
LATEX TikZposter

INTERDICTION OF MINIMUM SPANNING TREES AND OTHER MATROID BASES
Noah Weninger* and Ricardo Fukasawa

Department of Combinatorics & Optimization, University of Waterloo
*nweninger@uwaterloo.ca

INTERDICTION OF MINIMUM SPANNING TREES AND OTHER MATROID BASES
Noah Weninger* and Ricardo Fukasawa

Department of Combinatorics & Optimization, University of Waterloo
*nweninger@uwaterloo.ca

1. Introduction
Bilevel programming is a generalization of mixed integer programming where a subset of
the variables can be constrained to be optimal for a secondary optimization problem.

max v⊤x + w⊤y

s.t. Ax +By ≤ β

x ∈ Zr × Rs

y ∈ argmin
{
f⊤y | Cx +Dy ≤ δ, y ∈ Zp × Rq

}
It is often interpreted as a 2-round 2-player game, where the Leader selects the x variables,
and the Follower selects the y variables.

An interdiction problem is a bilevel programming problem, which is typically of the form

max
X∈U

min
Y ∈L

X∩Y =∅

w(Y) (Notation: w(Y) =
∑

i∈Y wi)

where:
•w1, w2, . . . , wm ∈ Z are the weights. We assume w1 < w2 < · · · < wm for simplicity.

• c1, c2, . . . , cm ∈ Z≥0 are the costs and B ∈ Z≥0 is the budget.

•U = {X ⊆ {1, . . . ,m} | c(X) ≤ B} is the Leader’s feasible region.

•L ⊆ 2{1,...,m} is the set of feasible solutions to some combinatorial optimization problem.

•We assume that for every X ∈ U , there exists some Y ∈ L such that X ∩ Y = ∅. (⋆)

=⇒The Leader can be seen as an adversary who is trying to make the solution to the Follower’s
problem as bad as possible by interdicting (deleting) some parts of the structure.

2. Problem statement
We define minimum spanning tree (MST) interdiction as the interdiction problem with

L = {Y ⊆ E | Y is a spanning tree of G}
where G = (V,E) is a graph with m edges. MST interdiction is strongly NP-hard [2].

Example. Edges are labeled with we, ce.

5,2

6,4

9,4

7,3

1,3

8,3
2,2

4,1

3,2

1. The original graph G.
The original MST of G

has weight 15.

2. Edges are interdicted.

For budget B = 4, this is

the optimal X; it has cost 3

3. G after interdiction.

The new MST of has

weight 25.

5,2

6,4

9,4

7,3

1,3

8,3
2,2

4,1

3,2 5,2

6,4

9,4

7,3

1,3

8,3

3,2

By (⋆), B cannot be larger than 5, because the global minimum cut has cost 6.

3. Incrementally interdicting edges
Suppose we add some edges to X one by one, in order of increasing weight.
To follow along, consider: what would Kruskal’s algorithm do?

2,2

Every time one edge is
interdicted (added to X),

the current MST is cut
into two components.

5,2

6,4

9,4

7,3

8,3
3,2

To reconnect the MST, we
only need to add one edge.
The replacement edge is
the lowest weight edge

crossing the cut.

Note:

By , a replacement
edge always exists given

that .
The replacement edge
has larger weight than

the interdicted edge.
If the interdicted edge

is not in the MST, the
MST does not change;
we should never

interdict such an edge
in an optimal solution.

2,25,2

6,4

9,4

7,3

8,3
3,2

4. Branch-and-bound
We solve the problem with branch-and-bound. Nodes are identified by a pair (X, i); from
this we derive the current MST Y , and e, the edge to branch on. A dynamic data structure
is used to quickly update Y and e as X and i change.
Example.

X

Y

1 2 3 4 5 6 7 8 9

?

1 2 3 4

Edge

1 2 3 4 5 6 7 8 9

?

1 2 3 4

1 2 3 4 5 6 7 8 9

?

1 2 3 4

Skip:

Interdict:

X

Y

Edge

X

Y

Edge

Parent node

Motivated by our prior work on knapsack interdiction [4], we want an upper bound
f (e, c(X)) on how much w(Y) can increase by in any child node of (X, i). Then, if
f (e, c(X)) +w(Y) is at most the current lower bound weight w(Y ∗), we can prune (X, i).

Theorem 1.

Let k = max{|X| : X ∈ U} and let n be the number of vertices in G. Even without
pruning, the worst-case running time of the algorithm is

Õ

((
n + k

min{n, k}

))
= Õ(min{(5.44n/k)k, (5.44 k/n)n}).

The previous best was Õ(nk). In terms of n and k, our algorithm is asymptotically faster
than the previous best, up to polylog factors of n (polylog factors are hidden by Õ).

5. Upper bounds
Key Question: What is an upper bound on the increase in MST weight when we add
any set Z to X where Z ⊆ {e, . . . ,m} and Z ∪ X ∈ U , given that we only know that
c(X) = u and X contains no edges of weight ≥ we? Call this bound f (e, u).

Suppose we could answer this question when Z = {e}; call this bound δ(e, u). Then, we
can ‘integrate’ it using dynamic programming, treating δ(e, u) as knapsack profit values.

f (e, u) =


0 if e > m,

f (e + 1, u) if i ≤ m and ce > B − u,

max{f (e + 1, u), f (e + 1, u + ci) + δ(e, u)} otherwise.

=⇒We can precompute f (e, u) and use the table of values to upper bound and prune nodes.
Now, let’s handle the Z = {e} case, i.e., define δ(e, u).

Consider only edges of weight < we. We know X is a subset of
these edges, but not what X is precisely. We only know c(X).

Observe that e cannot be in the MST if the min cost a-b cut
has cost > c(X). If this happens, set δ(e, u) = 0.

Suppose otherwise, and add edges of weight > we incrementally by weight, with cost ∞.
When the min a-b cut has cost > c(X), the edge we just added is an upper bound.

1. Min cut has cost .

No upper bound yet.

2. Min cut has cost .

No upper bound yet.

3. Min cut has cost .

Found upper bound!

Let e′ be the upper bound edgewe found in the above procedure, and set δ(e, u) = we′−we.

6. Computational results
We compare our solver to the computational results reported for the best known solvers,
published in two previous papers. We implemented our solver in C++ and released it under
an open-source license, along with all problem instances. All running times are in seconds.

Our solver is. . .

∼30000x faster
vs the previous MIP-based solver [3].

Our solver Best from [3]

n m̃ Time Opt% Time Opt%

40 78 0.003 100 0.04 100
40 118 0.008 100 0.26 100

80 160 0.012 100 0.49 100
80 240 0.051 100 1,943.23 75
80 305 0.112 100 1,469.49 83

160 318 0.044 100 97.28 100
160 476 0.088 100 3,829.95 48
160 624 0.155 100 6,066.43 20

200 398 0.057 100 280.76 100
200 596 0.13 100 3,757.74 48
200 784 0.231 100 7,200 0

Note: Each row corresponds to instances
with n vertices and roughly m̃ edges.
These instances are of a problem variant,
but effectively, the budget B is large.

∼100x faster
vs previous branch-and-bound solver [1].

Our solver Best from [1]

n Time Time

20 0.027 0.864
25 0.049 1.318
30 0.036 1.261
50 0.405 27.863
75 1.848 220.188
100 4.475 688.838
200 5.286 572.557
300 40.097 1,793.46
400 89.085 7,265.85

Note: These instances all have unit
costs, and a budget B between 3 and 9.
They are grouped by the number of ver-
tices n; all graphs are complete graphs.
Both solvers solved all instances.

We also randomly generated a variety of new instances to determine what qualities make
an instance difficult to solve for our algorithm. We found that:

•The hardest instances have high density graphs and large budget relative to the costs.

•The magnitude of the costs and weights has little effect on difficulty.

•A few instances with only 25 vertices could not be solved within 1 hour.

7. Extensions
MST interdiction is a special case of matroid interdiction over a matroid M , in which

L = {Y ⊆ {1, . . . ,m} | Y is a basis of M}.
•To solve a matroid interdiction problem on an arbitrary matroid, we can use the algorithm
from Section 4 but with a modified dynamic data structure and upper bound. Depending
on the matroid, this may be slower by a factor of O(m) compared to Theorem 1.

•The bound f (e, u) works for any matroid, as long as we can compute δ(e, u) for that
matroid. We give a simple, weak definition of δ(e, u) which works for any matroid.

•For partition matroids we show that an exact δ(e, u) can be computed efficiently, and
that f (e, u) actually yields an exact solution in this case—no branch-and-bound is needed!
As a consequence we show partition matroid interdiction is only weakly NP-hard.

• Some results extend to the variant where the leader forces elements to be included in
the basis. We reduce this to matroid interdiction by taking the dual of the matroid.

•All of our results extend to the min-max variant. We can reduce between these two
variants by negating the weights.

8. References
[1] Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten. Efficient determination of the k most vital edges for the minimum

spanning tree problem. Computers & Operations Research, 39(11):2888–2898, 2012.

[2] Greg N Frederickson and Roberto Solis-Oba. Increasing the weight of minimum spanning trees. Journal of Algorithms,
33(2):244–266, 1999.

[3] Ningji Wei, Jose L Walteros, and Foad Mahdavi Pajouh. Integer programming formulations for minimum spanning tree inter-
diction. INFORMS Journal on Computing, 33(4):1461–1480, 2021.

[4] Noah Weninger and Ricardo Fukasawa. A fast combinatorial algorithm for the bilevel knapsack problem with interdiction con-
straints. In International Conference on Integer Programming and Combinatorial Optimization, pages 438–452. Springer,
2023.

