Aggregation of Bilinear Bipartite Equality Constraints and Application to FEM Update Problem

Background

Consider a set with two bilinear bipartite equality constraints.

S = {x c0,1]™,y €[0,1]™| x"Qiy+a' x+ by +¢ci=0, ic [2]}

Let us aggregate constraints with weights A\ = (A1, \2) € R?.
M- (x"Qiy +a) x+ b y+ ¢
S, :=<xe€[0,1]™,y €]0,1]™ ( N 1T lT )
+ X (x"TQy+ax+by+c) = 0

Remark S\ C S for any A € R?, hence conv(S) C (ycgz conv(Sy).

Proposition 1: Yes, for ny =1 and n, = 1. There is T C R? where | T| < 3 such that
conv(S) = [ e conv(Sy).

Can conv(S) be represented with
intersection of finite number of conv(S,)’s?

Proof sketch:
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hulls, and feasible region (black)  gives a same feasible region with 51 box by only one branch on the opposite side of conv(S;) (L

Proposition 2: No, for n; =1 and n, = 2, finite number of intersections does not give a
convex hull. In other words, for T C R?, where | T| < oo,

conv(S) C ﬂ conv(S)).
AT

Proof sketch: Consider a counterexample:
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1. Note that y; = y» for all (x, y1,y2) € S, so conv(S) C {x, y1,¥2 € [0,1]° | y1 = y»}.

2. (2,35, 25) € conv(S)
3 17 17

3. For any A € R?, we can find €(\) > 0 such that: (3,55 + €, 55 — €) € conv(S)), for
all 0 < e <é(N).

4. Let eg = minycr2{€(A)}, then we found a point that is in all conv(S,) but does not
satisfy y; = y»; hence not in conv(S).

S = {X7y17y2 S [07 1]3
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Can conv(S) be represented with
intersection of infinite number of conv(S))’s?

Proposition 3: Even an infinite number of intersections does not give a convex hull. In
other words,

conv(S) C ﬂ conv(S,).
AER?

Proof sketch: Consider a counterexample:

Ox2yo
5X2y1

X1Y1 — 5x1y2 — 2x2)1
3x1y1 + 3x1y»

[l
o O
—

S = {X17X27y17y2 S [07 1]

, pa € S) and weights

1. Note that p= (1,5, £, 3) & conv(S).
1,6), for all € R, we can find py, ...

2. When we let A = (1,
Wi, ..., W4
such that p =) w;p; and ) w; = 1.
c.g.,
p=(1,0,35,1). p2=(1,1,5%,0),

47(1+30) W, — 1224-13430—164562
W1 = 120(1+470)° 2 — 120(1+470)(1—26)

ps=(1L1,3741). o= (1,%3,1,0),
_7996—27 _ 111(1-1416)(2-56)
W3 = 120(1+470) W4 = 120(1+470)(1—20) -

Application to FEM Update Problem

FEM Update: The finite element (FE) model update problem in structural engineering
seeks to minimize the differences between the predicted and actual behaviors of a built
structure. This boils down to solving a generalized eigenvalue problem with eigenvalues,
eigenvectors and matrix weights being variables, which can then be reformulated as a
bilinear bipartite problem.

min o0
9,X,y

s.t. xTQ,-y + a,-Tx + b,-Ty +¢i =0
.. other linear constraints w.r.t. 9, x,y
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(a) Mathematical Models

(b) As-built Structures

Aggregations can improve branch and bound convergence!

Can aggregations still be useful?

Remark: Despite results so far, aggregated equalities can provide a tight approximation of
conv(S). Random shooting experiment for n; = n, = 2 and minimizing over a random
objective function shows significant reduction in gap.

Relative Gap  conv(S1) Nconv(S2)  (xgr—2.2p2 €onV(Sx)  [xe[-10,10/2 CONV(SA)
Average 5.25% 1.38% 0.56%
Maximum 96.14% 26.38% 22.22%
No. < 0.5% 57% 71% 87%

(a) Convergence of Example Instance (b) Average Relative Improvements
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How can we find some “nice”’ aggregation weights
that will give a tight approximation of conv(S)?

Heuristic: When we have a relaxed solution (X, y), let's try to find an aggregation weights
that may separate (%, y).

1. Fix y toyin S
—> S\|y=y is a hyperplane in the x space with parameters defined by A € R?.

2. Find A € R? such that the distance between Sy|,—; and % is maximized.

(This is a convex problem and can be solved efficiently.) , —
conv(S)) separating (X, y)

3. Go to step 1 and now fix x to X.

—

0
4. Choose among \'s that have maximum distance. 72.00%

time (sec)

Final Gap against
BARON commercial solver

82.45% 51.18%

- Jpper Bound

Lower Bound (BARON commercial solver)

Lower Bound (Branch and Bound)

Lower Bound (Branch and Bound with aggregation)

Remark: There is a trade-off between making aggregations and making the
convex hull tighter, so we limit the number of aggregations to add.
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