Aggregation of Bilinear Bipartite Equality Constraints and Application to FEM Update Problem

Santanu S. Dey, Dahye Han, Yang Wang (Georgia Tech)

1

Background

Consider a set with two bilinear bipartite equality constraints.

$$S := \left\{ x \in [0,1]^{n_1}, y \in [0,1]^{n_2} \mid x^\top Q_i y + a_i^\top x + b_i^\top y + c_i = 0, \quad i \in [2] \right\}$$

Let us aggregate constraints with weights $\lambda = (\lambda_1, \lambda_2) \in \mathbb{R}^2$.

$$S_{f \lambda} := \left\{ x \in [0,1]^{n_1}, y \in [0,1]^{n_2} \left| egin{array}{c} \lambda_1 \cdot \left(x^ op Q_1 y + a_1^ op x + b_1^ op y + c_1
ight) \ + \lambda_2 \cdot \left(x^ op Q_2 y + a_2^ op x + b_2^ op y + c_2
ight) \end{array}
ight. = 0
ight.
ight\}$$

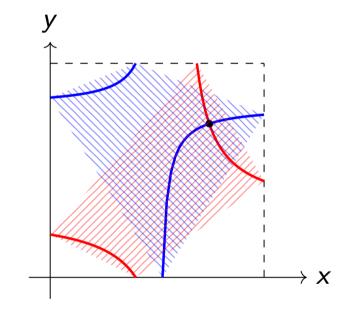
Remark $S_{\lambda} \subset S$ for any $\lambda \in \mathbb{R}^2$, hence $conv(S) \subset \bigcap_{\lambda \in \mathbb{R}^2} conv(S_{\lambda})$.

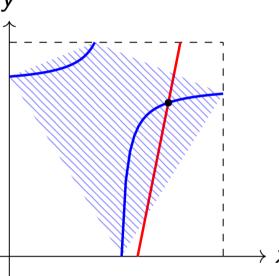
2

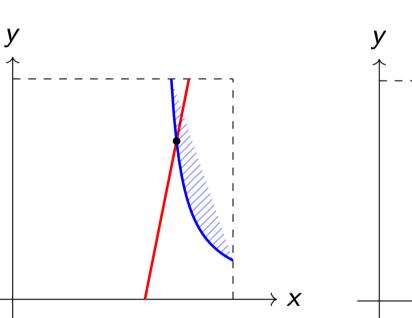
Can conv(S) be represented with intersection of finite number of conv(S_{λ})'s?

Proposition 1: Yes, for $n_1 = 1$ and $n_2 = 1$. There is $T \subseteq \mathbb{R}^2$ where $|T| \le 3$ such that $conv(S) = \bigcap_{\lambda \in T} conv(S_{\lambda})$.

Proof sketch:







(a) S_1 (blue), S_2 (red), their convex (b) Find a line representation L which (c) Find \tilde{S}_1 intersecting with $[0,1]^2$ (d) Find \tilde{S}_2 with conv $(\tilde{S}_2) \cap L$ is hulls, and feasible region (black) gives a same feasible region with S_1 box by only one branch on the opposite side of conv $(\tilde{S}_1) \cap L$

Proposition 2: No, for $n_1 = 1$ and $n_2 = 2$, finite number of intersections does not give a convex hull. In other words, for $T \subseteq \mathbb{R}^2$, where $|T| < \infty$,

$$\operatorname{conv}(S) \subsetneq \bigcap_{\lambda \in T} \operatorname{conv}(S_{\lambda}).$$

Proof sketch: Consider a counterexample:

$$S = \left\{ x, y_1, y_2 \in [0, 1]^3 \, \middle| \, \begin{array}{l} xy_1 = 0.5 \\ xy_2 = 0.5 \end{array} \right\}.$$

- 1. Note that $y_1 = y_2$ for all $(x, y_1, y_2) \in S$, so $conv(S) \subseteq \{x, y_1, y_2 \in [0, 1]^3 \mid y_1 = y_2\}$.
- 2. $\left(\frac{3}{4}, \frac{17}{24}, \frac{17}{24}\right) \in \text{conv}(S)$
- 3. For any $\lambda \in \mathbb{R}^2$, we can find $\hat{\epsilon}(\lambda) > 0$ such that: $(\frac{3}{4}, \frac{17}{24} + \epsilon, \frac{17}{24} \epsilon) \in \text{conv}(S_{\lambda})$, for all $0 \le \epsilon \le \hat{\epsilon}(\lambda)$.
- 4. Let $\epsilon_0 = \min_{\lambda \in \mathbb{R}^2} {\{\hat{\epsilon}(\lambda)\}}$, then we found a point that is in all conv (S_λ) but does not satisfy $y_1 = y_2$; hence not in conv(S).

3

Can conv(S) be represented with intersection of infinite number of conv(S_{λ})'s?

Proposition 3: Even an infinite number of intersections does not give a convex hull. In other words,

$$\operatorname{\mathsf{conv}}(S) \subsetneq \bigcap_{\lambda \in \mathbb{R}^2} \operatorname{\mathsf{conv}}(S_\lambda).$$

Proof sketch: Consider a counterexample:

$$S = \left\{ x_1, x_2, y_1, y_2 \in [0, 1] \middle| \begin{array}{rrr} x_1 y_1 - 5x_1 y_2 - 2x_2 y_1 + 9x_2 y_2 & = & 0 \\ 3x_1 y_1 + 3x_1 y_2 + 5x_2 y_1 & = & 6 \end{array} \right\}.$$

- 1. Note that $\hat{p} = (1, \frac{7}{10}, \frac{7}{8}, \frac{1}{6}) \notin \text{conv}(S)$.
- 2. When we let $\lambda = (1, \theta)$, for all $\theta \in \mathbb{R}$, we can find $p_1, ..., p_4 \in S_{\lambda}$ and weights $w_1, ..., w_4$ such that $\hat{p} = \sum w_i p_i$ and $\sum w_i = 1$.

e.g

$$\begin{array}{ll} p_1 = \left(1,0,\frac{3\theta+5}{3\theta+1},1\right), & p_2 = \left(1,1,\frac{6\theta}{8\theta-1},0\right), & p_3 = \left(1,1,\frac{3\theta-4}{8\theta-1},1\right), & p_4 = \left(1,\frac{3\theta-1}{5\theta-2},1,0\right), \\ w_1 = \frac{47(1+3\theta)}{120(1+47\theta)}, & w_2 = \frac{122+1343\theta-1645\theta^2}{120(1+47\theta)(1-2\theta)}, & w_3 = \frac{799\theta-27}{120(1+47\theta)}, & w_4 = \frac{-11(1-141\theta)(2-5\theta)}{120(1+47\theta)(1-2\theta)}. \end{array}$$

4

Can aggregations still be useful?

Remark: Despite results so far, aggregated equalities can provide a tight approximation of conv(S). Random shooting experiment for $n_1 = n_2 = 2$ and minimizing over a random objective function shows significant reduction in gap.

Relative Gap	$\operatorname{conv}(S_1) \cap \operatorname{conv}(S_2)$	$igcap_{\lambda \in [-2,2]^2} \operatorname{conv}(\mathcal{S}_\lambda)$	$igcap_{\lambda \in [-10,10]^2} \operatorname{conv}(\mathcal{S}_\lambda)$
Average	5.25%	1.38%	0.56%
Maximum	96.14%	26.38%	22.22%
No. < 0.5%	57%	71%	87%

How can we find some "nice" aggregation weights that will give a tight approximation of conv(S)?

Heuristic: When we have a relaxed solution (\hat{x}, \hat{y}) , let's try to find an aggregation weights that may separate (\hat{x}, \hat{y}) .

- 1. Fix y to \hat{y} in S_{λ}
 - $\Longrightarrow S_{\lambda}|_{y=\hat{y}}$ is a hyperplane in the x space with parameters defined by $\lambda \in \mathbb{R}^2$.
- 2. Find $\lambda \in \mathbb{R}^2$ such that the distance between $S_{\lambda}|_{y=\hat{y}}$ and \hat{x} is maximized.

 (This is a convex problem and can be solved efficiently.)

 conv (S_{λ}) separating (\hat{x}, \hat{y})
- 3. Go to step 1 and now fix x to \hat{x} .

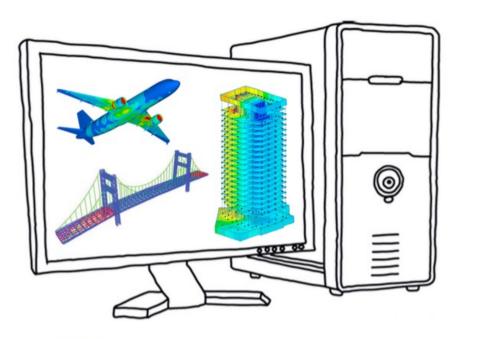
4. Choose among λ 's that have maximum distance.

6

Application to FEM Update Problem

FEM Update: The finite element (FE) model update problem in structural engineering seeks to minimize the differences between the predicted and actual behaviors of a built structure. This boils down to solving a generalized eigenvalue problem with eigenvalues, eigenvectors and matrix weights being variables, which can then be reformulated as a bilinear bipartite problem.

$$\begin{aligned} & \underset{\delta,x,y}{\text{min}} & \delta \\ & s.t. & & x^\top Q_i y + a_i^\top x + b_i^\top y + c_i = 0 \\ & \dots & \text{other linear constraints w.r.t. } \delta, x, y \end{aligned} \qquad \forall i \in [n]$$



(a) Mathematical Models

(b) As-built Structures

Aggregations can improve branch and bound convergence!

(a) Convergence of Example Instance

0.01475 0.01450 0.01425 0.01400 0 1000 2000 3000 time (sec)

Lower Bound (BARON commercial solver)

Lower Bound (Branch and Bound with aggregation

12story 16story $(n_1 = 14, n_2 = 24)$ $(n_1 = 19, n_2 = 48)$

(b) Average Relative Improvements

Root Node against
Branch and Bound w/o aggregation
3.08%
6.65%

Branch and Bound w/o aggregation
8.33% 2.60%
Final Gap against

Final Gap against

BARON commercial solver
82.45% 51.18%

Remark: There is a trade-off between making aggregations and making the convex hull tighter, so we limit the number of aggregations to add.

Refenreces

- Uğur Yildiran. Convex hull of two quadratic constraints is an lmi set. IMA Journal of Mathematical Control and Information, 26(4):417–450, 2009.
- Santanu S Dey, Gonzalo Munoz, and Felipe Serrano. On obtaining the convex hull of quadratic inequalities via aggregations. SIAM Journal on Optimization, 32(2):659–686, 2022
- 72.00%
 SIAM Journal on Optimization, 32(2):659–686, 2022
 Santanu S Dey, Asteroide Santana, and Yang Wang. New SOCP relaxation and branching rule for bipartite bilinear programs. Optimization and Engineering, 20:307–336, 2019.