |  |
| 2                                                                        | 4     | 63.46%                             | 63.45%       | 63.36%          | 0.892                             | 4.293        | 0.927                 | 0.000%                  |  |
|                                                                          | 16    | 63.46%                             | 63.76%       | 63.53%          | 0.870                             | 17.576       | 1.394                 | 0.558%                  |  |
|                                                                          | 64    | 63.46%                             | 64.73%       | 63.91%          | 0.861                             | 48.773       | 2.295                 | 0.596%                  |  |
| Relative Improvements between Solves with and without Parameterized VPCs |       |                                    |              |                 |                                   |              |                       |                         |  |
| ਼ਰੂ Termination Time                                                     |       |                                    |              | Nodes Processed |                                   |              | LP Iterations         |                         |  |
| 1.0 - 33rd percentile                                                    |       |                                    |              | 4 56            | 4 56th percentile                 |              |                       | 50th percentile         |  |
| median                                                                   |       |                                    |              | 2 median        |                                   |              | <sup>2</sup> ] median |                         |  |
| ے<br>اور مو                                                              | _     |                                    |              |                 |                                   |              | 0                     |                         |  |

- Replications vary by the following parameters:
  - 4, 16, or 64 term disjunctions for VPC generation
  - 0.5 or 2 degrees of random perturbation
  - No VPCs, VPCs via [1], or parameterized VPCs
- The Experiment Set is solved for each combination of parameters using Gurobi 10.



# Yes, we can! For $IP_k$ , find disjunctive cuts and their Farkas multipliers. For $IP_\ell$ with $\ell \ge k$ , use Farkas multipliers to compute new valid inequalities.

## **CONCLUSION**

### Key Takeaways:

- Parameterization amortizes the cost of generating VPCs via [1], often still improving the strength of default cuts at the root.
- A significant number of perturbed instances see improvements to run time, nodes processed, and LP iterations.

#### Next Steps:

%

- Generalize [1] to include infeasible disjunctive terms. Currently,  $v^t \coloneqq 0$  for  $IP_k$  generating VPCs via [1] and t such that  $Q^{kt} = \emptyset$ . For  $\ell \ge k$  and  $Q^{\ell t} \ne \emptyset$ , this weakens parameterization occurring from Lemma 2.
- Better understand why parameterized VPCs help for some perturbations of the same degree and base instance but not others.

#### **References**:

[1] Egon Balas and Aleksandr M. Kazachkov. *V*-polyhedral disjunctive cuts, 2022. [2] Aleksandr M. Kazachkov and Egon Balas. Monoidal strengthening of simple  $\mathcal{V}$ polyhedral disjunctive cuts, 2023. [3] Julius Farkas. Theorie der einfachen Ungleichungen. J. Reine Angew. Math., 124:1-27, 1902