
Matrix Completion over GF(2) with Applications to Index
Coding

Akhilesh Soni Jeff Linderoth

Jim Luedtke
needs a haircut

Daniel
Pimentel-
Alarcón

Department of Industrial and Systems Engineering
Department of Biostatistics and Medical Informatics

University of Wisconsin-Madison

MIP 2023 USC May 22, 2023

Research Supported by American Family Insurance
Soni et. al (UW ISyE) MC-GF2 MIP 1 / 45



Apologies If You Were at ICERM
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Apology Sonnet
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Outline

Matrix completion

Binary matrix factorization and
completion

Index coding

Three IP Formulations
1 McCormick + Integer Variable
2 McCormick + Parity Disjunction
3 McCormick-Free

A Few New Results!

Less than impressive computational
results
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Jeff Wants In On The Action
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Low-Rank Matrix Completion: Netflix Problem

There exists a matrix X ∈ Rd×n whose entries are only known for a
fraction of the elements Ω ⊂ [d]× [n]

To complete the matrix, we must assume some structure.

Here we assume X is low-rank: X = UV for some U ∈ Rd×r,
V ∈ Rr×n
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0-1 Matrix Completion?

In some earlier work sponsored by American Family, we did a
combination of matrix completion and clustering—Subspace
clustering with missing data

They asked us to try it out on their data matrix—which was a 0-1
matrix (?!)

Well, Duh!?!

Doing “normal” low-rank matrix completion methods in R, are not
going to give 0-1 values for the missing entries

What to do?

Don’t do it over R.
What about Boolean Algebra, Logical Or, (1+ 1 = 1)— natural
for revealing “low-dimensional” characteristics
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Boolean Algebra: 1+1 = 1

X =

Simge Jim Jeff Long Hair 1 1 0

Loves MIP 1 1 1

Cheesehead 0 1 1

Two Groups of People, Two Traits

Simge and Jim have long hair and love MIP

Jim and Jeff love MIP and are cheeseheads
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Two Factors

X =

Simge Jim Jeff[ ]Long Hair 1 1 0

Loves MIP 1 1 1

Cheesehead 0 1 1

=

T1 T2[ ]1 0

1 1

0 1

◦
Simge Jim Jeff[ ]

1 1 0

0 1 1

Writing X = ∨r
k=1u

k(vk)⊤ reveals the fundamental “traits”, and
classifies individuals depending on which traits they have

So we started working on integer programming approaches to matrix
factorization and completion in Boolean algebra
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I Hate This Guy

Oktay Ruined It—Nothing Left To Do

IP Formulations

Strong Formulations

Column Generation Approaches.

F2?
1+ 1 = 0
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Binary Matrix Factorization/Completion

Matrix Factorization

Boolean: Find smallest r such that X = ∨r
k=1u

k(vk)⊤, where
uk ∈ {0, 1}d, vk ∈ {0, 1}n. This is hard

F2: Find smallest r such that X = ⊕r
k=1u

k(vk)⊤, where
uk ∈ {0, 1}d, vk ∈ {0, 1}n. This is easy

Matrix Completion. Given Ω ⊂ [d]× [n], Xij ∈ {0, 1} ∀ij ∈ Ω, r ∈ Z+

Find uk ∈ {0, 1}d, vk ∈ {0, 1}n to min ∥Xij −∨r
k=1u

k(vk)⊤)∥Ω.
This is hard.

Find uk ∈ {0, 1}d, vk ∈ {0, 1}n to min ∥Xij −⊕r
k=1u

k(vk)⊤)∥Ω.
This is hard.
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An Honest To God Quotation.

“Matrix Completion in F2?!?!
Why on earth would anyone want

to solve that problem?”
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Index Coding (with Side Information)

We have a collection of n messages/packets, each in {0, 1}t, and a
collection of n receivers.

Each receiver wants to know one of the messages
Each receiver “knows” (has cached) some subset of the packets—Just
not the one it wants to know

Central broadcaster knows which packets are cached at each receiver

Index Coding

Broadcast a minimum number of messages so that each receiver can
recover/compute its message using their local information

Intuition

Send a basis of “known” information ⇒ each receiver can compute their
own message. Min rank is minimum number of messages
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Index Coding: Example

Has
Receiver Messages

1 2,5
2 1,5
3 2,4
4 2,3
5 1,3,4

X =

R1 R2 R3 R4 R5


M1 1 − 0 0 −
M2 − 1 − − 0

M3 0 0 1 − −
M4 0 0 − 1 −
M5 − − 0 0 1

X =


1 1 0 0 1

1 1 1 1 0

0 0 1 1 1

0 0 1 1 1

1 1 0 0 1

 =


1 0

1 1

0 1

0 1

1 0


[
1 1 0 0 1

0 0 1 1 1

]

Broadcast two messages: (M1 + M2 + M5, M2 + M3 + M4)

All receivers can reconstruct their desired message
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Matrix Completion in F2?—State of the Art?

No exact method in literature for matrix completion in F2 (!?)

Heuristic pruning-based enumeration method in Esfahanizadeh,
Lahuoti, and Hassibi, able to find (known) min rank solution for 7 by
7 instance every time in around 1 second.

For 14 by 14 instance, in 30 min, they (sometimes) find rank 5
solution, sometimes find rank 6 solution.

MIP People Do It Exactly
Or at least up to floating point accuracy?

We aim to build first(?) exact solver for this class of problems
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Formulations for Matrix Completion in F2

Some sets we will use

I := {(u, v, z) ∈ {0, 1}2r+1 | z = ⊕r
k=1ukvk}

P := {(y, z) ∈ {0, 1}r+1 | z = ⊕r
k=1yk}

M := {(u, v, y) ∈ {0, 1}3r | yk = ukvk ∀k ∈ [r]}

Note that proju,v,z(P ∩M) = I1

Matrix Completion in F2:

min
∑

(ij)∈Ω

|Xij − zij|

(ui, vj, zij) ∈ Iij ∀ij ∈ Ω

Note that ui, vj ∈ {0, 1}r

1Notation Abuse!
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Writing M as MIP

Everyone (at least at this meeting) knows how to write M as the set
of {0,1}-points inside a polyhedron. (M is for McCormick.)

M = {(u, v, y) ∈ {0, 1}3r | yk ≤ uk, yk ≤ vk, yk ≥ uk+vk−1 ∀k ∈ [r]}

Oktay told me that

LP(M) := {(u, v, y) ∈ [0, 1]3r | yk ≤ uk, yk ≤ vk

yk ≥ uk + vk − 1 ∀k ∈ [r]} = conv(M)

It is also true (by separability) that

conv(P ∩M) = conv(P) ∩ conv(M).
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Writing P as MIP

Consider the general integer set:

Z := {(y, z, t) ∈ {0, 1}r+1 × Z |

r∑
k=1

yk − 2t = z}

It is easy to see that Z = P
So we have our “first” MILP formulation for matrix completion in F2:

min
∑

(ij)∈Ω

|Xij − zij|

(ui, vj, yij) ∈ Mij ∀ij ∈ Ω

(yij, zij, tij) ∈ Zij ∀ij ∈ Ω
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Computational Experiments

X ∈ {0, 1}10×10 will have F2-rank 4.

Use MIP formulation to find “closest” rank r matrix for r ≤ 4

Let Ω be all matrix elements, and then start to (randomly) remove a
fraction of the entries
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Computational Results

% Missing Rank Time Nodes Opt
0 1 0.05 1 36
0 2 41.81 70237 24
0 3 7184.56 10437394 12
0 4 0.49 1 0

10 1 0.03 1 31
10 2 14.04 27757 17
10 3 320.59 996422 7
10 4 0.03 1 0

20 1 0.01 1 26
20 2 2.91 5872 14
20 3 4106.07 13393830 8
20 4 2.55 2430 0

Results are a Pig!

460 binary vars, 100 integer vars > 10M nodes?
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Improving The Pig

The LP relaxation of the parity condition:

LP(Z) := {(y, z, t) ∈ [0, 1]r+1 × R+ | 2t =

r∑
i=1

yi − z}

is very far from the convex hull of the true parity conditions:

projyz LP(Z) ⊂ conv(P)

But lots is known about how to model parity conditions
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Parity Polyhedra

PE = conv{x ∈ {0, 1}n |

n∑
i=1

xi is even }

PO = conv{x ∈ {0, 1}n |

n∑
i=1

xi is odd }

PE = {x ∈ [0, 1]n |
∑
i∈S

xi −
∑
i ̸∈S

xi ≤ |S|− 1, ∀ odd S ⊂ [n]}

PO = {x ∈ [0, 1]n |
∑
i∈S

xi −
∑
i ̸∈S

xi ≤ |S|− 1, ∀ even S ⊂ [n]}

There are also small (even linear-size) extended formulations for PE
and PO

From these, and using disjunctive programming, we can give an
extended formulation for conv(P)
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One Extended Formulation for conv(P)

Let D ∈ [0, 1]3r+1 be the set of points satisfying bound constraints
and the inequalities∑

k∈S
yo
k −

∑
k/∈S

yo
k ≤ (|S|− 1)z ∀ even S ⊆ [r]

∑
k∈S

ye
k −

∑
k/∈S

ye
k ≤ (|S|− 1)(1− z) ∀ odd S ⊆ [r]

yk = yo
k + ye

k ∀k ∈ [r]

yo
k ≤ z ∀k ∈ [r]

ye
k ≤ 1− z ∀k ∈ [r]

Thms:

conv(P) = projy,zD conv(P ∩M) = D ∩ LP(M) = conv(I)
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MIP Formulation 2: LipStick on the Pig

min
∑

(ij)∈Ω

|Xij − zij|

(ui, vj, yij) ∈ Mij ∀(ij) ∈ Ω

(yij, yo,ij, ye,ij, zij) ∈ Dij ∀(ij) ∈ Ω

zij ∈ {0, 1} ∀ij ∈ Ω
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MIP1 (Pig) v. MIP2 (Pig w/Lipstick)

MIP % Missing Rank Time Nodes Opt
1 0 2 41.81 70237 24
2 0 2 9.42 13746 24
1 0 3 7184.56 10437394 12
2 0 3 2137.15 1272534 12

1 10 2 14.04 27757 17
2 10 2 6.63 20296 17
1 10 3 320.59 996422 7
2 10 3 357.02 353021 7

1 20 2 2.91 5872 14
2 20 2 3.64 8927 14
1 20 3 4106.07 13393830 8
2 20 3 2199.89 2366186 8
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Team Reactions

“Why do you all keep talking about
putting lipstick on a pig?”

“Aunque la mona se vista de seda,
mona se queda”

(You can dress a monkey in silk, but it’s still a
monkey)
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Keep Trying—Let’s Get That Monkey

Can we directly model the set

I = {(u, v, z) ∈ {0, 1}2r+1 | z = ⊕r
k=1ukvk}

without using auxiliary variables?

Yes! Let T be the set of all tri-partitions of [r]

T := {S ⊆ [r], Q ⊆ [r], T ⊆ [r] | S ∪Q ∪ T = [r]

S ∩Q = ∅, S ∩ T = ∅, Q ∩ T = ∅}

Consider families of inequalities

z+ u(S) + v(S) − u(Q) − v(T) ≤ 2|S| ∀(S,Q, T) ∈ T, |S| even (1)

z− u(S) − v(S) + u(Q) + v(T) ≥ 1− 2|S| ∀ (S,Q, T) ∈ T, |S| odd (2)
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Where Do They Come From?

We found them via facet-hunting with PORTA, but they can be
derived as follows:

Choose an index i ∈ [r] and create a tri-partition of [r] \ i, fixing

S := {i | ui = vi = 1}

Q := {i | ui = 0}

T := {i | vi = 0}

If |S| is even, then feasible points on face of I satisfy z = uivi ⊕ 0

The inequality z ≥ ui + vi − 12 is facet-defining for this face

Lifting

ui + vi − z+
∑
k∈S

αk(1− uk) +
∑
k∈S

βk(1− vk) +
∑
k∈Q

αkuk +
∑
k∈T

βkvk ≤ 1

Gives (2)
2Hello Dr. McCormick
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Derivation, Continued

If |S| is odd, the feasible points on face of I satisfy z = uivi ⊕ 1

The inequality z ≤ 2− ui − vi is facet-defining for this face

Lifting

ui + vi + z+
∑
k∈S

αk(1− uk) +
∑
k∈S

βk(1− vk) +
∑
k∈Q

αkuk +
∑
k∈T

βkvk ≤ 2

Gives (1)

Can also get the inequalities (1) from (2) by the transformation
z → 1− z.

When lifting, it suffices to consider the face with remainder (fixed)
term 0.
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Theorems

Theorem

These (exponentially many in r) inequalities give a direct
formulation of I:

F = {(u, v, z) ∈ {0, 1}2r+1 | (1), (2)}

All inequalities are necessary

“Theorem” (from ICERM)

The LP relaxation of the set is the convex hull

conv(I) = {(u, v, z) ∈ [0, 1]2r+1 | (1), (2)}

“Theorem” because Jim hasn’t proved it yet
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“Theorem” No More!

Akhilesh rose to the challenge, and proved the result, but it was more
challenging than we expected.

Proof Mechanism

For arbitrary objective function, construct an integer-valued
feasible solution to the primal and a feasible solution to the dual of
the same objective value.

max
(u,v,z)∈[0,1]2r+1

{c⊤u+ d⊤v+ fz | (1), (2)} (P)
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Dual LP

min
∑

(S,Q,T)∈T

2|S|πSQT −
∑

(S,Q,T)∈T:

|S| odd

πSQT +

r∑
i=1

µi +

r∑
i=1

ηi + γ (D)

∑
(S,Q,T)∈T:
|S| even

πSQT −
∑

(S,Q,T)∈T:

|S| odd

πSQT + γ ≥ f

∑
(S,Q,T)∈T:

S∋i

πSQT −
∑

(S,Q,T)∈T:
Q∋i

πSQT + µi ≥ ci ∀i ∈ [r]

∑
(S,Q,T)∈T:

S∋i

πSQT −
∑

(S,Q,T)∈T:
T∋i

πSQT + ηi ≥ di ∀i ∈ [r]

πSQT ≥ 0 ∀(S,Q, T) ∈ T

µi, ηi ≥ 0 ∀i ∈ [r]

γ ≥ 0
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Proof: |C+ ∩D+| odd

WLOG, assume f > 0.

Define

C+ := {k : ck ≥ 0}

C− := {k : ck < 0}

D+ := {k : dk ≥ 0}

D− := {k : dk < 0}

ûC+ = 1, ûC− = 0, v̂D+ = 1, v̂D− = 0, ẑ = 1 is optimal solution to (P)
with value c(C+) + d(D+) + f.

π̂ = 0, γ = f, µ̂C+ = cC+ , µ̂C− = 0, η̂D+ = dD+ , η̂D− = 0 is feasible
solution to (D) with value c(C+) + d(D+) + f

That Was Easy!
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Proof: |C+ ∩D+| Even

Either ẑ = 1, wherein

Either uk or vk in C+ ∩D+, or
uk in C− ∩D+, or
vk in C+ ∩D−, or
Both uk and vk in C− ∩D−

flip their “obvious” value to lose ∆ while gaining f > ∆ in the
objective

Or ẑ = 0, in which case f < ∆ for all these potential elements to flip.

Constructing a dual feasible solution (requiring πSQT > 0) for all these
cases (when ẑ = 1) is a tricky, four-page exercise left to the reader.
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MIP Formulation 3—Monkey In Silk

min
∑

(ij)∈Ω

|Xij − zij|

(ui, vj, zij) ∈ Iij ∀(ij) ∈ Ω
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Computational Results

MIP % Missing Rank Time Nodes Opt
1 0 2 41.81 70237 24
2 0 2 9.42 13746 24
3 0 2 5.00 12588 24
1 0 3 7184.56 10437394 12
2 0 3 2137.15 1272534 12
3 0 3 1765.4 1962326 12
1 10 2 14.04 27757 17
2 10 2 6.63 20296 17
3 10 2 3.65 22560 17
1 10 3 320.59 996422 7
2 10 3 357.02 353021 7
3 10 3 188.81 332773 7
1 20 2 2.91 5872 14
2 20 2 3.64 8927 14
3 20 2 4.28 3357 14
1 20 3 4106.07 13393830 8
2 20 3 2199.89 2366186 8
3 20 3 381.94 645413 8
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Discussion

Frankly, the computational results are not where we want them to be.

We can now only “reliably” solve linear index coding problems of sizes
up to around 12 by 12.

And worse, the “monkey in silk” formulation or the “pig in lipstick
formulation” aren’t typically much better than the “pig” formulation

A Word on Separation

We don’t do it—Our computational results (to this point) just
explicitly enumerate all inequalities

However, separation of the SQT inequalities is “trivial” (linear
time/greedy)
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Can we do more?

MIP3 (Silk Monkey) formulation is

(ui, vj, zij) ∈ conv(Iij) ∀(ij) ∈ Ω

(ui, vj, zij) ∈ {0, 1}dr+rn+|Ω|

We know the intersection of the convex hulls

If it were only true that

conv
(
∩ij∈Ω Iij

)
= ∩ij∈Ω conv(Iij)

we wouldn’t need integer variables.
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Next Steps: Two Rows of U

T = {(u,w, v, zu, zw) ∈ {0, 1}3r+2 | zu = ⊕r
k=1ukvk, zw = ⊕r

k=1wkvk}
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LOTS of Inequalities: Monkey+Pig
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Monkey + Pig Inequalties: Basic Idea

Pick two indices {i, j} ∈ [r] and make two tri-partitions of
[r] \ {i, j}, (Su, Qu, T) and (Sw, Qw, T), with |Su|, |Sw| even.

Fix variables

ui = vi = 1 ∀i ∈ Su

ui = 0 ∀i ∈ Qu

vi = 0 ∀i ∈ T

wi = vi = 1 ∀i ∈ Sw

wi = 0 ∀i ∈ Qw

to give the face

zu = uivi ⊕ ujvj

zw = wivi ⊕wjvj
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Interesting Families

Accounting for the symmetries where we swap (i ↔ j) or (u ↔ w)
there are four fundamental “interesting” families of inequalities,
involving both zu and zw

(1− ui) + vj + zu + (1− zw) ≥ 1

(1− ui) + (1− uj) + (1−wi) + (1−wj) + (1− zu) + zw ≥ 1

(1− ui) + (1− uj) + vi + vj + zu + 2(1− zw) ≥ 2

(1− ui) + (1− uj) + 2(1−wi) + (1− vi) + vj + (1− zi) + 2zj ≥ 2

Lifting each of these gives exponentially-large new families of facet-defining
inequalities for the set T .
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Hard At Work—Remaining Items

Work out separation and implement
new inequalities for T
Improved computational results?

Write it up.

Akhilesh has < 3 months to get it all
done!
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Any Questions?

Three MIP Formulation for Matrix Completion in F2

Ideas for convexifying inner products in F2
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Another ChatGPT Apology Limerick
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