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Hybrid Model Predictive Control (HMPC)

Hybrid System: Discrete & continuous dynamics interact through mode switch [2].

▶ Binary variable zt ∈ {0, 1}d: mode at time t
▶ In each mode, system control is a continuous optimization.

Model Predictive Control: Approach for long-term control problems with uncertainties.
→ Iterative finite-horizon control optimization for real-time decisions.

At each period t,
1. Measure current state xt
2. Solve n-period HCP with initial state xt
3. Implement first control yt
4. t ← t + 1 and repeat

MIQP Formulation of n-period Hybrid Control Problem (HCP): For Qt ≻ 0, ∀t ∈ [n]

(n − HPC) min
x,y,z

1
2

n+1∑︁
t=1
(xt − rt)⊤Qt (xt − rt) +

n∑︁
t=1

ptzt

s.t. x1 = x0,
xt+1 = Atxt + Btyt + ctzt + dt, ∀t ∈ [n]
lytzt ≤ yt ≤ uytzt, ∀t ∈ [n]
lxt ≤ xt ≤ uxt, ∀t ∈ [n + 1]
x ∈ R(n+1)×dx, y ∈ Rn×dy, z ∈ {0, 1}n

(1)

Application: Energy management of power-split HEV

State, control, measured disturbance:

x =

[
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¤mf

]
y =
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V

weng
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 v =

[
V ref

Tdriver

]
Control system with 2 modes, engine on/off [1]

x (k + 1) = Aix (k) + Biy(k) + Div(k) + Fi, i = 0(off), 1(on)
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Simple Hybrid Control Problem

min
1
2

n+1∑︁
t=1
(xt − rt)2 +

n∑︁
t=1

ptzt ⇔ min
n+1∑︁
t=1

(
x0 +

t−1∑︁
s=1

ys − rt

)2
+

n∑︁
t=1

ptzt

s.t. xt+1 = xt + yt, ∀t ∈ [n] s.t. yt (1 − zt) = 0, ∀t ∈ [n]
yt (1 − zt) = 0, ∀t ∈ [n] zt ∈ {0, 1}, ∀t ∈ [n]
zt ∈ {0, 1}, ∀t ∈ [n]

⇔ min
1
2
y⊤Q̃y + ã⊤y + p⊤z +

n+1∑︁
t=1
(x0 − rt)2 s.t. yt (1 − zt) = 0, zt ∈ {0, 1}, ∀t ∈ [n] (2)

where Q̃−1S is tridiagonal and sum of rank-1 matrices, ∀S = {𝜋1, . . . , 𝜋k} ⊆ {1, . . . , n} s.t. 𝜋1 < · · · < 𝜋k.

Q̃S =


n − 𝜋1 n − 𝜋2 n − 𝜋3 · · · n − 𝜋k
n − 𝜋1 n − 𝜋2 n − 𝜋3 · · · n − 𝜋k
n − 𝜋3 n − 𝜋3 n − 𝜋3 · · · n − 𝜋k

... ... ... . . . ...

n − 𝜋k n − 𝜋k n − 𝜋k · · · n − 𝜋k


≻ 0 ⇒ Q̃−1S =

k−1∑︁
i=1

C𝜋i,𝜋i+1︷                       ︸︸                       ︷
1

𝜋i − 𝜋i+1

(
1 −1
−1 1

)
[i,i+1]

+

C𝜋k,n+1︷   ︸︸   ︷
1
𝜋k

(
1
)
[k]

where
(
M

)
[I ] is a k × k matrix withM is the submatrix defined by indices I and all other elements are zero.

Consider a directed acyclic graph G = (V ,A)
▶ V = {0, 1, . . . , n, n + 1}
▶ A = {(i, j) : 0 ≤ i < j ≤ n + 1}

Let P (G) be a set of 0 − (n + 1) paths in G and

P =

{
(z,W , 𝛿) : 𝛿 ∈ P (G),W =

n−1∑︁
i=1

n∑︁
j=i+1

Ci,j𝛿i,j +
n∑︁
i=1

Ci,n+1𝛿i,n+1, zj =
j−1∑︁
i=0

𝛿i,j, ∀j ∈ [n]
}

Then, (2) can be reformulated as

min
𝜏,y,z,W ,𝛿

1
2
𝜏 + ã⊤y + p⊤z

s.t.
(
W y
y⊤ 𝜏

)
⪰ 0

(z,W , 𝛿) ∈ P

(3)

(★)
⇔ min

z,W ,𝛿
− 1
2
ã⊤Wã + p⊤z

s.t.(z,W , 𝛿) ∈ P
(4)

where (★) holds as y∗ = −W ∗a and z ∈ {0, 1}n can be relaxed since ∃(z∗,W ∗, 𝛿∗) ∈ ext(P) [3].

Proposition 1. Dynamic Programming

(4) can be solved in O(n2) as a shortest path problem (SPP) on graph G.

Proposition 2. SOCP Reformulation

There is an SOCP formulation of (3) with O(n2) conic constraints.

General 1-Dimensional Hybrid Control Problem

The SPP and SOCP reformulations can be applied to general 1-dimensional time-variant HCPs for qt > 0.

min
1
2

n+1∑︁
t=1

qt (xt − rt)2 + p⊤z s.t. xt+1 = 𝛼txt + 𝛽tyt, yt (1 − zt) = 0, zt ∈ {0, 1}, ∀t ∈ [n]

Multi-Dimensional Hybrid Control Problem (1)

▶ Q̃−1S is block tridiagonal, ∀S ⊆ [n].
▶ Unbounded (1) can be reformulated as SPP/SOCP if Q ≻ 0 (nec.) & Bt’s are full row rank (suff.).

▶ (1) can be solved using the SOCP formulation with bounds.

Experiments

Three types of synthetic data tested using Gurobi solver 9.0 (Avg. of 10 instances reported)

▶ Type 1: Time-varying cost qt with linear system xt+1 = xt + yt

▶ Type 2: Fixed cost qt = q with linear system xt+1 = 𝛼xt + 𝛽yt, 𝛼 ∼ U [1, 1.1], 𝛽 ∼ U [𝛼 − 1
2, 𝛼 +

1
2]

▶ Relaxation gap of bounded problems of Type 1 and 2

▶ Type 3. Multi-dimensional HCP with fixed cost Q and linear system xt+1 = Axt + Byt + czt

▶ SOCP of Type 3 is excluded from comparison, as solver had irregular terminations often.

▶ If |𝛼 | > 1 (1-dim) or |eig(A) | > 1, computation errors occur frequently for large n.
→ Generate cuts for partial horizon [t, t + k] (k ≪ n) to form a strong formulation.
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