
𝜋!, 𝜋"!  is a valid VPC for 𝐼𝑃!, but it is not valid for 𝐼𝑃# when applied directly. 

Parameterizing 𝜋!, 𝜋"!  yields 𝜋#, 𝜋"# , a valid disjunctive cut for 𝐼𝑃#.
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THEORY
Input: A sequence of mixed integer linear optimization 
problems (MILPs), {𝐼𝑃%, … , 𝐼𝑃&}, sharing same variables.

Let 𝑋' '∈ )  be a disjunction, where 𝑋' ≔ 𝑥 ∈ ℝ*: 𝐷' ≥ 𝐷+' . 
𝑋' '∈ )  is valid for a set 𝑆 ⊆ ℝ* if 𝑆 ⊆ ⋃',%) 𝑋'. Let 𝑄-' ≔ 𝑃- ∩ 𝑋'.

Opportunity: If the sequence varies little, a MILP solver might 
employ similar disjunctions in solving each instance.

(𝐼𝑃-) (𝑃-)
(𝑆-)

Lemma 1: Let (𝜋, 𝜋+) be a valid cut for 𝐼𝑃-. Let 𝐴-' ≔	 and 𝑏-' ≔       . 
Then there exists 𝑣' such that 

The same disjunction yields pairs of child problems that Branch-and-Bound might 
also generate for their respective instances.

Idea: Generate	𝒱-Polyhedral Disjunctive Cuts (VPCs) via [1] for 
some instances and reapply them to the remaining instances.

Problem: VPCs can become invalid when constraints are 
perturbed.

Solution: After generating a VPC for 𝐼𝑃-, parameterize it to 
ensure its validity when applied to 𝐼𝑃ℓ for ℓ≥𝑘.

We refer to 𝑣' '∈[)] as Farkas multipliers.

Lemma 2: Let 𝑣' '∈[)] be a set of nonnegative Farkas multipliers for a 
disjunction 𝑋' '∈ ) . For ℓ ∈ [𝐾] and for all 𝑗 ∈ [𝑛], let 𝛼1 ≔ max

'∈[2]
{𝑣'𝐴.1ℓ'} and 

𝛽 ≔ min
'∈[)]

{𝑣'𝑏ℓ'}. Then 𝛼)𝑥 ≥ 𝛽 is valid for ⋃'∈[)]𝑋'.

COMPUTATION
Experimental Setup:

• The Base Set consists of 104 presolved 
MIPLIB 2017 instances with at most 5000 
variables and 5000 constraints.

• The Experiment Set consists of 5 random 
perturbations of objective, RHS, and/or 
matrix for each instance in Base Set.

• Replications vary by the following 
parameters:

• 4, 16, or 64 term disjunctions for VPC generation

• 0.5 or 2 degrees of random perturbation

• No VPCs, VPCs via [1], or parameterized VPCs

• The Experiment Set is solved for each 
combination of parameters using Gurobi 10.

Can we parameterize disjunctive cuts to improve
     solver performance for a sequence of MILPs? If so, how?

Yes, we can! For 𝐼𝑃!, find disjunctive cuts and their Farkas multipliers. 
For	𝐼𝑃ℓ with ℓ≥𝑘, use Farkas multipliers to compute new valid inequalities.

Next Steps:

• Generalize [1] to include infeasible disjunctive terms. 
Currently, 𝑣' ≔ 0 for 𝐼𝑃- generating VPCs via [1] and 𝑡 such 
that 𝑄-' = ∅. For ℓ≥𝑘 and 𝑄ℓ' ≠ ∅, this weakens 
parameterization occurring from Lemma 2.

• Better understand why parameterized VPCs help for some 
perturbations of the same degree and base instance but 
not others.

CONCLUSION
Key Takeaways:

• Parameterization amortizes the cost of 
generating VPCs via [1], often still improving the 
strength of default cuts at the root.

• A significant number of perturbed instances see 
improvements to run time, nodes processed, 
and LP iterations.
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𝑥! ≤ 1 𝑥! ≥ 2

𝑄!,! 𝑄!,#

Average Root Optimality Gap Closed Average Root Node Processing Time Average % Perturbed 
Terms Becoming FeasibleDegree Terms No VPCs VPCs via [1] Param. VPCs No VPCs VPCs via [1] Param. VPCs

0.5
4 61.87% 62.35% 62.30% 0.929 10.480 0.999 0.000%
16 61.87% 62.96% 62.82% 0.936 29.483 1.394 0.102%
64 61.87% 63.55% 63.35% 0.921 56.614 2.185 0.201%

2
4 63.46% 63.45% 63.36% 0.892 4.293 0.927 0.000%
16 63.46% 63.76% 63.53% 0.870 17.576 1.394 0.558%
64 63.46% 64.73% 63.91% 0.861 48.773 2.295 0.596%
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