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Solving a Mixed-Integer Nonlinear Program is challenging. Solving a sequence of them is even
harder. But if the difference between the problems is known and relatively small there is good
hope to improve the performance using warm-starting.

Contact
Erik Tamm

etamm@kth.se

Problem formulation
We consider problems on the form

min c⊺x + d⊺y

s.t. f(x, y) ≤ θ,

gλ(x, y) ≤ 0,

h(x, y) ≤ 0,

Ax + By ≤ b,

x ∈ R
n, y ∈ Z

m.

(Pθ,λ)

We assume that f , gλ and h are once continuously differentiable and convex

functions, that gλ is a monotone function in λ for any fixed (x, y), and that the

linear constraints defines a bounded set. We finally assume that some suitable

constraint qualification holds. This is then a so-called convex Mixed-Integer

Nonlinear Program (MINLP) which can be solved with Outer Approximation (OA).

We specifically consider the version presented by [5].

The essence of OA is to find points Xk = {(x1, y1), . . . , (xk, yk)} which

generate an outer polyhedral approximation Ω(Xk, θ, λ) described by










f(xl, yl) + 〈∇f(xl, yl), z − zl〉 ≤ θ, ∀(xl, yl) ∈ Xk,

gλ(xl, yl) + 〈∇gλ(xl, yl), z − zl〉 ≤ 0, ∀(xl, yl) ∈ Xk,

h(xl, yl) + 〈∇h(xl, yl), z − zl〉 ≤ 0, ∀(xl, yl) ∈ Xk,

where z − zl = (x − xl, y − yl)⊺.

Example of Outer Approximation
Figure 1 illustrates how OA solves problem (1). The constraints in (1) are plotted

in dark blue in Figure 1. Say that we start the algorithm in P1. This generates the

first cut, that is the line through P1. If we then solve a MILP, we obtain P2. Since

y = 9 is never feasible, we obtain the corresponding point F2. Based on this point

we obtain the second cut, that is the line y = 5.22 in light blue. If we continue

similarly we need four cuts to converge to the optimal solution which is P1.
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Figure 1: Illustration of Outer Approximation. P1

is the starting point and the optimal solution.

P2 − P4 are the points found by solving a MILP.

F2 − F4 are the points found by solving an NLP.

min −2x − y

s.t. 3x2 + 2y2 − 2xy

+3x − 4y ≤ 5.3,

−10x + y ≤ 4,

x, y ∈ [−10, 10],
y ∈ Z.

(1)

Proposed methods
We propose three methods for warm-starting. Note that the sequence of θ or λ is

chosen so that the feasible set is tightened for each problem, which is possible

due to monotonicity.

◮ Base method: A standard technique is to start the next problem in the

sequence with the optimal solution from the last problem.
◮ Cut-tightening method: Since each iteration tightens the feasible set of

the problem, the points Xk can be reused to derive a valid outer polyhedral

approximation Ω(Xk, θ, λ) by only updating the values of θ and λ.
◮ Point-based method: The integer combinations yi in Xk will probably be

good integer combinations for the next iteration. We can therefore find x̂i

for each yi by solving an NLP to form X̂k. These new points then define a

valid outer polyhedral approximation Ω(X̂k, θ, λ).

Biobjective MINLPs
One application is to solve biobjective MINLPs. They can be solved using the

ε-method to estimate the set of nondominated points [3]. The set of efficient

solutions is not convex which means that the classic weighted-sum method is not

applicable.

For the method, we solve (Pε) for a decreasing sequence of ε where

min t

s.t. f1(x, y) ≤ t,

f2(x, y) ≤ ε,

h(x, y) ≤ 0,

Ax + By ≤ 0,

x ∈ R
n, y ∈ Z

m, t ∈ R.

(Pε)

As an example, we consider problem (2) (Problem (TI4) from [4])

min {x1 + x3 + y1 + y3, x2 + x4 + y2 + y4}

s.t. x2
1 + x2

2 ≤ 1,

x2
3 + x2

4 ≤ 1,

(y1 − 2)2 + (y2 − 5)2 ≤ 10,

(y3 − 3)2 + (y4 − 8)2 ≤ 10,

x ∈ [−20, 20]4, y ∈ ([−20, 20]4 ∩ Z
4).

(2)

Regularized Sparse Linear Regression
In regularized sparse linear regression (SLR) [1], we consider the problem

min ||Ax − b||22 + λ||x||22,

s.t. ||x||0 ≤ κ.

In practical application it is unclear which value of λ to choose. If we can solve the

problem for a sequence of values we can evaluate which value to choose. The

problem can be formulated on the form of (Pθ,λ) as

min t

s.t. ||Ax − b||22 + λ||x||22 ≤ t,

liyi ≤ xi ≤ uiyi, i = 1, 2, . . . , n,
∑n

i=1 yi ≤ κ,

yi ∈ {0, 1}, i = 1, 2, . . . , n.

(3)

Numerical Results
The examples have been solved in Julia. The results for the biobjective problem

(2) are presented in Figure 2a and Table 1.

The regularized sparse linear regression problem (3) was solved for a dataset on

the quality of Portuguese red wine [2]. The data contains 11 features and 1599

data points. The problem was solved with κ = 5 and 0 ≤ λ ≤ 10 with a step size

of 0.5. The numerical results are presented in Figure 2b and Table 1.
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(b) Solutions of SLR with κ = 5 and

0 ≤ λ ≤ 10.

Figure 2: Plots of the solutions to each problem.

Base Cut-tightening Point-based

Biobjective
NLP 1461 146 1766

MILP 820 136 142

SLR
NLP 7395 258 7916

MILP 7395 258 272

Table 1: Number of subproblems solved for each method and problem
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