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Summary

Tree-structured binary optimization is a important class of discrete optimization, which

covers multi-stage stochast integer optimization with binary state variables. Lagrangian

dual for tree-structured binary optimization based on relaxing nonanticipativity con-

straints is a well-known decentralized approach to provide a high-quality dual bound.

Unfortunately, due to the non-convexity, classics Lagrangian methods may have a non-

zero dual gap. In this poster, we provide a new Lagrangian method, which is both tight

and decomposible.

Introduction

Consider the following binary optimization:

vp := min C1(x1) + C2(x2)
s.t. x1, x2 ∈ {0, 1}n

x1 = x2
(1)

All the results presented below can be extended.

Let F denote the set of all faces of hypercube [0, 1]n. Given a subsets of faces

F̂ ⊆ F , consider the following extended formulation of (1)

vex
p := min C1(x1) + C2(x2)

s.t. xi ∈ {0, 1}n, wi
F =

{
1 if xi ∈ F

0 otherwise
, ∀i ∈ {1, 2}

w1
F = w2

F , ∀F ∈ F̂

(2)

and its Lagrangian dual is

Lex(λ) := min C1(x1) + C2(x2) +
∑
F∈F̂

λF (w1
F − w2

F )

s.t. xi ∈ {0, 1}n, wi
F =

{
1 if xi ∈ F

0 otherwise
, ∀i ∈ {1, 2},

vex
d := max

λ
Lex(λ)

(3)

Classical Lagrangian methods can be viewed as a special case of (2) where F̂ is the

collection of all facets of [0, 1]n.
(3) can be solved by subgradient or bundle methods and computing subgradient of

(3) is a decomposable binary optimization.

Theoretical results

The classics pseudo-boolean analysis states that every boolean function

C i(x) : {0, 1}n → R admits a multilinear representation.

C i(x) =
∑
S⊆[n]

f i
SXS where XS := Πi∈Sxi

Theorem 1 (strong duality) If F̂ includes all vertices of [0, 1]n, then vex
d = vp. If each

C i is a polynomial of degree at most k and F̂ includes all faces of dimension n − k
and higher, then vex

d = vp.

Theorem 2 (convergence rate) If each C i is a polynomial of degree at most k and F̂
includes all faces of dimension n − k and higher, there exists a subgradient method

to solve (3) to achieve ε additive optimally in at most O

(
nk

∑
(f i

S)2

ε2

)
iterations

even if f i
S is unknown in advance.

Proof sketch:

1. One can construct optimal dual variable λ∗ such that vex
d = vp. For example, when

F̂ is collection of all vertices, one can construct optimal dual variable λ∗ where

λ∗
v = C2(v), ∀v ∈ {0, 1}n. This proves Theorem 1.

2. Theorem 2 directly comes from the classic convergence analysis of subgradient

method and constructive proof of Theorem 2.

Some implementation details

We consider F̂ is collection of all vertices and facets of [0, 1]n. The Lagrangian takes

the following form:

Lex(λ, µ) := min C1(x1) + C2(x2) +
∑
j∈[n]

µi(x1
i − x2

i ) +
∑

v∈{0,1}n

λv(w1
v − w2

v)

s.t. xi ∈ {0, 1}n, wi
v =

{
1 if xi ∈ v

0 otherwise
, ∀i ∈ {1, 2}, v ∈ {0, 1}n

(4)

For any given λ, computing the subgradient is decomposed to many binary

optimization taking form of min C i(xi) ± µ>xi s.t. xi ∈ {0, 1}n with additional ‖λ‖0
many no good cuts.

Even if the dimension of λ is exponential, if we start with λ = 0, ‖λ‖0 increases by

at most one for each iteration of subgradient methods or bundle methods.

Numerical experimental

We apply (4) to two-stage stochastic integer optimization. We consider Stochastic multi-

knapsack problem in [1]. The problem (1) takes form of

min C0(x) + 1
s

∑
i∈[s]

C i(x)

s.t. x ∈ {0, 1}n

where

C i(x) := min c>x + d>zi

s.t. Aix + Bizi ≥ gi

x ∈ {0, 1}n, zi ∈ {0, 1}n

Figure 1. Gap vs time of different methods. n = 50, s = 20, m = 10

the number of instances solved in time and final gap

Method ≤ 120 ≤ 240 ≤ 360 avg final gap (unsolved)

CL Lagrangian 25/60 36/60 40/60 0.16%

FW Lagrangian 20/60 37/60 53/60 0.12%

L-shape 4/60 7/60 15/60 1.0 %
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