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Sparse Learning

Sparse Learning: aim to build models that retain only key most informative features, discarding rest

I Important for interpretability and generalization performance

I Useful in settings where number of features (p) >> number of samples

Example: Using genetic data to estimate health risk. Practitioners desire interpretability.

Dense Solution: Hard to interpret 7

Sparse Solution: Interpretable X

We build models by finding model coefficients β ∈ Rp that minimize loss function L(β).
Sparsity of model can be represented by ‖β‖0.

We consider regularized and cardinality constrained sparse learning

min
β∈Rp

L(β) + λ‖β‖2
2 + µ‖β‖0 (REG)

min
β∈Rp

L(β) + λ‖β‖2
2 s.t. ‖β‖0 ≤ k. (CARD)

Key challenge: exact sparsity penalty makes this NP-hard.

I Recent interest in using mixed-integer optimization techniques to solve to optimality

Background: Screening Rules

Safe screening [1]: Techniques that eliminate features guaranteed to not be in the optimal solution,

reducing the dimension of the problem before the full optimization step, improving solution times.

→ These methods use lower and upper bounds on optimal values to fix features

→ Effectiveness degrades when relaxation gaps are large.

Generalizing Screening: Logic Rules

I Idea: Instead of considering inclusion/exclusion of a single feature independently from the rest,

consider the logical relationships between groups of features as well.

Screening Rules only Screening + Logic Rules

Logic rules consider

I inclusion of a group of features,

I exclusion of a group of features,

I ranking of pairs of features

generalizing screening rules and are able

to handle larger gaps.

Logic Rules: A Preprocesing Step

Stage 0: Formulate sparse learning as a mixed integer program by introducing zi ∈ {0, 1} to model

zi = 0 ⇒ βi = 0.

Applying Logic Rules is a two stage process:

Stage 1

Find logical relationships between pairs of

features, equivalent to exclusivity constraints.

Example:

z1 + z2 ≤ 1
z1 + z3 ≤ 1
z2 + z3 ≤ 1
z ∈ [0, 1]3

Stage 2

Construct stronger inequalities implied by

collection of constraints, equivalent to finding

maximal cliques in a conflict graph.

Example:

z1 z2

z3
z1 + z2 + z3 ≤ 1
z ∈ [0, 1]3

Key: Our method only uses the solution to the

relaxation of the problem

Key: We exploit special structure to efficiently find

all maximal cliques in O(p log p)

Key Takeaway

We propose a general preprocessing framework that generates inequalities that can be leveraged

by mixed integer optimization solvers to speed up sparse learning computation.

1. Inequalities identified are of a special structure that solvers leverage to improve computation

2. Proposed method is efficient due to the exploitation of an underlying structure (chordality) in the

conflict graph generated by the inequalities

3. Helps where screening rules are unsuccessful by remaining effective when relaxation gaps are

large, while requiring negligible additional computation

Applications

Manyapplications: Encapsulates many learning models such as sparse regression, binary classification,

multi-class logistic models.

Healthcare, Genomics, Finance, Image Sensing, Natural Language Processing, Climate Forecasting

Proposition: Safe Logic Rules for Regularized Learning

Let ζR be the relaxation objective value of (REG), α a

value computed from its optimal solution, and ζu an

upper bound. Then any optimal solution z to (REG)

satisfies the following rule on the right given the

corresponding condition holds.

Condition Logic Rule

ζR + αi + αj > ζu zi + zj ≤ 1
ζR − αi − αj > ζu zi + zj ≥ 1
ζR + αi − αj > ζu zi ≤ zj

ζR − αi + αj > ζu zi ≥ zj

Key Computational Results

I On synthetic data, observe 50% reduction in branch-and-bound nodes when using logic rules,

double what is observed for using screening alone.

I Observe negligible improvement in runtimes when screening is highly effective (545× → 585×),

but when screening fails observe 3× runtime speedup over Gurobi alone.

I On real data experiments, logic rules provide 3× speedup over screening rules.

I For real data instances which do not terminate within an hour time-limit logic rules give better

optimality gaps of 13% vs 52%, coming from better solutions found within the limit.

I Advantage over screening rules is in instances that are noisier and have weaker regularizing,

oweing to larger relaxation gaps.

Computational Results Details

We generate synthetic data with

p = 1000 and 100 observations.

We compare runtimes for solving

(CARD) using screening rules alone and

screening in conjunction with logic rules.

We vary noise levels (SNR) and regular-

ization strength (λ) to show the regions

in which logic rules add additional

computation gains.

Real data experiments are done on ge-

nomic data with p = 4, 088 and 71 obser-
vations.

SNR λ RGap % Gurobi Runtime (s)
Gurobi + Screen

Runime (s)

Gurobi + Screen +

Logic Runtime (s)

0.05

1/10 47.4 1,572 1,574 981

1/8 31.6 1,083 1,083 581

1/4 7.5 761 4.1 3.8

1/2 1.6 439 0.7 0.7

1.0

1/10 39.8 728 733 482

1/8 28.5 715 505 266

1/4 7.5 646 7.8 6.4

1/2 1.5 386 0.6 0.6

6.0

1/10 25.5 684 276 57

1/8 20.3 755 163 40

1/4 6.0 605 1.0 1.0

1/2 1.4 527 0.5 0.5

Average 18.2 741 362 202
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