Sparse Learning

Sparse Learning: aim to build models that retain only key most informative features, discarding rest

- Important for interpretability and generalization performance
- \blacktriangleright Useful in settings where number of features (p) >> number of samples

$$\min_{\beta \in \mathbb{R}^p} \mathcal{L}(\beta) + \lambda \|\beta\|_2^2 + \mu \|\beta\|_0$$

$$\min_{\beta \in \mathbb{D}^n} \mathcal{L}(\beta) + \lambda \|\beta\|_2^2 \text{ s.t. } \|\beta\|_0 \le k.$$

Screening Rules only Screening + Logic Rules

Logic Rules for Sparse Learning

Anna Deza¹ Andrés Gómez² Alper Atamtürk¹

¹IEOR, University of California, Berkeley, CA, USA ²ISE, University of Southern California, Los Angeles, CA, USA

Logic Rules: A Preprocesing Step

Stage 0: Formulate sparse learning as a mixed integer program by introducing $z_i \in \{0, 1\}$ to model $z_i = 0 \Rightarrow \beta_i = 0.$

Applying Logic Rules is a two stage process:

Stage 1

Find logical relationships between pairs of features, equivalent to exclusivity constraints. Example:

> $z_1 + z_2 \le 1$ $z_1 + z_3 \le 1$ $z_2 + z_3 \le 1$ $z \in [0,1]^3$

Key: Our method only uses the solution to the relaxation of the problem

Key Takeaway

We propose a **general preprocessing** framework that generates inequalities that can be leveraged by mixed integer optimization solvers to speed up sparse learning computation.

- Inequalities identified are of a *special structure* that solvers leverage to **improve computation**
- . Proposed method is **efficient** due to the exploitation of an underlying structure (chordality) in the conflict graph generated by the inequalities
- Helps where screening rules are unsuccessful by **remaining effective** when relaxation **gaps are** large, while requiring negligible additional computation

Applications

Many applications: Encapsulates many learning models such as sparse regression, binary classification, multi-class logistic models.

Healthcare, Genomics, Finance, Image Sensing, Natural Language Processing, Climate Forecasting

Proposition: Safe Logic Rules for Regularized Learning

Let ζ_R be the relaxation objective value of (REG), α a value computed from its optimal solution, and ζ_u an upper bound. Then any optimal solution z to (REG) satisfies the following rule on the right given the corresponding condition holds.

Stage 2

Construct stronger inequalities implied by collection of constraints, equivalent to finding maximal cliques in a conflict graph. Example:

 $z_1 + z_2 + z_3 \le 1$ $z \in [0,1]^3$

Key: We exploit special structure to efficiently find all maximal cliques in $\mathcal{O}(p \log p)$

Condition	Logic Rule	
$\underline{\zeta_R} + \alpha_i + \alpha_j > \zeta_u$	$z_i + z_j \le 1$	
$\underline{\zeta_R} - \alpha_i - \alpha_j > \zeta_u$	$z_i + z_j \ge 1$	
$\underline{\zeta_R} + \alpha_i - \alpha_j > \zeta_u$	$z_i \leq z_j$	
$\underline{\zeta_R} - \alpha_i + \alpha_j > \zeta_u$	$z_i \ge z_j$	

- *double* what is observed for using screening alone.

- oweing to larger relaxation gaps.

We generate synthetic data with 1000 and 100 observations. $\overline{\mathfrak{o}}$ ¹⁶⁰⁰ We compare runtimes for solving (CARD) using screening rules alone and screening in conjunction with logic rules.

We vary noise levels (SNR) and regularization strength (λ) to show the regions in which logic rules add additional computation gains.

Real data experiments are done on genomic data with p = 4,088 and 71 observations.

SNR	λ	RGap %	Gurobi Runtime (s)	Gurobi + Screen Runime (s)	Gurobi + Screen + Logic Runtime (s)
0.05	1/10	47.4	1,572	1,574	981
	1/8	31.6	1,083	1,083	581
	1/4	7.5	761	4.1	3.8
	1/2	1.6	439	0.7	0.7
1.0	1/10	39.8	728	733	482
	1/8	28.5	715	505	266
	1/4	7.5	646	7.8	6.4
	1/2	1.5	386	0.6	0.6
6.0	1/10	25.5	684	276	57
	1/8	20.3	755	163	40
	1/4	6.0	605	1.0	1.0
	1/2	1.4	527	0.5	0.5
Average 18.2 741		362	202		

Key Computational Results

 \triangleright On synthetic data, observe 50% reduction in branch-and-bound nodes when using logic rules,

 \blacktriangleright Observe negligible improvement in runtimes when screening is highly effective (545 $\times \rightarrow$ 585 \times), but when screening fails observe $3 \times$ runtime speedup over Gurobi alone.

 \triangleright On real data experiments, logic rules provide $3 \times$ **speedup** over screening rules.

For real data instances which do not terminate within an hour time-limit logic rules give **better** optimality gaps of 13% vs 52%, coming from better solutions found within the limit.

Advantage over screening rules is in instances that are noisier and have weaker regularizing,

Computational Results Details