INTERDICTION OF MINIMUM SPANNING TREES AND OTHER MATROID BASES **Noah Weninger* and Ricardo Fukasawa**

1. Introduction

Bilevel programming is a generalization of mixed integer programming where a subset of the variables can be constrained to be optimal for a secondary optimization problem.

$$\max \quad v^{\top}x + w^{\top}y \\ \text{s.t.} \quad Ax + By \leq \beta \\ x \in \mathbb{Z}^r \times \mathbb{R}^s \\ y \in \arg\min\{f^{\top}y \mid Cx + Dy \leq \delta. \}$$

 $y \in \arg\min\left\{f^{+}y \mid Cx + Dy \leq \delta, y \in \mathbb{Z}^{p} \times \mathbb{R}^{q}\right\}$ It is often interpreted as a 2-round 2-player game, where the **Leader** selects the x variables, and the **Follower** selects the y variables.

An **interdiction problem** is a bilevel programming problem, which is typically of the form

$$\max_{X \in \mathcal{U}} \min_{\substack{Y \in \mathcal{L} \\ X \cap Y = \emptyset}} w(Y)$$
 (Notation:

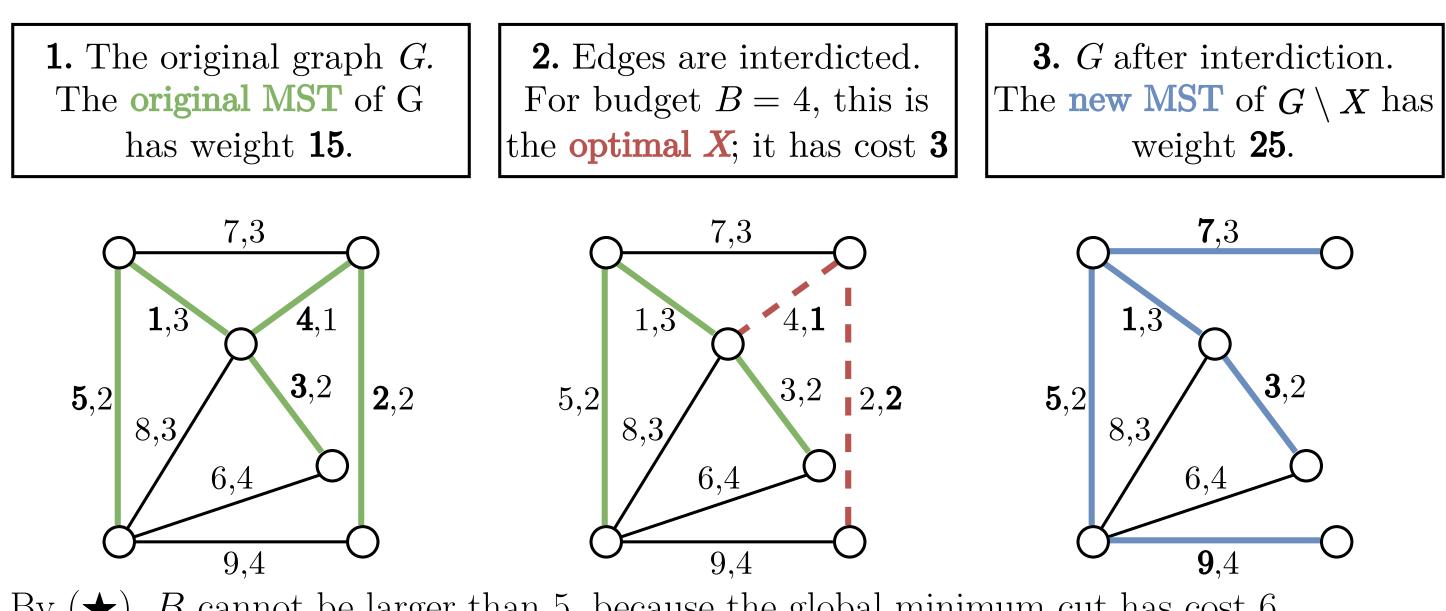
where:

- $w_1, w_2, \ldots, w_m \in \mathbb{Z}$ are the weights. We assume $w_1 < w_2 < \cdots < w_m$ for simplicity.
- $c_1, c_2, \ldots, c_m \in \mathbb{Z}_{>0}$ are the **costs** and $B \in \mathbb{Z}_{>0}$ is the **budget**.
- $\mathcal{U} = \{X \subseteq \{1, \dots, m\} \mid c(X) \leq B\}$ is the Leader's feasible region.
- $\mathcal{L} \subseteq 2^{\{1,\dots,m\}}$ is the set of feasible solutions to some combinatorial optimization problem.
- We assume that for every $X \in \mathcal{U}$, there exists some $Y \in \mathcal{L}$ such that $X \cap Y = \emptyset$. (\bigstar)
- \implies The Leader can be seen as an adversary who is trying to make the solution to the Follower's problem as bad as possible by **interdicting** (deleting) some parts of the structure.

2. Problem statement

We define **minimum spanning tree (MST) interdiction** as the interdiction problem with $\mathcal{L} = \{ Y \subseteq E \mid Y \text{ is a spanning tree of } G \}$

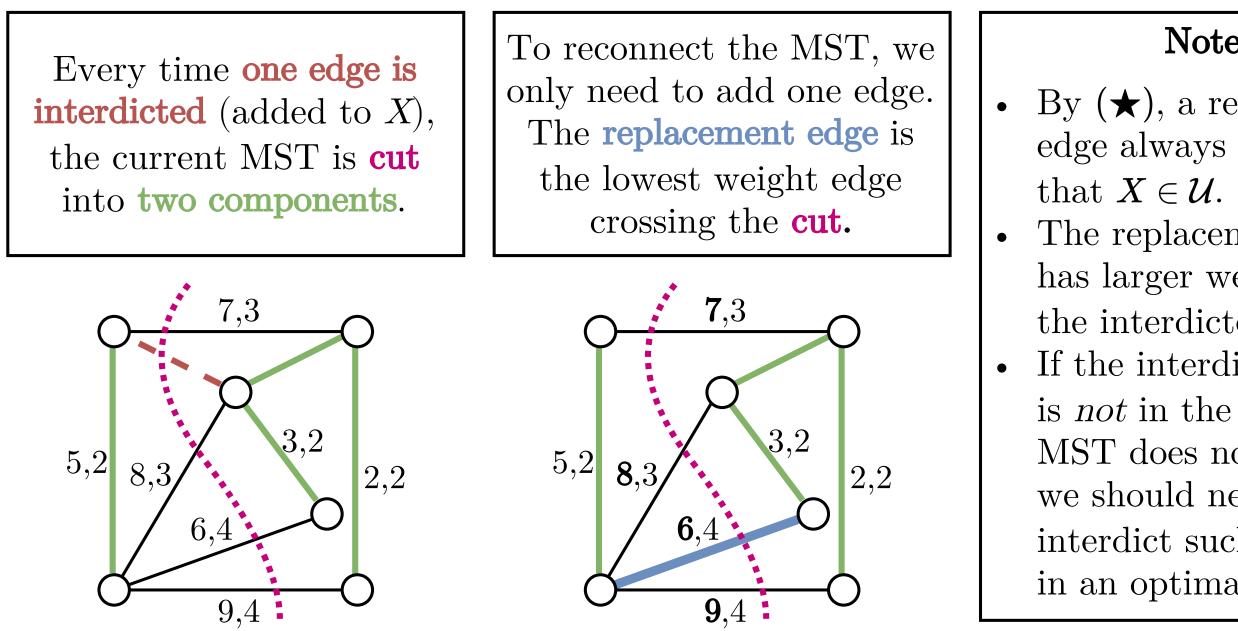
where G = (V, E) is a graph with *m* edges. MST interdiction is strongly NP-hard [2]. **Example.** Edges are labeled with w_e, c_e .



By (\bigstar) , B cannot be larger than 5, because the global minimum cut has cost 6.

3. Incrementally interdicting edges

Suppose we add some edges to X one by one, in order of increasing weight. To follow along, consider: what would Kruskal's algorithm do?

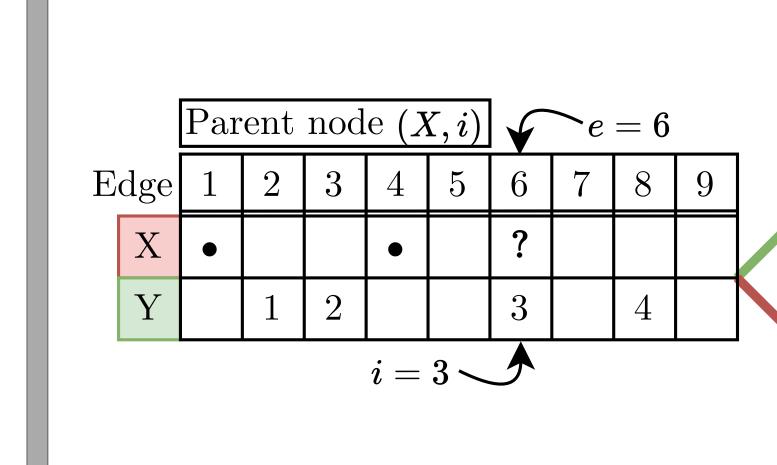


Department of Combinatorics & Optimization, University of Waterloo

*nweninger@uwaterloo.ca

4. Branch-and-bound

We solve the problem with branch-and-bound. Nodes are identified by a pair (X, i); from this we derive the current MST Y, and e, the edge to branch on. A **dynamic data structure** is used to quickly update Y and e as X and i change. Example.



Motivated by our prior work on knapsack interdiction [4], we want an upper bound f(e, c(X)) on how much w(Y) can increase by in any child node of (X, i). Then, if f(e, c(X)) + w(Y) is at most the current lower bound weight $w(Y^*)$, we can prune (X, i).

Theorem 1.

Let $k = \max\{|X| : X \in \mathcal{U}\}$ and let n be the number of vertices in G. Even without pruning, the worst-case running time of the algorithm is $\left(\left(\begin{array}{c} n+k \end{array} \right) \right)$

$$\tilde{O}\left(\binom{n+k}{\min\{n,k\}}\right) = \tilde{O}(\min\{(5.4)\})$$

The previous best was $O(n^k)$. In terms of n and k, our algorithm is asymptotically faster than the previous best, up to polylog factors of n (polylog factors are hidden by O).

5. Upper bounds

Key Question: What is an upper bound on the increase in MST weight when we add any set Z to X where $Z \subseteq \{e, \ldots, m\}$ and $Z \cup X \in \mathcal{U}$, given that we only know that c(X) = u and X contains no edges of weight $\geq w_e$? Call this bound f(e, u).

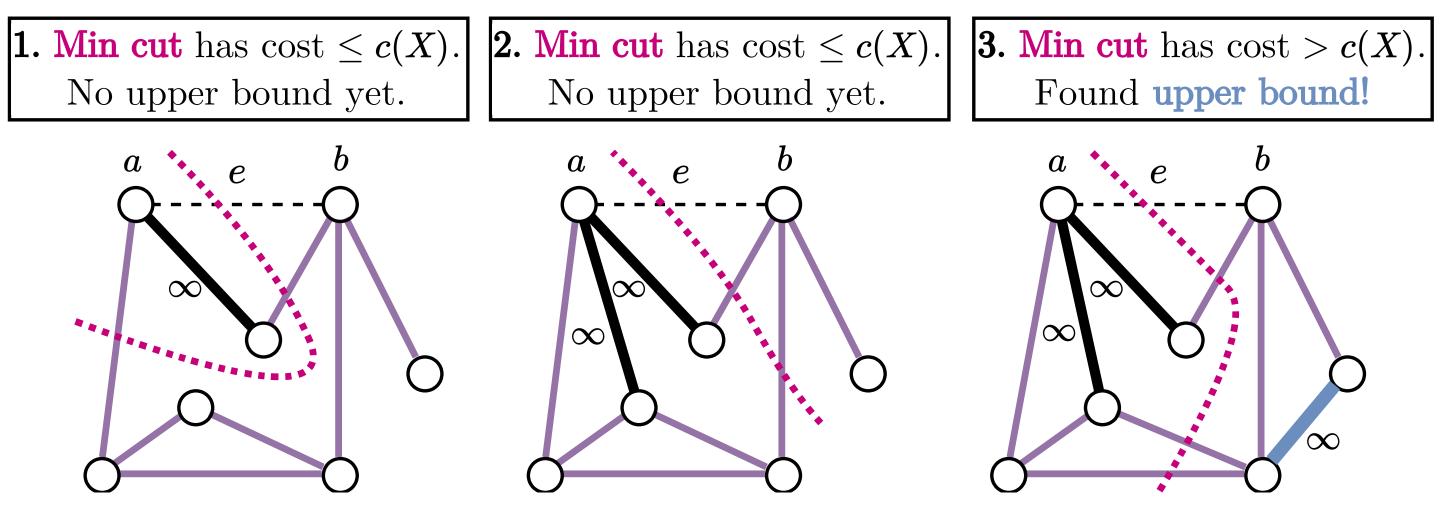
Suppose we could answer this question when $Z = \{e\}$; call this bound $\delta(e, u)$. Then, we can 'integrate' it using **dynamic programming**, treating $\delta(e, u)$ as knapsack profit values.

$$f(e, u) = \begin{cases} 0\\ f(e+1, u)\\ \max\{f(e+1, u), f(e+1, u+c_i) + e_i\} \end{cases}$$

 \Rightarrow We can **precompute** f(e, u) and use the table of values to upper bound and prune nodes. Now, let's handle the $Z = \{e\}$ case, i.e., define $\delta(e, u)$.

Consider only edges of weight $\langle \mathbf{w}_{\mathbf{e}} \rangle$. We know X is a subset of these edges, but not what X is precisely. We only know c(X).

Observe that e cannot be in the MST if the min cost a-b cut has cost > c(X). If this happens, set $\delta(e, u) = 0$. Suppose otherwise, and add edges of weight > w_e incrementally by weight, with cost ∞ . When the min *a-b* cut has cost > c(X), the edge we just added is an upper bound.



Let e' be the **upper bound edge** we found in the above procedure, and set $\delta(e, u) = w_{e'} - w_e$.

(Notation: $w(Y) = \sum_{i \in Y} w_i$)

Note:

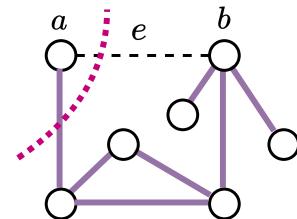
By (\bigstar) , a replacement edge always exists given The replacement edge has larger weight than the interdicted edge. If the interdicted edge is *not* in the MST, the MST does not change; we should never interdict such an edge in an optimal solution.

	Skip: $i \leftarrow i + 1$ $e = 8$									
dge	1	2	3	4	5	6	7	8	9	
Χ	•			•				?		
Y		1	2			3		4		
	i=4									

	Interdict: $X \leftarrow X \cup e$							e = 7			
dge	1	2	3	4	5	6	7	8	9		
Χ	•			•		•	?				
Y		1	2				3	4			
					i =	3 🔨					

 $44 n/k)^k, (5.44 k/n)^n\}).$

if e > m, if $i \leq m$ and $c_e > B - u$, $\delta(e, u)$ otherwise.



6. Computational results

We compare our solver to the computational results reported for the best known solvers, published in two previous papers. We implemented our solver in C++ and released it under an open-source license, along with all problem instances. All running times are in seconds.

Our solver is...

	~30000x faster vs the previous MIP-based solver [3].					vs previous branch-and-bound solver [1].				
		Our s	solver	Best fr	rom [3]			Our solve	\mathbf{r} Best from [1]	
\overline{n}	\tilde{m}	Time	Opt%	Time	Opt%	\overline{n}		Time	Time	
40	78	0.003	100	0.04	100	20)	0.027	0.864	
40	118	0.008	100	0.26	100	25	$\tilde{\mathbf{b}}$	0.049	1.318	
80	160	0.012	100	0.49	100	30)	0.036	1.261	
80	240	0.051	100	1,943.23	3 75	5()	0.405	27.863	
80	305	0.112	100	1,469.49	9 83	75	$\tilde{\mathbf{b}}$	1.848	220.188	
160	318	0.044	100	97.28	100	1()()	4.475	688.838	
160	476	0.088	100	3,829.95	5 48	20)()	5.286	572.557	
160	624	0.155	100	6,066.43	3 20	30)()	40.097	1,793.46	
200	398	0.057	100	280.76	100	4()()	89.085	7,265.85	
200	596	0.13	100	3,757.74	4 48			I		
200	784	0.231	100	7,200	0		r	י י ורד <u>ו</u>	11 1 • /	
Note: Each row corresponds to instances with n vertices and roughly \tilde{m} edges. These instances are of a problem variant, but effectively, the budget B is large.					\tilde{m} edges. n variant,	Note: These instances all have unit costs, and a budget B between 3 and 9. They are grouped by the number of vertices n ; all graphs are complete graphs. Both solvers solved all instances.				

We also randomly generated a variety of new instances to determine what qualities make an instance difficult to solve for our algorithm. We found that:

7. Extensions

MST interdiction is a special case of **matroid interdiction** over a matroid M, in which $\mathcal{L} = \{ Y \subseteq \{1, \dots, m\} \mid Y \text{ is a basis of } M \}.$

- variants by negating the weights.

8. References

- 33(2):244-266, 1999.
- diction. INFORMS Journal on Computing, 33(4):1461–1480, 2021
- 2023.

• The hardest instances have high density graphs and large budget relative to the costs. • The magnitude of the costs and weights has little effect on difficulty.

• A few instances with only 25 vertices could not be solved within 1 hour.

• To solve a matroid interdiction problem on an arbitrary matroid, we can use the algorithm from Section 4 but with a modified dynamic data structure and upper bound. Depending on the matroid, this may be slower by a factor of O(m) compared to Theorem 1.

• The bound f(e, u) works for any matroid, as long as we can compute $\delta(e, u)$ for that matroid. We give a simple, weak definition of $\delta(e, u)$ which works for any matroid.

• For **partition matroids** we show that an exact $\delta(e, u)$ can be computed efficiently, and that f(e, u) actually yields an exact solution in this case—no branch-and-bound is needed! As a consequence we show partition matroid interdiction is only weakly NP-hard.

• Some results extend to the variant where the leader forces elements to be **included** in the basis. We reduce this to matroid interdiction by taking the dual of the matroid.

• All of our results extend to the **min-max** variant. We can reduce between these two

^[1] Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten. Efficient determination of the k most vital edges for the minimum spanning tree problem. Computers & Operations Research, 39(11):2888–2898, 2012.

^[2] Greg N Frederickson and Roberto Solis-Oba. Increasing the weight of minimum spanning trees. Journal of Algorithms,

^[3] Ningji Wei, Jose L Walteros, and Foad Mahdavi Pajouh. Integer programming formulations for minimum spanning tree inter-

^[4] Noah Weninger and Ricardo Fukasawa. A fast combinatorial algorithm for the bilevel knapsack problem with interdiction constraints. In International Conference on Integer Programming and Combinatorial Optimization, pages 438–452. Springer,