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Introduction

Consider the following mixed integer linear program.

(MILP) min c>x+ d>y

s.t. Tx+Qy = h,

Ax ≥ b,

Gy = g,

x ∈ Zn1 × Rn2 ,

y ∈ Rm
+ ,

Linking Constraints

X := {x ≥ 0 : Ax ≥ b}
Y := {y ≥ 0 : Gy = g} 6= ∅

Benders decomposition: “project out” the y-variables.

min θ + c>x

s.t. x ∈ X ∩ Zn1 × Rn2 ,

(Benders cuts).

Master problem:

f(x′) = max α>(h− Tx′) + β>g

s.t. Q>α+G>β ≤ d.

Benders subproblem:

(θ′, x′)

Is f(x′) > θ′ ?
Yes No

Done!

(α̂, β̂)

Add feasibility/optimality cuts

Figure 1. Flowchart of the Benders decomposition procedure.

Definition 1 (projection): For any y ∈ Rm, [d|Q](y) := (d>y, Qy). (The
linking constraints map Qy to (h − Tx), which is not (necessarily) x!)
Since we allow θ ≥ f (x), for any set of points P ⊆ Rm, we also

define M(P ) := [d|Q](P ) + cone({(1,~0)}).
=⇒ Benders decomposition separates points from M(Y ).

Motivation: We consider situations where solving the Benders sub-

problem is too expensive; but on the other hand, we have access to

an efficient oracle O that can efficiently find an optimal basic feasi-

ble solution (BFS) of the problem miny∈Y {s>y}, for any s ∈ Rm.

Examples: Our investigationwasmotivated by caseswhereO solves

a shortest-path or a min-cost flow problem over an extended state

digraph.

Example 1: stochastic programming models where the y
variables correspond to flows over an extended state digraph.

Example 2: mathematical formulations that use decision

diagrams to strengthen relaxations.

Contributions:

A new technique for generating Benders cuts based on the

projection of corner polyhedra in the space of the y-variables.

In some cases, this technique gives an alternative to the method

of [1] to recover the Dantzig-Wolfe bound.

Test case: vehicle routing problem with stochastic demands

(VRPSD).

Computational experiments show that the proposed approach

can generate stronger cuts in significantly less computational

time.

For the VRPSD, combinatorial structure of the basis found by O
leads to generalization/strengthening of some known valid

inequalities.

Preliminaries

Definition 2 (support): For our purposes, for any set of vectors P , we refer to the support of P as the func-

tion σP : s → infp∈P{s>p}.
Fact 1 (cone optimality): Let y∗ be an optimal BFS for miny∈Y {s>y} with basis B. Let {r}r∈R be the rays

associated with the non-basic variables w.r.t. B. Define C(y∗, R) := {y∗} + cone(R), then σY (s) = σC(y∗,R)(s).

Lemma 1 [OFK24]: For every α ∈ Rp and every set of points P ⊆ Rm, we have that σP (d + Q>α) =
σM(P )((1, α)).

Separating stronger Benders cuts via projected corner polyhedra

An initial idea: Use the Lagrangian dual to make use of the oracle O.

f (x) = max
α∈Rp

{
min
y∈Y

{d>y + α>(Qy − h + Tx)}
}

= max
α∈Rp

{
α>(Tx − h) + σY (d + Q>α)

}
. (1)

This gives a Benders optimality cut: for all α̂ ∈ Rp,

θ ≥ α̂>(Tx − h) + σY (d + Q>α̂) ⇐⇒ θ + α̂>(h − Tx) ≥ σY (d + Q>α̂) Lemma 1= σM(Y )((1, α̂)). (2)

However, in our preliminary experiments (using the subgradient/volume method), this approach still leads

to weak cuts with bad convergence. So we need to do better...

Theorem 1 [OFK24]: Let (θ′, x′) be a candidate solution (see Figure 1) and let α̂ be such that (θ′, x′) violates
the corresponding inequality (2). LetC = C(y∗, R) be an optimal conew.r.t. σY (d+Q>α̂), then (θ′, h−Tx′) /∈
M(C).

Proof: We show that (2) is valid for M(C): σY (d + Q>α̂) Fact 1= σC(d + Q>α̂) Lemma 1= σM(C)((1, α̂)). �

Y

M(Y )

y∗

[d|Q](y∗)

basis

(θ′, h− Tx′)

(PRLP) min α>θ θ
′ + α>x (h− Tx′)− β

s.t. β = (αθ, αx)
>[d|Q](y∗), (P1)

(αθ, αx)
>[d|Q](r) ≥ 0, ∀r ∈ R. (P2)

αθ ≥ 0. (P3)

Figure 2. In the left, we have an illustration of C = C(y∗, R) and M(C). The point (θ′, h − Tx′) is not in M(C) and violates
inequality (2) (dashed purple line). The LP in the right is a cut-generating linear program w.r.t. the point-ray representation

of M(C). Feasible solutions to (PRLP) correspond to valid inequalities for M(C) and extreme rays of (PRLP) correspond to
facets of M(C).

Recovering strong bounds with a single cone: Let us now assume that T has an inverse. In this case, we

may rewrite the linking constraints as x = T −1h − T −1Qy. By calling Q◦ = −T −1Q and x◦ = x − T −1h, we
assume WLOG that the linear relaxation of (MILP) is

zLP = min
x,y∈Y

{c>x + d>y : x = Qy, Ax ≥ b, x ≥ q}

= min
y∈Y

{c>(Qy) + d>y : A(Qy) ≥ b, Qy ≥ q}

= max
ρ≥0, γ≥0

{
min
y∈Y

{c>(Qy) + d>y + ρ>(b − A(Qy)) + γ>(q − (Qy))}
}

. (3)

Theorem 2 [OFK24]: Let (ρ̂, γ̂) be optimal for the outer problem in (3) and let C = C(y∗, R) be an optimal

cone for the inner problem in (3) (with ρ = ρ̂ and γ = γ̂). Then min(θ,x)∈M(C)∩(R+×X){θ + c>x} ≥ zLP.

Proof: Let (θ′, x′) ∈ M(C) ∩ (R+ × X), so ∃y′ ∈ C such that θ′ ≥ d>y′ and x′ = Qy′. Then

θ′ + c>x′ ≥ c>(Qy′) + d>y′ ≥ c>(Qy′) + d>y′ + ρ̂>(b − A(Qy)) + γ̂>(q − (Qy))︸ ︷︷ ︸
≤ 0 since x′ ∈ X

≥ zLP. �

When the pricing problem of a column-generation formulation is solved with dynamic-programming (DP),

one can construct a formulation equivalent to (MILP) where the y-variables correspond to flows over a

DP state digraph. In these cases, Theorem 2 let us recover the Dantzig-Wolfe bound with cuts.

The vehicle routing problem with stochastic demands

Input

Complete graph G = (V = {0} ∪ V+, E)
k: Number of vehicles

B: Vehicle capacity

c ∈ RE
+: Edge costs

d ∼ P: Demands prob. distribution

Q: Recourse function

10 (15)

10 (15)

30 (25)

50

10

10 (18)

10

20 (22)

20 (22)

30

20

Q(x)

Figure 3: Example with B = 100. Numbers in black are the expected demands and numbers in

red are realizations that differ from their expectations. This forces some vehicles to unload at

the depot before continuing the route, incurring an additional recourse cost.

Goal: find k feasible routes R1, . . . , Rk that visit every customer exactly once

and that minimizes
∑

i∈[k](c(Ri) + E[Q(Ri)]).

Formulation: x ∈ ZE: edges in the routes; y ∈ RA
+: flows over N = (V ∪

{r, t}, A).
Network N : each state s ∈ V correspond to a tuple (customer, acc. demand)

(we assume that the demands are Poisson and independently distributed). We

set w ∈ QA
+ to encode the recourse costs. Each arc a ∈ A corresponds to an

edge edge(a) ∈ E. The linking constraints are then xij =
∑

(ya : edge(a) = ij),
for all ij ∈ E.

Combinatorial structure: We model the problem so that Y is a flow poly-

tope associated with r − t flows of value k (without capacities on the arcs).

Thus, (basis ⇐⇒ spanning tree T of N ) and (rays ⇐⇒ cycles w.r.t. T .)

=⇒ Examining these cycles allow us to improve special cases of integer L-

shaped cuts previously proposed by Spliet and Hoogendoorn (2023)

Computational experiments

Standard Benders based on LP duality (Figure 1) and Lagrangian duality (Equa-

tion (1)): Cannot solve root node in 30 minutes.

Algorithms: ILS: our implementation of a state-of-the-art integer L-shaped (ILS)

algorithm [2]; +Cone: addition of our cuts (Theorem 2).

For gaps, we ignored instances that an algorithm was unable to find a

feasible solution within the time limit.

For times, the numbers outside parentheses are averages over all instances;

numbers inside parentheses ignore instances that were not solved within

the time limit.

Table 1. Computational experiments on instances from Jabali et al. (2014)

Root Gap Time (s) Solved

|V | k ILS Cone+ILS ILS Cone+ILS ILS Cone+ILS

40 4 4.3% 1.8% 208 (31) 95 (52) 9 / 10 10 / 10

50 4 3.2% 1.7% 406 (232) 482 (299) 8 / 10 8 / 10

40 6 5.4% 2.4% 913 (319) 806 (271) 6 / 10 7 / 10

50 6 4.5% 2.4% 1362 (326) 1061 (203) 3 / 10 6 / 10
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