
THEOREM

5 6 7 8 9 10 15

Number of items

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
sy

m
E

F
1

in
st

an
ce

s

Proportion of symEF1 instances increases with more items
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THEORY COMPUTATION

Symmetrically Fair Allocations of Indivisible Goods

Problem: We wish to divide a set of 𝑚 discrete goods 
amongst 𝑛 agents. However, we do not know which 
bundle of goods each agent will receive. 

Example: A local nonprofit preallocates food donations 
into boxes that are picked at random by clients; ideally, 
the preallocation scheme would have a guarantee about 
the relative satisfaction with their bundles. 

Definition: An allocation 𝐴!, … , 𝐴" is symmetrically 
envy free up to one good, or symEF1, when every agent 
𝑖 ∈ [𝑛] weakly prefers any bundle 𝑘 ∈ [𝑛] over any other 
after removing their favorite item from that bundle. 
Concretely, for every 𝑙 ∈ [𝑛] it holds that:

𝑣# 𝐴$ ≥ 𝑣# 𝐴% − 𝑣̅# 𝐴% .

Goal: Derive sufficient condition for symEF1 existence.

Intuition: If all agents are identical, then a “round-robin 
allocation” provides a symEF1 allocation.

General case: Align agents round robin allocations.

First, construct an auxiliary structure for each agent 𝑖: 
a set 𝒯# of “indexed 𝒏-tuples” 𝒯!# , … , 𝒯&/"# obtained by
1. Sort the items according to agent 𝑖’s preferences.
2. Let 𝒯!# denote agent 𝑖’s favorite 𝑛 items.
3. Let 𝒯(# be the next-best 𝑛 items according to agent 𝑖.

…
4. Let 𝒯&/"# be the last 𝑛 items according to agent 𝑖.

Definition: Allocation 𝒜 = 𝐴!, … , 𝐴" separates 𝒯# if 
each bundle 𝐴$ contains an item from each of the indexed 
𝑛-tuples 𝑇!# through 𝑇&/"

# .

If an allocation 𝐴 separates 𝒯# for all 𝑖 ∈ [𝑛], then 𝐴 is 
symEF1 allocation.

Next, we construct a graph based on the tuples.

Definition: Let 𝒯 = 𝒯!, … , 𝒯" , the item graph
𝐺 𝒯 has vertex set [𝑚] (one vertex per item) and 
edge set:
{ 𝑗% , 𝑗$ ⊆ 𝑚 × 𝑚 ∶ 𝑗% ≠ 𝑗$ and 𝑗% , 𝑗$ ⊆ 𝒯#}

for some 𝑖 ∈ [𝑛].

Main results:
If 𝐺(𝒯) is 𝑛-colorable, then there 
exists a symEF1 allocation

For 𝑛 = 2 agents, there always 
exists a symEF1 allocation

Separating tuples is sufficient, not necessary:

The item item values highlighted for each agent 
represent the items in the set 𝒯(# for each agent 𝑖.

𝒯! = 𝒯!!, 𝒯(! , 𝒯!!= 𝑓, 𝑒, 𝑑 , 𝒯(! = {𝑐, 𝑏, 𝑎}
𝒯( = 𝒯!(, 𝒯(( , 𝒯!(= 𝑓, 𝑒, 𝑐 , 𝒯(( = 𝑑, 𝑏, 𝑎
𝒯) = 𝒯!), 𝒯() , 𝒯!)= 𝑓, 𝑑, 𝑐 , 𝒯() = {𝑒, 𝑏, 𝑎}

Let 𝒯 = 𝒯!, 𝒯(, 𝒯) , the item graph 𝐺(𝒯) is 
also shown. 

We note that this example shows our condition is 
not necessary as 𝐺(𝒯) is not 3-colorable but a 
symEF1 allocation does exist.
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CONCLUSIONS

Example: The valuation table below shows an instance in 
which a symEF1 allocation does not exist.

Goal: Perform a simulation study to approximate the density 
of symEF1 allocations while varying both m and the
valuations for the set of agents.

Verifying symEF1 allocations:

• The graph coloring condition cannot be used because the 
condition is sufficient but not necessary. Additionally, 
graph coloring is computationally expensive. To address 
this problem, we develop both an integer program as well 
as a heuristic.

Integer program: 
• 𝑥$*: binary variable representing that bundle 𝑘 ∈ [𝑛]

contains item 𝑗 ∈ 𝑚 .
• 𝑦#*%: binary variable denoting that item 𝑗 ∈ [𝑚] is 

removed by agent 𝑖 ∈ [𝑛] from bundle 𝑙 ∈ [𝑛].

Heuristic: As integer programs can be computationally 
expensive, we develop a heuristic for finding feasible 
solutions, which iteratively extends a partial symEF1 
allocation. At the end, either all items are assigned to bundles, 
or the heuristic returns “symEF1 allocation not found”.

We consider three simple cases for extending a partial 
allocation with an item 𝑗 not currently in a bundle:

Ø Case 1: add item j to an existing bundle;
Ø Case 2: add item j to a bundle after moving one item to 

another bundle;
Ø Case 3: add item j to a bundle after swapping items 

between two bundles.

Even for 𝑛 = 2 agents, the heuristic may fail.

Conjecture 1: If there exists a symEF1 allocation for n 
agents and 𝑚 > 𝑛 items, then there are at least two 
distinct symEF1 allocations.

In our simulation experiments, the proportion of symEF1 
instances increases rapidly with the number of items.

Conjecture 2: For any fixed number of agents n, as the 
number of items 𝑚 → ∞, the probability that this 
instance has a symEF1 allocation goes to 1.

While we have proved a sufficient condition for the 
existence of a symEF1 allocation, a symEFk allocation 
for 𝑘 > 1 has eluded us so far.

Conjecture 3: A symEF(𝑛 − 1) allocation always exists 
for any number of agents n and any number of items m.

We introduce the fairness concept of symmetrically 
fair allocations. A symEF1 allocation is appealing in 
many settings such as food aid and of theoretical 
interest due to the sheer strength of the requirement.

While symEF1 allocations are not always guaranteed 
to exist for more than two agents, it is surprising how 
often it does exist. Additionally, it is surprising it 
always exists for two agents.

Furthermore, the concept of symmetrical allocations 
has been useful for group fairness research, and future 
research would benefit from better connections to this 
and consensus splitting results.
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What provable guarantees exist for the envy of 
the agents?

…
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