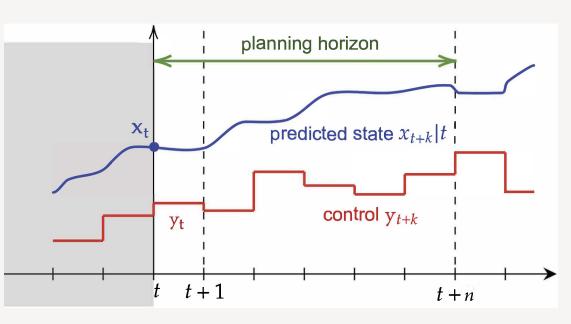


Hybrid Model Predictive Control (HMPC)

Hybrid System: Discrete & continuous dynamics interact through mode switch [2].

- Binary variable $z_t \in \{0, 1\}^d$: mode at time t
- In each mode, system control is a continuous optimization.

Model Predictive Control: Approach for long-term control problems with uncertainties. \rightarrow Iterative finite-horizon control optimization for real-time decisions.



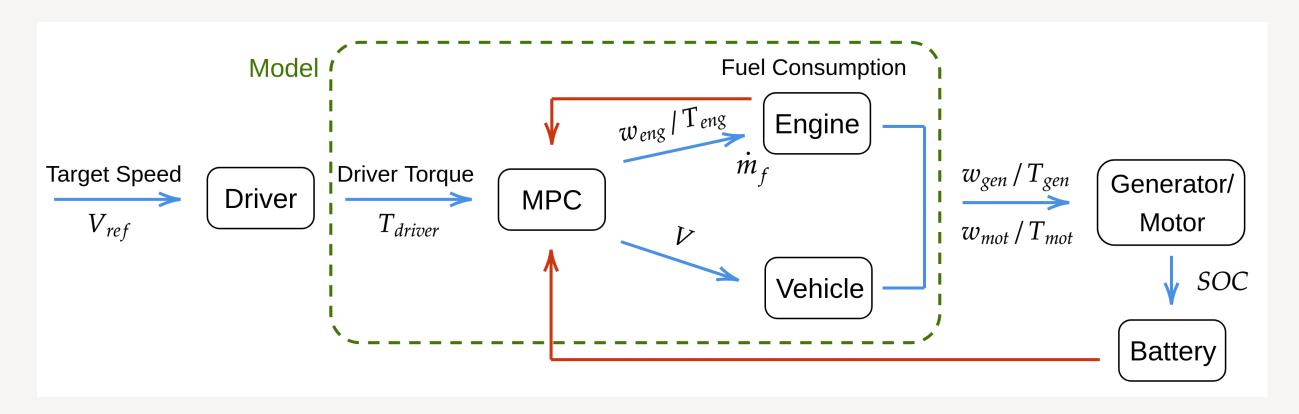
- At each period *t*,
- I. Measure current state x_t
- **2.** Solve *n*-period HCP with initial state x_t
- **3.** Implement first control y_t
- **4.** $t \leftarrow t + 1$ and repeat

MIQP Formulation of *n***-period Hybrid Control Problem (HCP)**: For $Q_t > 0, \forall t \in [n]$

$$(n - \text{HPC}) \quad \min_{x,y,z} \frac{1}{2} \sum_{t=1}^{n+1} (x_t - r_t)^\top Q_t (x_t - r_t) + \sum_{t=1}^n p_t z_t$$

s.t. $x_1 = x_0$,
 $x_{t+1} = A_t x_t + B_t y_t + c_t z_t + d_t$, $\forall t \in [n]$
 $l_{y_t} z_t \le y_t \le u_{y_t} z_t$, $\forall t \in [n]$
 $l_{x_t} \le x_t \le u_{x_t}$, $\forall t \in [n+1]$
 $x \in \mathbb{R}^{(n+1) \times d_x}$, $y \in \mathbb{R}^{n \times d_y}$, $z \in \{0, 1\}^n$

Application: Energy management of power-split HEV



State, control, measured disturbance:

$$x = \begin{bmatrix} \text{SOC} \\ \dot{m}_f \end{bmatrix} \quad y = \begin{bmatrix} V \\ w_{\text{eng}} \\ T_{\text{eng}} \end{bmatrix} \quad v = \begin{bmatrix} V^{\text{ref}} \\ T_{\text{driver}} \end{bmatrix}$$

Control system with 2 modes, engine on/off [1]

$$x(k+1) = A_i x(k) + B_i y(k) + D_i v(k) + F_i, \qquad i = 0 \text{ (off)}, 1(o$$

References

- [1] H. Borhan, A. Vahidi, A. M. Phillips, M. L. Kuang, I. V. Kolmanovsky, and S. Di Cairano. Mpc-based energy management of a power-split hybrid electric vehicle. IEEE Transactions on Control Systems Technology, 20(3):593-603, 2011.
- [2] F. Borrelli, A. Bemporad, and M. Morari. *Predictive control for linear and hybrid systems*. Cambridge University Press, 2017.
- [3] L. Wei, A. Atamtürk, A. Gómez, and S. Küçükyavuz. On the convex hull of convex quadratic optimization problems with indicators. Mathematical Programming, pages 1–35, 2023.

Strong Formulation of Hybrid Control Problem with Tridiagonal Inverse Matrix

Jisun Lee¹, Andrés Gómez², Alper Atamtürk¹

 $\forall t \in [n]$

 $\forall t \in [n]$

 $\forall t \in [n]$

¹ University of California, Berkeley, ² University of Southern California

 $\min \frac{1}{2} \sum_{t=1}^{n+1} (x_t - r_t)^2 + \sum_{t=1}^{n} p_t z_t$

s.t. $x_{t+1} = x_t + y_t$,

 $z_t \in \{0, 1\},\$

 $y_t(1-z_t)=0,$

Simple Hybrid Control Problem

(1)

where
$$\tilde{Q}_S^{-1}$$
 is tridiagonal and sum of rank-1 matrices, $\forall S = \{\pi_1, \ldots, \pi_k\} \subseteq \{1, \ldots, n\}$ s.t. $\pi_1 < \cdots < \pi_k$.

 \Leftrightarrow min

s.t. y

$$\tilde{Q}_{S} = \begin{bmatrix} n - \pi_{1} & n - \pi_{2} & n - \pi_{3} & \cdots & n - \pi_{k} \\ n - \pi_{1} & n - \pi_{2} & n - \pi_{3} & \cdots & n - \pi_{k} \\ n - \pi_{3} & n - \pi_{3} & n - \pi_{3} & \cdots & n - \pi_{k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n - \pi_{k} & n - \pi_{k} & n - \pi_{k} & \cdots & n - \pi_{k} \end{bmatrix} > 0 \implies \tilde{Q}_{S}^{-1} = \sum_{i=1}^{k-1} \underbrace{\frac{1}{\pi_{i} - \pi_{i+1}} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}}_{[i,i+1]}}_{[i,i+1]} + \underbrace{\frac{1}{\pi_{k}} (1)}_{[k]}$$

where $(M)_{[I]}$ is a $k \times k$ matrix with M is the submatrix defined by indices I and all other elements are zero. Consider a directed acyclic graph G = (V, A)

$$V = \{0, 1, \dots, n, n + 1\}$$

$$A = \{(i, j) : 0 \le i < j \le n + 1\}$$

Let P(G) be a set of 0 - (n + 1) paths in G and

$$\mathcal{P} = \left\{ (z, W, \delta) : \delta \in P(G), W = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} C_{i,j} \delta_{i,j} + \sum_{i=1}^{n} C_{i,n+1} \delta_{i,n+1}, \quad z_j = \sum_{i=0}^{j-1} \delta_{i,j}, \ \forall j \in [n] \right\}$$

Then, (2) can be reformulated as

$$\min_{\tau, y, z, W, \delta} \frac{1}{2} \tau + \tilde{a}^{\top} y + p^{\top} z \qquad \stackrel{(\star)}{\Leftrightarrow} \\ \text{s.t.} \quad \begin{pmatrix} W & y \\ y^{\top} & \tau \end{pmatrix} \ge 0 \qquad (3) \\ (z, W, \delta) \in \mathcal{P} \end{cases}$$

where (\star) holds as $y^* = -W^*a$ and $z \in \{0, 1\}^n$ can be relaxed since $x \in \{0, 1\}^n$.

Proposition 1. Dynamic Programming

(4) can be solved in $O(n^2)$ as a shortest path problem (SPP) on graph G.

Proposition 2. SOCP Reformulation

There is an SOCP formulation of (3) with $O(n^2)$ conic constraints.

General 1-Dimensional Hybrid Control Problem

The SPP and SOCP reformulations can be applied to general 1-dimensional time-variant HCPs for $q_t > 0$.

$$\min \frac{1}{2} \sum_{t=1}^{n+1} q_t (x_t - r_t)^2 + p^{\mathsf{T}} z \text{ s.t. } x_{t+1} = \alpha_t x_t + \beta_t y_t, y_t$$

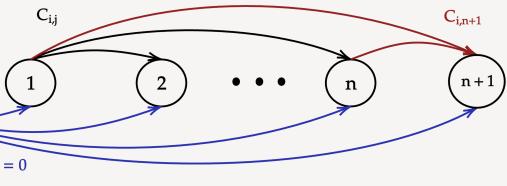
n)

$$\sum_{s=1}^{n+1} \left(x_0 + \sum_{s=1}^{t-1} y_s - r_t \right)^2 + \sum_{t=1}^n p_t z_t$$

$$\sum_{t=1}^{t} (1 - z_t) = 0, \quad \forall t \in [n]$$

$$z_t \in \{0, 1\}, \quad \forall t \in [n]$$

$$\Leftrightarrow \min \frac{1}{2} y^{\top} \tilde{Q} y + \tilde{a}^{\top} y + p^{\top} z + \sum_{t=1}^{n+1} (x_0 - r_t)^2 \text{ s.t. } y_t (1 - z_t) = 0, \ z_t \in \{0, 1\}, \ \forall t \in [n]$$



$$\min_{z,W,\delta} -\frac{1}{2}\tilde{a}^{\top}W\tilde{a} + p^{\top}z$$
s.t. $(z, W, \delta) \in \mathcal{P}$
(4)

ince
$$\exists (z^*, W^*, \delta^*) \in ext(\mathcal{P})$$
 [3].

 $y_t(1-z_t) = 0, \ z_t \in \{0,1\}, \ \forall t \in [n]$

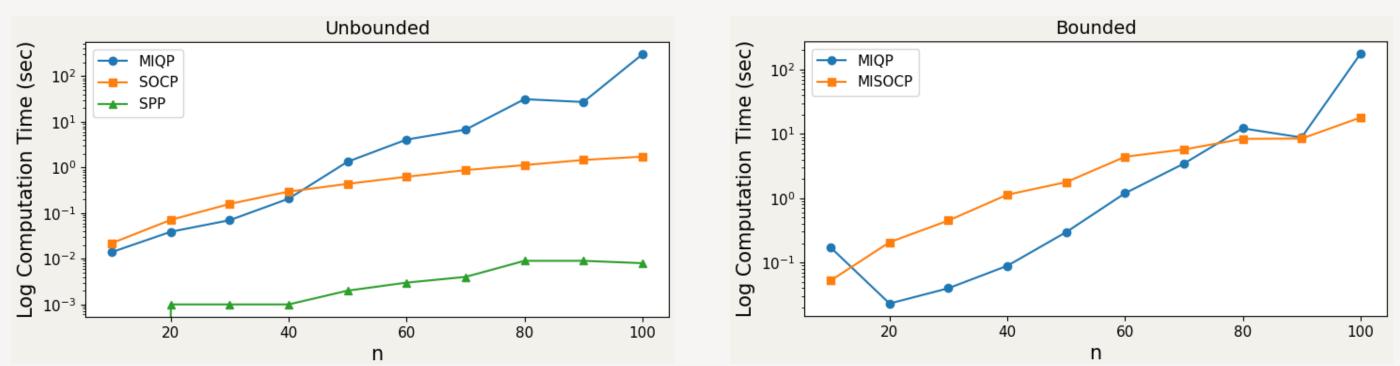
Multi-Dimensional Hybrid Control Problem (1)

- Q_S^{-1} is block tridiagonal, $\forall S \subseteq [n]$.
- (1) can be solved using the SOCP formulation with bounds.

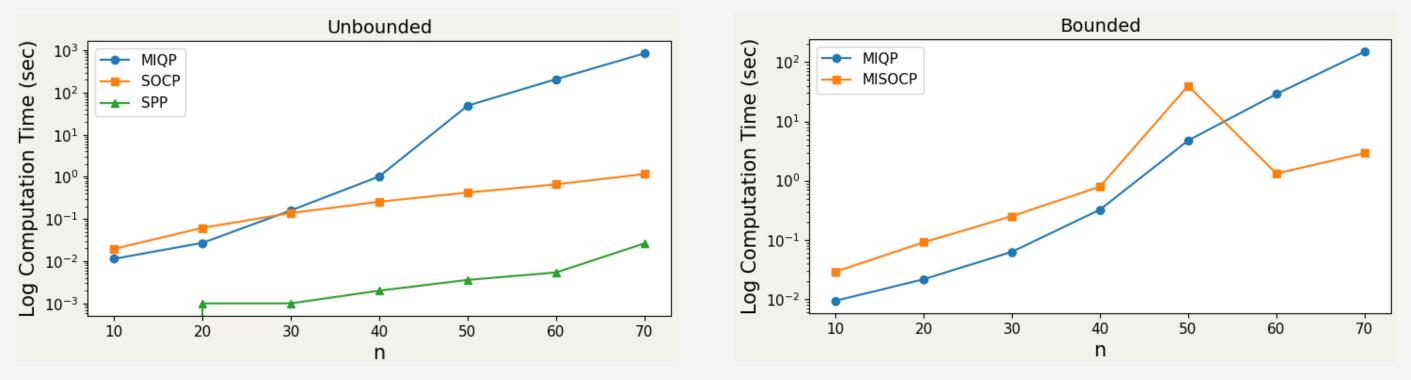
Experiments

(2)

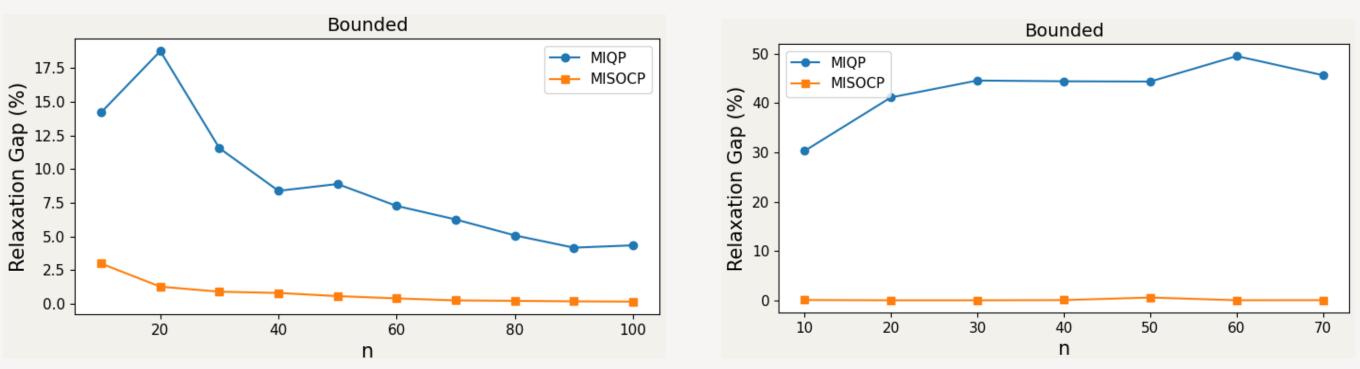
Three types of synthetic data tested using Gurobi solver 9.0 (Avg. of 10 instances reported) Type 1: Time-varying cost q_t with linear system $x_{t+1} = x_t + y_t$

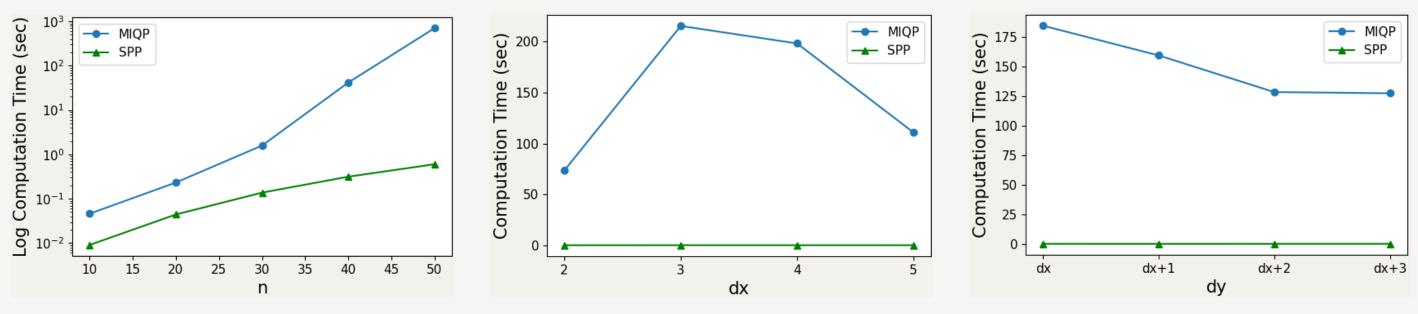


Type 2: Fixed cost $q_t = q$ with linear system $x_{t+1} = \alpha x_t + \beta y_t, \alpha \sim U[1, 1.1], \beta \sim U[\alpha - \frac{1}{2}, \alpha + \frac{1}{2}]$



Relaxation gap of bounded problems of Type 1 and 2





SOCP of Type 3 is excluded from comparison, as solver had irregular terminations often. ► If $|\alpha| > 1$ (1-dim) or |eig(A)| > 1, computation errors occur frequently for large *n*. \rightarrow Generate cuts for partial horizon [t, t + k] $(k \ll n)$ to form a strong formulation.

Unbounded (1) can be reformulated as SPP/SOCP if Q > 0 (nec.) & B_t 's are full row rank (suff.).

