

ACOPF

- Objective: $\sum_{k \in \mathcal{G}} F_k(P_k^g)$
- Active and reactive power flow definitions:

 $P_{km} = G_{kk} v_k^2 + G_{km} v_k v_m \cos(\theta_k - \theta_m) + B_{km} v_k v_m \sin(\theta_k - \theta_m)$ $Q_{km} = -B_{kk}v_k^2 + B_{km}v_kv_m\cos(\theta_k - \theta_m) - G_{km}v_kv_m\sin(\theta_k - \theta_m)$

- Active power balance: $\sum_{\{k,m\}\in\delta(k)}P_{km}=P_k^g-P_k^d$
- Reactive power balance: $\sum_{\{k,m\}\in\delta(k)}Q_{km}=Q_k^g-Q_k^d$
- Line capacity: $P_{km}^2 + Q_{km}^2 \le U_{km}$
- Voltage bound: $(V_k^{\min})^2 \le {v_k}^2 \le (V_k^{\max})^2$

A tight but very difficult SOC relaxation

•
$$v_k^{(2)} := v_k^2$$
, $c_{km} := v_k v_m \cos(\theta_k - \theta_m)$, $s_{km} := v_k v_m \sin(\theta_k - \theta_m)$

Linearized active and reactive power flows:

$$P_{km} = G_{kk}v_k^{(2)} + G_{km}c_{km} + B_{km}s_{km}$$
$$Q_{km} = -B_{kk}v_k^{(2)} + B_{km}c_{km} - G_{km}s_{km}$$

- Jabr rotated-cone inequality: $c_{km}^2 + s_{km}^2 \le v_k^{(2)} v_m^{(2)}$
- i2 definition: $i_{km}^{(2)} := \alpha_{km} v_k^{(2)} + \beta_{km} v_m^{(2)} + \gamma_{km} c_{km} + \zeta_{km} s_{km}$
- i2 rotated-cone inequality: $P_{km}^2 + Q_{km}^2 \leq v_k^{(2)} i_{km}^{(2)}$
- Recall:

$$x^{2} + y^{2} \le wz \iff \left\| \begin{pmatrix} 2x \\ 2y \\ w - z \end{pmatrix} \right\|_{2} \le w + z$$

From SOCs to LPs

• Cuts are sparse and cheap: $(\overline{x},\overline{t}) \notin \{(x,t) \in \mathbb{R}^n \times \mathbb{R}_+ : ||x||_2 \le t\}$ then

 $\overline{x}^{\top}x \le ||\overline{x}||_2 t$ Outer-envelope cut

• Warm-starts: "We don't start from scratch" and structural inequalities

Accurate Linear Cutting-Plane Relaxations for ACOPF

Daniel Bienstock and Matías Villagra

mjv2153@columbia.edu

IEOR, Columbia University

Cutting-Plane Algorithm

 $M_0 \leftarrow \text{SOC}$ Relaxation with only linear constraints

Algorithm 1 Cutting-Plane

- 1: Initialize $M \leftarrow M_0$
- 2: while t < T do
- 3: $\bar{x} \leftarrow \operatorname{argmin} M$
- Compute outer-envelope cuts for top p_i % violated branches above threshold ϵ_i
- Cut Mgmt: Add cuts to M if they are not ρ_i -parallel to cuts in M
- Cut Mgmt: Drop cuts of age $\geq T_{age}$ whose slack is ϵ_i
- end while

T = 4	Cutting-Plane											i2 SOCP+							ACOPF			
					First Itera	ation			Last Iter	ation		Tota					Obj			Time		
Case	#Vars	#Cons	FTime	Obj	Time	#Cuts	DInfs	Obj	Time	#Cuts	DInfs	Time	Rnds	#Vars	#Cons (Gurobi k	Initro	Mosek	Gurobi	Knitro	Mosek	PBound
9241pegase	524028	538308	11.36	1258422.42	48.99	68472	3.61e-06	1270138.75	100.47	189019	5.18e-08	1268.90	7	451546	643811	-	_	_	411.55	TLim	92.33	1297205.96
ACTIVSg10k	456684	490360	10.27	10117471.23	30.65	28184	5.72e-09	10222978.04	23.94	51188	5.01e-08	306.72	10	364824	437972	-	-	-	243.69	TLim	79.58	10265810.55
ACTIVSg25k	1145783	1212392	25.46	24310520.83	93.95	68676	1.01e-07	24710662.67	92.3	127912	1.61e-08	1206.14	9	961854	1387817	-	-	-	589.52	TLim	200.22	24835784.33
30000goc-api	1253699	1366264	30.24	5185673.79	97.36	59732	3.54e-07	5706550.06	80.15	105806	9.79e-07	1146.25	12	1018714	1524129	-	-	-	1761.14	TLim	286.2	6563873.25
30000goc-sad	1253699	1366264	- 28.03	4316717.55	138.08	179704	7.84e-07	4341119.26	77.37	91071	1.06e-06	994.70	9	1018714	1524129	-	-	-	727.32	TLim	247.6	-
ACTIVSg70k	3115935	3316972	68.7	67721489.41	350.58	258228	3.04e-08	69422696.57	369.05	597271	1.11e-07	1301.25	3	2584042	3765747	-	-	-	1312.16	TLim	405.88	70148300.24
78484epigrids-api	4179320	4225032	96.42	60947456.94	494.72	625780	1.53e-04	61271585.98	563.69	1047809	1.52e-04	1523.35	2	3558322	4997073	-	-	-	TLim	TLim	1117.23	62011780.96
78484epigrids-sad	4179320	4225032	97.61	58930587.37	743.6	888916	1.20e-04	59051305.24	845.85	1133203	1.20e-04	1569.46	1	3558322	4997073	-	-	-	TLim	TLim	1117.35	-

T = 24		Cutting-Plane									i2 SOCP+							DCOPF			
			First Iteration				Last Iteration			Total		Obj		Time							
Case	#Vars	#Cons	Obj	Time	#Cuts	DInfs	Obj	Time	#Cuts	DInfs	Time R	Rnds	#Vars	#Cons G	Gurobi	Knitro Mosek	Gurobi	Knitro	Mosek	Obj	Time
9241pegase	3151388	3258748	6865741.86	368.23	410832	4.33e-08	6925029.02	2427.02	1354277	1.25e-03	8419.66	4	2709266	3957551	-		- 1972.91	TLim	525.04	7013508.62	36.02
ACTIVSg10k	2752524	2991860	54565119.63	226.82	169104	7.5e-09	55184650.09	211.53	298812	7.18e-08	2869.25	11	2302130	3446078	_		- 3918.14	TLim	396.91	54241448.25	37.77
ACTIVSg25k	6898863	7371032	132201219.46	816.18	412056	4.74e-07	134142620.00	2042.59	1385811	2.08e-06	6991.16	3	5771114	8536377	_		- 4451.39	TLim	963.91	131325272.36	95.18
30000goc-api	7539819	8268104	28586461.36	755.74	358392	1.7313e-06	31616476.13	884.66	1064587	2.06e-05	6799.92	7	6112274	9356989	-		- TLim	TLim	1139.21	171.42	-
30000goc-sad	7539819	8268104	25717079.58	1091.27	1078224	2.52e-06	25811075.96	1021.24	1393213	1.23e-05	6249.53	5	6112274	9356989	-		- 3213.23	TLim	1125.14	25279287.29	108.86
ACTIVSg70k	18747555	20109632	350310736.78	2641.18	1549368	2.407e-07	357083446.24	2687.31	3359811	2.98e-08	8496.71	2	1550424 2	23139407	-		- 5061.29	TLim	1331.11	-	829.66
78484epigrids-api	25110280	25487652	-	1521.64	3754680	-	-	1521.64	3754680	-	2138.78	0	21349922 3	30681233	-		- TLim	287.62	1434.04	INF	380.67
78484epigrids-sad	25777488	24855336	344805634.00	4749.24	5333496	1.34e-04	-	TLim	6915253	-	11561.02	1	21349922 3	30681233	-		- TLim	284.28	1448.87	-	513.08

Cutting-planes and Power Losses

- Power loss at line $\{k, m\}$: $\ell_{km} := P_{km} + P_{mk}$.
- Structural result "There is no free generation": $\ell_{km} \ge 0$.
- For any $\lambda \in \mathbb{R}^3$, $||\lambda||_2 = 1$, we have the linear outer-envelope cut

- For example, if line $\{k, m\}$ is "simple", then $\ell_{km} = G_{kk}(k)$
- Hence the Jabr cut $\lambda = (1, 0, 0)$ implies $\ell_{km} \ge 0$

 θ_m

$$|v_{k}, 2s_{km}, v_{k}^{(2)} - v_{m}^{(2)})^{\top}||_{2} \le v_{k}^{(2)} + v_{m}^{(2)}$$

$$v_k^{(2)} + v_m^{(2)} - 2c_{km}^{(2)}$$

Accuracy of Lower Bounds

- Minimization problem [Z] with optimal value \overline{z}
- Convex relaxation [P] of [Z] and its dual [D](assume strong-duality)
- ϵ -feasible $(\tilde{x}, \tilde{\lambda})$ and optimal $(\overline{x}, \overline{\lambda})$ primal-dual pairs for [P]-[D]
- Robust guarantees for LPs and convex QPs

Primal superoptimality (for [P])

Dual superoptimality (for [D])

,		I			
	$f(ilde{x})$	$f(\overline{x}) \stackrel{+}{=} q(\overline{\lambda})$	\overline{z}	$q(ilde{\lambda})$	
7	Invalid uppe		Invalid lower bound		

Numerical Stability

Jabr cut 1