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Plan of the talk:

1) Previous work
2) Short story
3) Our results
4) Applications




Integer Programming in Fixed Dimension

Theorem (Lenstra, 1983) In RY, dimension d fixed, IP € P:
(IP) 3IxecZ*: Ax < b.

Theorem (Barvinok, 1993) In R¢, dimension d fixed, #IP € FP:
(#1P) #{x : Ax < b}.

Note: The system can be long here (i.e. has unbounded size)

Proof ideas: 1) Geometry of numbers (flatness theorem), lattice reduction (LLL).

2) Brion—Verge generating function approach, cone subdivisions, combinatorial tools.



Parametric Integer Programming

Theorem (Kannan, 1990) For all dimensions d, k fixed, PIP € P:
(PIP) VyeQnZzZ' 3xeZ’: Ax + By < b.

Theorem (Barvinok—Woods, 2003) For all dimensions d, k fixed, #PIP € FP:
(#PIP)  #{yeQ@QnZ' 3xeZ': Ax + By < b}.

Let P C R? be a convex polytope given by Ax < b. Say, d = 3.

Can one compute #E(P) — the number of integer points in P? (Yes!)

Translation: These are E(Q) C, E(P)] and #|E(Q) NE(P)l].



Generalized Integer Programming

Open Problem (Kannan, 1990) Is GIP € P for all dimensions d, k, ¢ fixed?
(GIP) 3JzeRNZ' ' VyeQnZF 3xeZ?: Ax + By + Cz < b.

Conjecture (Woods, 2003): This problem 1s in P.



A story:

1) Barvinok complained he cannot solve GIP
2) He complained again, and again

3) I suggested 1n might not be in P

4) He begged “take me out of this misery!”

5) I laughed and 1gnored him | I im
6) He asked again, and again 2 ,gﬂ"’""""@unf;;g:;!';‘""’"HT"f"":f‘fi!%ff'i‘!ﬁn T
7) Danny and I made it happen
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First attempt:
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Theorem (Nguyen—P., STOC’17) KPT implies that GIP € P.

KPT = Kannan’s Partition Theorem (1990) is the Main Lemma
in the proof of Kannan’s PIP Theorem.



Second attempt:

Theorem (Nguyen-P., CCC’17)
For dimensions d > 3, k,/ > 1 fixed, LONG—GIP is NP-complete.
The corresponding counting version #LONG—GIP is #P-complete.

Theorem (Nguyen—P., CCC’17)
For P, Q € R?, computing # [E(P N Q) J,m] is #P-complete.




Third Attempt:

Theorem (Nguyen—P., FOCS’17)
Problem GIP is NP—complete.
Problem #GIP is #P—complete.

Notes: This is stronger than our CCC theorem.
With STOC theorem we have: KPT = P = NP.

Theorem (Nguyen—P., FOCS’17)
KPT theorem is false.

Note: Kannan’s PIP and Barvinok—Woods #PIP theorems remain true,

see |Eisenbrand’03] and [Eisenbrand-Shmonin’08].



First application: bilevel optimization

Theorem 1.6. Given a rational interval J C R, a rational polytope W C R® and a quadratic

rational polynomial h : R® — R, computing:

(1.1)

max
zeJNZ

min
weWNZ>

h(z, w)

1s NP-hard. This holds even when W has at most 18 facets.

Polynomial objective function

min{f9(x)

f9 is a polynomial of degree at most d
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Second application: Pareto optima

Definition: [Pareto minimum)|
Given polytope () C R" and functions fi,..., fi : R® — R restricted to Q N Z".
For x € QNZ", vector y = (f1(x), ..., [x(x)) is called a Pareto minimum if:

e there is no other point x € QN Z" and y = (f1(X),..., fxr(X)),
such that y <y coordinate-wise and y #y.

The goal: For the objective function g : R¥ — R,

minimize ¢g(y) over all Pareto minima y of (f1,..., fx) on Q.

Theorem 1.7. Given a rational polytope Q@ C R®, two rational linear functions fi, fo :
R® — R, a rational quadratic polynomial fs : R® — R, and rational linear objective function
g : R? = R, computing the minimum of g over the Pareto minima of (f1, fo, f3) on Q is
NP-hard. Moreover, the corresponding 1/2-approximation problem is also NP-hard. This
holds even when () has at most 38 facets.




Thank you!




