

Selecting and Scheduling Cybersecurity Mitigations with Resource Constraints

Problem Setting

IT managers regularly face the challenging problem of deploying mitigations to improve cybersecurity. Mitigation selection challenges:

- Appropriately allocating resources over time to achieve security quickly and efficiently.
- Addressing precedence relations when implementing multiple mitigations.
- Prioritizing important vulnerabilities without sacrificing time-efficient overall coverage.

Problem

What is the best way to schedule the implementation of mitigations subject to resource, budget, and precedence constraints, to achieve maximal coverage of vulnerability nodes when covering a node multiple times gives diminishing returns?

Existing Model Limitations

• Mitigation selection [2]:

Provide ways to choose mitigations under this multiple-coverage notion, but do not consider deployment in resource-constrained settings.

• Resource Constrained Project Scheduling [1]: RCPSPs match our problem's scheduling structure, but cannot model the multiple-coverage objective.

IP Model

 \mathcal{T} set $\{1, ..., T\}$ of time periods $N \mid \text{set of nodes}$ set of jobs/mitigations set of resources R_{-} set of precedence relations P w_{jn} benefit of completing $j \in J$ on $n \in N$ time required to complete $j \in J$ cost per period of $r \in R$ for $j \in J$ C_{jr} cost of $j \in J$ for total budget C_i b_{rt} budget for $r \in R$ for period $t \in \mathcal{T}$ total budget (not time indexed) Bpiecewise-linear concave function for objective time-weighting coefficient for objective $lpha_t$ z_{nt} amount of coverage for $n \in N$ at time $t \in \mathcal{T}$. $x_{jt} = 1$ if job $j \in J$ finishes at time $t \in \mathcal{T}$, binary $\max \sum \sum \alpha_t f_n(z_{nt})$ $t=1 n \in N$ $\forall t \in \mathcal{T}, \ n \in N$ s.t. $z_{nt} \leq \sum \sum w_{jn} x_{js}$ $j \in J s = 1$ $\forall j \in J$ $\sum x_{jt} \le 1$ $\forall j \in J, t = 1, ..., \tau_j - 1$ $x_{jt} = 0$ $t+\tau_j-1$ $\sum_{j \in J} \sum_{s=t}^{J} c_{jr} x_{js} \le b_{rt}$ $\forall t \in \mathcal{T}, \ r \in R$ $\sum_{t=1} \sum_{j \in J} C_j x_{jt} \le B$ $\sum x_{js} \leq \sum x_{is}$ $\forall (i,j) \in P, t = 1, ..., T$ $x_{jt} \in \{0, 1\}$ $\forall j \in J, t \in \mathcal{T}$ $\forall n \in N, t \in \mathcal{T}$ $z_{nt} \ge 0$

Ashley Peper, Jim Luedtke, Laura A. Albert, Department of Industrial and Systems Engineering, University of Wisconsin - Madison

Benefit of Integrated Model

What if we don't combine coverage and scheduling?

We relax the notion of coverage by removing constraints with z, and using the objective

$$\max \sum_{j \in J} \sum_{t=1}^{T} a_t h_j x_{jt}$$

where h_i is some estimation of coverage provided by job j, and a_t is a time-weighting parameter.

2Select then Schedule (STS)

Ignore scheduling, choose jobs for best coverage. Then use an RCPSP to schedule these jobs.

Solving Large Instances

We propose a rolling horizon heuristic using an interval model derived from [1].

Interval Model

- Group time periods into a set of time intervals
- Provides a relaxation of our full model
- Schedules jobs into intervals, which we can use to schedule into time periods (*Int-fast*)

Rolling Horizon Heuristic (Int-roll)

- **1** Use interval model to find a solution.
- Fix some jobs at beginning of horizon.
- ³Repeat, fixing more jobs later into the horizon at each iteration.

Contact Info & Acknowledgements

Ashley Peper: apeper2@wisc.edu This work was in part funded by the National Science Foundation Award 2000986.

Computational Comparisons

• RCPSP and STS average 7% optimality gaps, showing benefit to an integrated model.

• *Int-roll* finds good solutions faster than other methods given a time limit.

- [1] Rodrigo A Carrasco, Diego Fuentes, and Eduardo Moreno. Approximation algorithm for resource- constrained project scheduling problems with net present value objective. arXiv preprint arXiv:2209.02029, 2022.
- [2] Kaiyue Zheng, Laura A Albert, James R Luedtke, and Eli Towle. A budgeted maximum multiple coverage model for cybersecurity planning and management. IISE Transactions, 51(12):1303-1317, 2019.