Integer points in polytopes are hard to find

Igor Pak, UCLA

Joint work with Danny Nguyen

May 24, 2023

Link to my website.

Mixed Integer

Programming

@USC

Plan of the talk:

- 1) Previous work
- 2) Short story
- 3) Our results
- 4) Applications

Integer Programming in Fixed Dimension

Theorem (Lenstra, 1983) In \mathbb{R}^d , dimension d fixed, IP $\in \mathsf{P}$: (IP) $\exists \mathbf{x} \in \mathbb{Z}^d : A\mathbf{x} \leq \overline{b}$.

Theorem (Barvinok, 1993) In \mathbb{R}^d , dimension d fixed, $\#IP \in \mathsf{FP}$: $(\#IP) \qquad \#\{\mathbf{x} : A\mathbf{x} \leq \overline{b}\}.$

Note: The system can be *long* here (i.e. has unbounded size)

Proof ideas: 1) Geometry of numbers (flatness theorem), lattice reduction (LLL).

2) Brion–Verge generating function approach, cone subdivisions, combinatorial tools.

Parametric Integer Programming

Theorem (Kannan, 1990) For all dimensions d, k fixed, PIP $\in \mathsf{P}$: (PIP) $\forall \mathbf{y} \in Q \cap \mathbb{Z}^k \ \exists \mathbf{x} \in \mathbb{Z}^d : A\mathbf{x} + B\mathbf{y} \leq \overline{b}$.

Theorem (Barvinok–Woods, 2003) For all dimensions d, k fixed, $\#PIP \in FP$: $(\#PIP) \quad \#\{\mathbf{y} \in Q \cap \mathbb{Z}^k \ \exists \mathbf{x} \in \mathbb{Z}^d : A\mathbf{x} + B\mathbf{y} \leq \overline{b}\}.$

Let $P \subset \mathbb{R}^d$ be a convex polytope given by $A\mathbf{x} \leq \overline{b}$. Say, d = 3.

Can one compute #E(P) – the number of integer points in P? (Yes!)

Translation: These are $E(Q) \subseteq_{?} E(P) \downarrow$ and $\#[E(Q) \cap E(P) \downarrow]$.

Generalized Integer Programming

Open Problem (Kannan, 1990) Is GIP $\in \mathsf{P}$ for all dimensions d, k, ℓ fixed? (GIP) $\exists \mathbf{z} \in R \cap \mathbb{Z}^{\ell} \ \forall \mathbf{y} \in Q \cap \mathbb{Z}^{k} \ \exists \mathbf{x} \in \mathbb{Z}^{d} : A\mathbf{x} + B\mathbf{y} + C\mathbf{z} \leq \overline{b}.$

Conjecture (Woods, 2003): This problem is in P.

A story:

- 1) Barvinok complained he cannot solve GIP
- 2) He complained again, and again
- 3) I suggested in might not be in P
- 4) He begged "take me out of this misery!"
- 5) I laughed and ignored him
- 6) He asked again, and again
- 7) Danny and I made it happen

First attempt:

STOC 2017 Accepted Papers

RESEARCH-ARTICLE

• Short Presburger arithmetic is in P Danny Nguyen, Igor Pak

Authors: Danny Nguyen, Igor Pak Authors Info & Claims

Complexity of short Presburger arithmetic

Theorem (Nguyen–P., STOC'17) KPT implies that $GIP \in P$.

KPT = Kannan's Partition Theorem (1990) is the Main Lemma in the proof of Kannan's PIP Theorem.

Second attempt:

Theorem (Nguyen–P., CCC'17)

For dimensions $d \ge 3, k, \ell \ge 1$ fixed, LONG–GIP is NP-complete.

The corresponding counting version #Long-GIP is #P-complete.

Theorem (Nguyen–P., CCC'17) For $P, Q \in \mathbb{R}^3$, computing $\#[E(P \smallsetminus Q) \downarrow_x]$ is #P-complete.

Third Attempt:

Theorem (Nguyen–P., FOCS'17)

Problem GIP is NP-complete.

Problem #GIP is #P-complete.

Notes: This is stronger than our CCC theorem.

With STOC theorem we have: $\text{KPT} \Rightarrow P = NP$.

Theorem (Nguyen–P., FOCS'17)

KPT theorem is false.

Note: Kannan's PIP and Barvinok–Woods #PIP theorems remain true, see [Eisenbrand'03] and [Eisenbrand–Shmonin'08].

First application: bilevel optimization

Theorem 1.6. Given a rational interval $J \subset \mathbb{R}$, a rational polytope $W \subset \mathbb{R}^5$ and a quadratic rational polynomial $h : \mathbb{R}^6 \to \mathbb{R}$, computing: $\max_{z \in J \cap \mathbb{Z}} \min_{\mathbf{w} \in W \cap \mathbb{Z}^5} h(z, \mathbf{w})$ (1.1)is NP-hard. This holds even when W has at most 18 facets. Polynomial objective function $\min\{f^d(x) : x \in P \cap \mathbb{Z}^n\}$ f^d is a polynomial of degree at most d*n* = 2 *n* = 58 n fixed n = 1n general Integer Quadratic Programming in the Plane d = 1Ρ P^a NPH^b Ρ Ρ Ρ ? d = 2? NPH ? 2 ? Alberto Del Pia Robert Weismantel d = 3Ρ NPH NPH^c Und^d June 2, 2014 Ρ Und d = 4Und

Second application: Pareto optima

Definition: [*Pareto minimum*]

Given polytope $Q \subset \mathbb{R}^n$ and functions $f_1, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}$ restricted to $Q \cap \mathbb{Z}^n$.

For $\mathbf{x} \in Q \cap \mathbb{Z}^n$, vector $\mathbf{y} = (f_1(\mathbf{x}), \dots, f_k(\mathbf{x}))$ is called a *Pareto minimum* if:

• there is no other point $\widetilde{\mathbf{x}} \in Q \cap \mathbb{Z}^n$ and $\widetilde{\mathbf{y}} = (f_1(\widetilde{\mathbf{x}}), \dots, f_k(\widetilde{\mathbf{x}}))$, such that $\widetilde{\mathbf{y}} \leq \mathbf{y}$ coordinate-wise and $\widetilde{\mathbf{y}} \neq \mathbf{y}$.

The goal: For the *objective function* $g : \mathbb{R}^k \to \mathbb{R}$, minimize $g(\mathbf{y})$ over all Pareto minima \mathbf{y} of (f_1, \ldots, f_k) on Q.

Theorem 1.7. Given a rational polytope $Q \subset \mathbb{R}^6$, two rational linear functions $f_1, f_2 : \mathbb{R}^6 \to \mathbb{R}$, a rational quadratic polynomial $f_3 : \mathbb{R}^6 \to \mathbb{R}$, and rational linear objective function $g : \mathbb{R}^3 \to \mathbb{R}$, computing the minimum of g over the Pareto minima of (f_1, f_2, f_3) on Q is NP-hard. Moreover, the corresponding 1/2-approximation problem is also NP-hard. This holds even when Q has at most 38 facets.

