Improving Strong-Branching Decisions With Additional Information Prachi Shah, Santanu Dey | ISyE, Georgia Institute of Technology

Incorporating Primal Information

Strong Branching:			Δ^+	\varDelta^-	SB
LP gains for a var <i>i</i> on branch j, Δ_i^j SB score(<i>i</i>) = $\Delta_i^+ \cdot \Delta_i^-$		x_1	1.8	0.6	1.08
		<i>x</i> ₂	1.1	0.9	0.99
Efficacious Strong Branching (Ef	(-SB):				
			q^+	q^-	Eff-SB
Primal-dual gap at node = Δ_{p-d} Efficacious gains, $q_i = \min\{\Delta_i, \Delta_p\}$	}	x_1	1.	0.6	0.6
Eff score(i) = $q_i^+ \cdot q_i^-$	-u J	x_2	1.	0.9	0.9
$LII SCOLC(l) = q_i q_i$			<u> </u>		
		All Prot	olems	•	7
Optimizing score for Eff-SB	450 -			[
Applying parameterization,	425 -				 primal g primal g
score = $(q_{min})^{a_{min}} \cdot (q_{max})^{a_{max}} \stackrel{i}{\overset{i}{\overset{o}{\overset{o}{\overset{o}{\overset{o}{\overset{o}{\overset{o}{\overset$	400 -				 primal g primal g
	375 -				Default-
$q_{min/max} = \min/\max(q_i^+, q_i^-)$	350 -				Default- Default-
• $a_{max} + a_{min} = 1$	325				
	300 -				
• Primal gap = $\frac{ z_{IP}^* - \hat{z} }{ z_{IP}^* }$	0.0 0	.2 0.4 a _m		0.8 1.0)

• Test bed: 100 instances with 20-200 binaries of 10 classes of problems, Multi-row Packing, Covering and Mixed IPs, Portfolio Optimization (CCP), Fixed charge network flow, Constrained lot-sizing variants and Weighted Matching, Stable Set, Set Coverage

• No Presolve, Cuts, etc; Optimal objective value provided

Default SB	Tree size Reduction – Eff SB				
Tree size	Primal Gap :	0%	2%	5%	
322.4		8.2%	7.2%	5.1%	

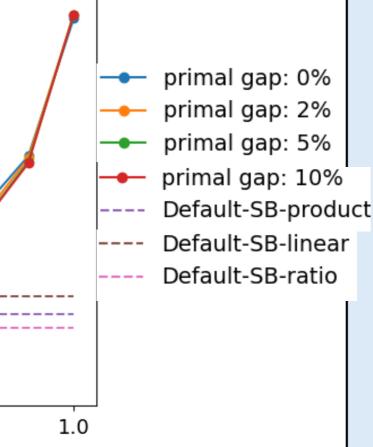
MIPLIB Experiments: Eff SB score = $(q_{min})^{0.3} \cdot (q_{max})^{0.7}$

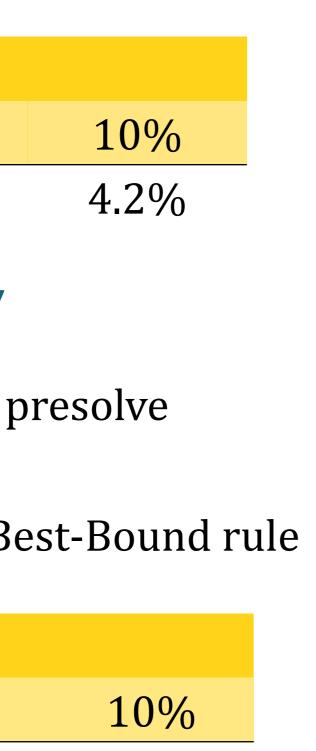
Gurobi Presolve, at most 2000 binary variables after presolve

43 instances in test bed

Default SCIP cuts at root node, Node limit = 10,000, Best-Bound rule

Default SB	Gap Closed - Eff SB					
Gap Closed	Primal Gap :	0%	2%	5%		
39.3%		43.7%	42.3%	42.3%		





41.5%

Motivation: Inherent asymmetry in 0-1 assignments

Packing problems have a higher occurrence of pruning due to infeasibility on 1-branch; likely smaller subtree size as compared to 0-branch Hypothesis: higher emphasis on q_i^0 as compared to q_i^1 advantageous

Naïve Structural Score

Packing structure: score = $(q_i^{-})^{0.15} (q_{min})^{0.3} \cdot (q_{max})^{0.7}$ Covering structure: score = $(q_i^+)^{0.15} (q_{min})^{0.3} \cdot (q_{max})^{0.7}$

Special Case: Cardinality Constrained $(\sum_{i=1}^{n} x_i \leq k)$

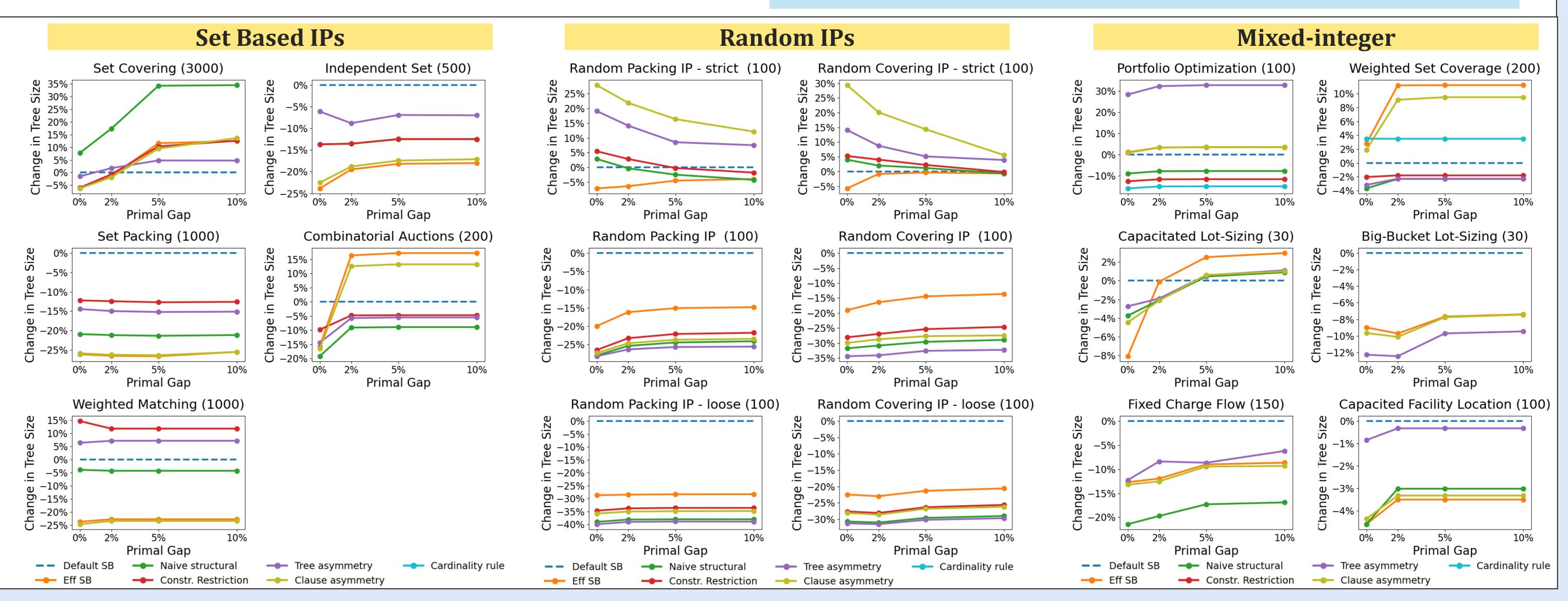
At a node, *n* free variables, *k* cardinality limit Sub-tree size estimator recursion,

 $\hat{T}(n,k) = \hat{T}(n-1,k) + \hat{T}(n-1,k-1) + 1$

Satisfied approximately by $\hat{T}(n,k) = \binom{n}{k}$

Fractional tree size at branches 0 and 1:

score(i) =
$$(q_{i,0})^{\frac{n-k}{n}} \times (q_{i,1})^{\frac{k}{n}} \times (q_{i,min})^{0.3} \times (q_{i,max})^{0.7}$$



Incorporating Structural Information

$$\frac{\hat{T}(n-1,k)}{\hat{T}(n,k)} = \frac{n-k}{n} , \ \frac{\hat{T}(n-1,k-1)}{\hat{T}(n,k)} = \frac{k}{n}$$

Computationally Estimating Asymmetry

- I. Constraint restrictiveness ($ax \le b$)

II. Information from Partial Trees

For general problems with implicit or undetermined structure a. Clauses (leaf nodes) –

More variables fixed to 0 imply larger sizes of tree on the 0 branch

(# 0 assignments -# 1 assignments) # clauses \cdot # binary vars

b. Sub-tree sizes –

Over every *solved* node of the partial tree

Mean $\left(\frac{\text{size on 0 branch}}{1}\right)$ size on 1 branch

Computational Experiments : On 20 randomly generated instances, providing optimal obj value, without presolve, cuts, etc

For problems with explicit packing or covering structure – Higher asymmetry if *b* is relatively small or a_i is relatively large $r_j = (b - a_j) / \sum_{i \neq j} a_i$

– Individual score function for each variable at a node