Matrix Completion over GF(2) with Applications to Index Coding

AKHILESH SONI

Jeff Linderoth

JIM LUEDTKE

Daniel Pimentel-Alarcón

1/45

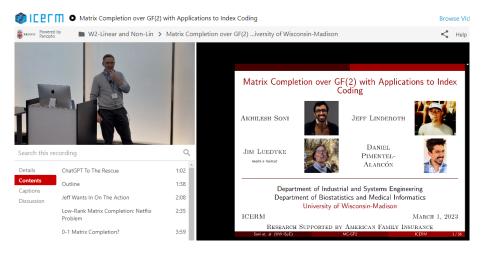
Department of Industrial and Systems Engineering
Department of Biostatistics and Medical Informatics
University of Wisconsin-Madison

MIP 2023 USC MAY 22, 2023

RESEARCH SUPPORTED BY AMERICAN FAMILY INSURANCE

Soni et. al. (UW ISyE) MC-GF2 MIP

Apologies If You Were at ICERM



Apology Sonnet

To those who've witnessed my words' repetition, I humbly kneel, seeking your forgiveness true. For in this moment's time and its rendition, I apologize for presenting the déjà vu.

Though echoes of past thoughts may fill the air, And familiarity lingers in the room, I strive to offer something fresh and rare, To banish any sense of lingering gloom.

With newfound insight and renewed inspiration, I promise to deliver a different voice,

To honor your time, your valued attention,

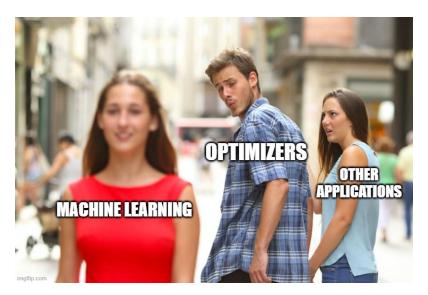
And grant you a reason to rejoice.

So, please accept my sincere apology, As I endeavor to bring novelty.

Outline

- Matrix completion
- Binary matrix factorization and completion
- Index coding
- Three IP Formulations
 - McCormick + Integer Variable
 - McCormick + Parity Disjunction
 - McCormick-Free
- A Few New Results!
- Less than impressive computational results

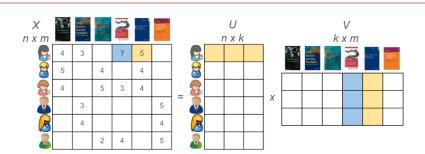
Jeff Wants In On The Action



5 / 45

Low-Rank Matrix Completion: Netflix Problem

- There exists a matrix $X \in \mathbb{R}^{d \times n}$ whose entries are only known for a fraction of the elements $\Omega \subset [d] \times [n]$
- To complete the matrix, we must assume some structure.
- \bullet Here we assume X is low-rank: X=UV for some $U\in\mathbb{R}^{d\times r},$ $V\in\mathbb{R}^{r\times n}$



6/45

0-1 Matrix Completion?

- In some earlier work sponsored by American Family, we did a combination of matrix completion and clustering—Subspace clustering with missing data
- They asked us to try it out on their data matrix—which was a 0-1 matrix (?!)

Well, Duh!?!

• Doing "normal" low-rank matrix completion methods in \mathbb{R} , are *not* going to give 0-1 values for the missing entries

What to do?

- Don't do it over \mathbb{R} .
- What about Boolean Algebra, Logical Or, (1 + 1 = 1)— natural for revealing "low-dimensional" characteristics

Soni et. al (UW ISyE) MC-GF2 MIP 7 / 45

Boolean Algebra: 1+1=1

$$X = \begin{bmatrix} \text{Long Hair} \\ \text{Loves MIP} \\ \text{Cheesehead} \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Two Groups of People, Two Traits

- Simge and Jim have long hair and love MIP
- Jim and Jeff love MIP and are cheeseheads

Two Factors

- Writing $X = \bigvee_{k=1}^r u^k (v^k)^\top$ reveals the fundamental "traits", and classifies individuals depending on which traits they have
- So we started working on integer programming approaches to matrix factorization and completion in Boolean algebra

Soni et. al (UW ISyE) MC-GF2 MIP 9/45

Binary Matrix Factorisation and Completion via Integer Programming

Oktay Günlük Cornell University, ong5@cornell.edu

Raphael A. Hauser, Réka Á. Kovács

University of Oxford, The Alan Turing Institute, hauser@maths.ox.ac.uk, reka.kovacs@maths.ox.ac.uk

Binary matrix factorisation is an oscential roof for descripting discrete patterns in binary data. In this paper we consider the nather binary matrix factorisation problems (1-80H) moder Problem an matrix of the possibility material problems (1-80H) moder Problems instruction as an area binary matrix N with possibly missing entries and need to find two binary matrics N and B of dimension n N and N of the mission in the final content of the problems of the probl

Key words: binary matrix factorisation, binary matrix completion, column generation, integer programming

MSC2000 subject classification: 90C10 OR/MS subject classification: Integer Programming

Oktay Ruined It—Nothing Left To Do

- IP Formulations
- Strong Formulations
- Column Generation Approaches.

 \mathbb{F}_2 ?

1 + 1 = 0

Binary Matrix Factorization/Completion

Matrix Factorization

- Boolean: Find smallest r such that $X = \bigvee_{k=1}^r u^k (v^k)^\top$, where $u^k \in \{0,1\}^d, v^k \in \{0,1\}^n$. This is hard
- \mathbb{F}_2 : Find smallest r such that $X = \bigoplus_{k=1}^r u^k (v^k)^\top$, where $u^k \in \{0,1\}^d, v^k \in \{0,1\}^n$. This is easy

Matrix Completion. Given $\Omega \subset [d] \times [n]$, $X_{ij} \in \{0,1\} \ \forall ij \in \Omega$, $r \in \mathbb{Z}_+$

- Find $u^k \in \{0,1\}^d, v^k \in \{0,1\}^n$ to $\min \|X_{ij} \bigvee_{k=1}^r u^k (v^k)^\top)\|_{\Omega}$. This is hard.
- Find $u^k \in \{0,1\}^d, v^k \in \{0,1\}^n$ to $\min \|X_{ij} \oplus_{k=1}^r u^k (v^k)^\top)\|_{\Omega}$. This is hard.

Soni et. al (UW ISyE) MC-GF2 MIP 11 / 45

An Honest To God Quotation.

"Matrix Completion in \mathbb{F}_2 ?!?! Why on earth would anyone want to solve that problem?"

Index Coding (with Side Information)

- We have a collection of n messages/packets, each in $\{0, 1\}^t$, and a collection of n receivers.
 - Each receiver wants to know one of the messages
 - Each receiver "knows" (has cached) some subset of the packets—Just not the one it wants to know
- Central broadcaster knows which packets are cached at each receiver

Index Coding

Broadcast a minimum number of messages so that each receiver can recover/compute its message using their local information

Intuition

Send a basis of "known" information \Rightarrow each receiver can compute their own message. Min rank is minimum number of messages

Index Coding: Example

$$X = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

- Broadcast two messages: (M1 + M2 + M5, M2 + M3 + M4)
- All receivers can reconstruct their desired message

Soni et. al (UW ISyE) MC-GF2 MIP 14/45

Matrix Completion in \mathbb{F}_2 ?—State of the Art?

- No exact method in literature for matrix completion in \mathbb{F}_2 (!?)
- Heuristic pruning-based enumeration method in Esfahanizadeh,
 Lahuoti, and Hassibi, able to find (known) min rank solution for 7 by
 7 instance every time in around 1 second.
- For 14 by 14 instance, in 30 min, they (sometimes) find rank 5 solution, sometimes find rank 6 solution.

MIP People Do It Exactly

Or at least up to floating point accuracy?

• We aim to build first(?) exact solver for this class of problems

Soni et. al (UW ISyE) MC-GF2 MIP 15 / 45

Formulations for Matrix Completion in \mathbb{F}_2

Some sets we will use

$$\begin{split} \mathcal{I} := & \{ (u, v, z) \in \{0, 1\}^{2r+1} \mid z = \bigoplus_{k=1}^{r} u_k v_k \} \\ \mathcal{P} := & \{ (y, z) \in \{0, 1\}^{r+1} \mid z = \bigoplus_{k=1}^{r} y_k \} \\ \mathcal{M} := & \{ (u, v, y) \in \{0, 1\}^{3r} \mid y_k = u_k v_k \ \forall k \in [r] \} \end{split}$$

- Note that $\operatorname{proj}_{\mathfrak{u},\mathfrak{v},z}(\mathcal{P}\cap\mathcal{M})=\mathcal{I}^1$
- Matrix Completion in \mathbb{F}_2 :

$$\begin{split} \min \ \ & \sum_{(ij) \in \Omega} |X_{ij} - z_{ij}| \\ & (u^i, v^j, z_{ij}) \in \mathcal{I}_{ij} \ \forall ij \in \Omega \end{split}$$

16/45

• Note that $u^i, v^j \in \{0, 1\}^r$

¹Notation Abuse!

Writing $\mathcal M$ as MIP

• Everyone (at least at this meeting) knows how to write \mathcal{M} as the set of $\{0,1\}$ -points inside a polyhedron. (\mathcal{M} is for McCormick.)

$$\mathcal{M} = \{(u,v,y) \in \{0,1\}^{3r} \mid y_k \leq u_k, y_k \leq v_k, y_k \geq u_k + v_k - 1 \ \forall k \in [r]\}$$

Oktay told me that

$$\begin{split} LP(\mathcal{M}) := & \{(u, v, y) \in [0, 1]^{3r} \mid y_k \leq u_k, y_k \leq v_k \\ & y_k \geq u_k + v_k - 1 \ \forall k \in [r] \} = \operatorname{conv}(\mathcal{M}) \end{split}$$

• It is also true (by separability) that

$$\operatorname{conv}(\mathcal{P} \cap \mathcal{M}) = \operatorname{conv}(\mathcal{P}) \cap \operatorname{conv}(\mathcal{M}).$$

Writing \mathcal{P} as MIP

• Consider the general integer set:

$$\mathcal{Z} := \{(y, z, t) \in \{0, 1\}^{r+1} \times \mathbb{Z} \mid \sum_{k=1}^{r} y_k - 2t = z\}$$

- ullet It is easy to see that $\mathcal{Z}=\mathcal{P}$
- ullet So we have our "first" MILP formulation for matrix completion in \mathbb{F}_2 :

$$\min \quad \sum_{(ij)\in\Omega} |X_{ij} - z_{ij}|$$

$$\begin{split} &(\boldsymbol{u}^{i},\boldsymbol{v}^{j},\boldsymbol{y}^{ij}) \in \mathcal{M}_{ij} \quad \forall ij \in \Omega \\ &(\boldsymbol{y}^{ij},\boldsymbol{z}_{ij},\boldsymbol{t}_{ij}) \in \mathcal{Z}_{ij} \quad \forall ij \in \Omega \end{split}$$

18 / 45

Computational Experiments

- $X \in \{0, 1\}^{10 \times 10}$ will have \mathbb{F}_2 -rank 4.
- ullet Use MIP formulation to find "closest" rank r matrix for $r \leq 4$
- Let Ω be all matrix elements, and then start to (randomly) remove a fraction of the entries

Computational Results

% Missing	Rank	Time	Nodes	Opt
0	1	0.05	1	36
0	2	41.81	70237	24
0	3	7184.56	10437394	12
0	4	0.49	1	0
10	1	0.03	1	31
10	2	14.04	27757	17
10	3	320.59	996422	7
10	4	0.03	1	0
20	1	0.01	1	26
20	2	2.91	5872	14
20	3	4106.07	13393830	8
20	4	2.55	2430	0

Results are a Pig!

• 460 binary vars, 100 integer vars > 10M nodes?

Soni et. al (UW ISyE) MC-GF2 MIP

20 / 45

Improving The Pig

• The LP relaxation of the parity condition:

$$LP(\mathcal{Z}) := \{(y,z,t) \in [0,1]^{r+1} \times \mathbb{R}_+ \mid 2t = \sum_{i=1}^r y_i - z\}$$

is very far from the convex hull of the true parity conditions:

$$\operatorname{proj}_{yz} \mathsf{LP}(\mathcal{Z}) \subset \operatorname{conv}(\mathcal{P})$$

But lots is known about how to model parity conditions

Parity Polyhedra

$$\begin{split} P_E &= \mathrm{conv}\{x \in \{0,1\}^n \mid \sum_{i=1}^n x_i \text{ is even } \} \\ P_O &= \mathrm{conv}\{x \in \{0,1\}^n \mid \sum_{i=1}^n x_i \text{ is odd } \} \\ P_E &= \{x \in [0,1]^n \mid \sum_{i \in S} x_i - \sum_{i \not \in S} x_i \le |S| - 1, \forall \text{ odd } S \subset [n] \} \\ P_O &= \{x \in [0,1]^n \mid \sum_{i \in S} x_i - \sum_{i \not \in S} x_i \le |S| - 1, \forall \text{ even } S \subset [n] \} \end{split}$$

- \bullet There are also small (even linear-size) extended formulations for P_E and P_O
- ullet From these, and using disjunctive programming, we can give an extended formulation for $\mathrm{conv}(\mathcal{P})$

Soni et. al (UW ISyE) MC-GF2 MIP 22 / 45

One Extended Formulation for conv(P)

 \bullet Let $D \in [0,1]^{3r+1}$ be the set of points satisfying bound constraints and the inequalities

$$\begin{split} \sum_{k \in S} y_k^o - \sum_{k \notin S} y_k^o &\leq (|S|-1)z & \forall \text{ even } S \subseteq [r] \\ \sum_{k \in S} y_k^e - \sum_{k \notin S} y_k^e &\leq (|S|-1)(1-z) & \forall \text{ odd } S \subseteq [r] \\ y_k &= y_k^o + y_k^e & \forall k \in [r] \\ y_k^o &\leq z & \forall k \in [r] \\ y_k^e &\leq 1-z & \forall k \in [r] \end{split}$$

Thms:

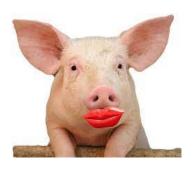
 $\mathrm{conv}(\mathcal{P}) = \mathrm{proj}_{u,z} \, D \qquad \mathrm{conv}(\mathcal{P} \cap \mathcal{M}) = D \cap LP(\mathcal{M}) = \mathrm{conv}(\mathcal{I})$

Soni et. al (UW ISyE) MC-GF2 MIP 23 / 45

MIP Formulation 2: LipStick on the Pig

$$\min \ \sum_{(ij) \in \Omega} |X_{ij} - z_{ij}|$$

$$\begin{split} (u^i, v^j, y^{ij}) \in \mathcal{M}_{ij} \quad \forall (ij) \in \Omega \\ (y^{ij}, y^{o,ij}, y^{e,ij}, z_{ij}) \in D_{ij} \quad \forall (ij) \in \Omega \\ z_{ij} \in \{0,1\} \quad \forall ij \in \Omega \end{split}$$



MIP1 (Pig) v. MIP2 (Pig w/Lipstick)

MIP	% Missing	Rank	Time	Nodes	Opt
1	0	2	41.81	70237	24
2	0	2	9.42	13746	24
1	0	3	7184.56	10437394	12
2	0	3	2137.15	1272534	12
1	10	2	14.04	27757	17
2	10	2	6.63	20296	17
1	10	3	320.59	996422	7
2	10	3	357.02	353021	7
1	20	2	2.91	5872	14
2	20	2	3.64	8927	14
1	20	3	4106.07	13393830	8
2	20	3	2199.89	2366186	8

Team Reactions

"Why do you all keep talking about putting lipstick on a pig?"

"Aunque la mona se vista de seda, mona se queda"

(You can dress a monkey in silk, but it's still a monkey)

Keep Trying—Let's Get That Monkey

• Can we directly model the set

$$\mathcal{I} = \{(\mathbf{u}, \mathbf{v}, z) \in \{0, 1\}^{2r+1} \mid z = \bigoplus_{k=1}^{r} \mathbf{u}_k \mathbf{v}_k \}$$

without using auxiliary variables?

ullet Yes! Let ${\mathfrak T}$ be the set of all tri-partitions of [r]

$$\begin{split} \mathfrak{T} := & \{S \subseteq [r], Q \subseteq [r], \mathsf{T} \subseteq [r] \mid \mathsf{S} \cup \mathsf{Q} \cup \mathsf{T} = [r] \\ & \mathsf{S} \cap \mathsf{Q} = \emptyset, \mathsf{S} \cap \mathsf{T} = \emptyset, \mathsf{Q} \cap \mathsf{T} = \emptyset \} \end{split}$$

Consider families of inequalities

$$z + u(S) + v(S) - u(Q) - v(T) \le 2|S| \qquad \forall (S, Q, T) \in \mathfrak{T}, |S| \text{ even}$$
 (1)
$$z - u(S) - v(S) + u(Q) + v(T) \ge 1 - 2|S| \quad \forall (S, Q, T) \in \mathfrak{T}, |S| \text{ odd}$$
 (2)

Soni et. al (UW ISyE) MC-GF2 MIP 27 / 45

Where Do They Come From?

- We found them via facet-hunting with PORTA, but they can be derived as follows:
- ullet Choose an index $i \in [r]$ and create a tri-partition of $[r] \setminus i$, fixing

$$\begin{split} S := & \{i \mid \ u_i = \nu_i = 1\} \\ Q := & \{i \mid \ u_i = 0\} \\ T := & \{i \mid \ \nu_i = 0\} \end{split}$$

- ullet If |S| is even, then feasible points on face of ${\mathcal I}$ satisfy $z=\mathfrak{u}_i\mathfrak{v}_i\oplus \mathfrak{0}$
- ullet The inequality $z \geq u_i + v_i 1^2$ is facet-defining for this face
- Lifting

$$u_i + \nu_i - z + \sum_{k \in S} \alpha_k (1 - u_k) + \sum_{k \in S} \beta_k (1 - \nu_k) + \sum_{k \in Q} \alpha_k u_k + \sum_{k \in T} \beta_k \nu_k \leq 1$$

28 / 45

Gives (2)

²Hello Dr. McCormick

Derivation, Continued

- If |S| is odd, the feasible points on face of $\mathcal I$ satisfy $z=\mathfrak u_i \mathfrak v_i \oplus 1$
- The inequality $z \le 2 u_i v_i$ is facet-defining for this face
- Lifting

$$u_i + \nu_i + z + \sum_{k \in S} \alpha_k (1 - u_k) + \sum_{k \in S} \beta_k (1 - \nu_k) + \sum_{k \in Q} \alpha_k u_k + \sum_{k \in T} \beta_k \nu_k \leq 2$$

Gives (1)

- Can also get the inequalities (1) from (2) by the transformation $z \to 1-z$.
 - When lifting, it suffices to consider the face with remainder (fixed) term 0.

Soni et. al (UW ISyE) MC-GF2 MIP 29 / 45

Theorems

Theorem

• These (exponentially many in r) inequalities give a direct formulation of \mathcal{I} :

$$\mathcal{F} = \{(\mathbf{u}, \mathbf{v}, z) \in \{0, 1\}^{2r+1} \mid (1), (2)\}$$

All inequalities are necessary

"Theorem" (from ICERM)

• The LP relaxation of the set is the convex hull

$$conv(\mathcal{I}) = \{(u, v, z) \in [0, 1]^{2r+1} \mid (1), (2)\}\$$

• "Theorem" because Jim hasn't proved it yet

"Theorem" No Morel

 Akhilesh rose to the challenge, and proved the result, but it was more challenging than we expected.

Proof Mechanism

 For arbitrary objective function, construct an integer-valued feasible solution to the primal and a feasible solution to the dual of the same objective value.

$$\max_{(u,v,z)\in[0,1]^{2r+1}} \{c^{\top}u + d^{\top}v + fz \mid (1),(2)\}$$
 (P)

Soni et. al (UW ISyE) MC-GF2 MIP 31/45

Dual LP

$$\begin{split} \min \sum_{(S,Q,T) \in \mathfrak{T}} 2|S| \pi_{SQT} - \sum_{\substack{(S,Q,T) \in \mathfrak{T}: \\ |S| \text{ odd}}} \pi_{SQT} + \sum_{i=1}^r \mu_i + \sum_{i=1}^r \eta_i + \gamma \\ \sum_{\substack{(S,Q,T) \in \mathfrak{T}: \\ |S| \text{ even}}} \pi_{SQT} - \sum_{\substack{(S,Q,T) \in \mathfrak{T}: \\ |S| \text{ odd}}} \pi_{SQT} + \gamma \geq f \\ \sum_{\substack{(S,Q,T) \in \mathfrak{T}: \\ S \ni i}} \pi_{SQT} - \sum_{\substack{(S,Q,T) \in \mathfrak{T}: \\ Q \ni i}} \pi_{SQT} + \mu_i \geq c_i \quad \forall i \in [r] \\ \sum_{\substack{(S,Q,T) \in \mathfrak{T}: \\ S \ni i}} \pi_{SQT} - \sum_{\substack{(S,Q,T) \in \mathfrak{T}: \\ T \ni i}} \pi_{SQT} + \eta_i \geq d_i \quad \forall i \in [r] \\ \pi_{SQT} \geq 0 \quad \forall (S,Q,T) \in \mathfrak{T} \\ \mu_i, \eta_i \geq 0 \quad \forall i \in [r] \\ \gamma > 0 \end{split}$$

Proof: $|C^+ \cap D^+|$ odd

- WLOG, assume f > 0.
- Define

$$C^{+} := \{k : c_{k} \ge 0\}$$

$$C^{-} := \{k : c_{k} < 0\}$$

$$D^{+} := \{k : d_{k} \ge 0\}$$

$$D^{-} := \{k : d_{k} < 0\}$$

- $\hat{\mathbf{u}}_{C^+} = 1, \hat{\mathbf{u}}_{C^-} = 0, \hat{\mathbf{v}}_{D^+} = 1, \hat{\mathbf{v}}_{D^-} = 0, \hat{z} = 1$ is optimal solution to (P) with value $c(C^+) + d(D^+) + f$.
- $\hat{\pi}=0, \gamma=f, \hat{\mu}_{C^+}=c_{C^+}, \hat{\mu}_{C^-}=0, \hat{\eta}_{D^+}=d_{D^+}, \hat{\eta}_{D^-}=0$ is feasible solution to (D) with value $c(C^+)+d(D^+)+f$
- That Was Easy!

Proof: $|C^+ \cap D^+|$ Even

- Either $\hat{z} = 1$, wherein
 - Either u_k or v_k in $C^+ \cap D^+$, or
 - $\bullet \ u_k \ \text{in} \ C^- \cap D^+ \text{, or}$
 - ν_k in $C^+ \cap D^-$, or
 - Both u_k and v_k in $C^- \cap D^-$

flip their "obvious" value to lose Δ while gaining $f>\Delta$ in the objective

- Or $\hat{z}=0$, in which case f $<\Delta$ for all these potential elements to flip.
- Constructing a dual feasible solution (requiring $\pi_{SQT} > 0$) for all these cases (when $\hat{z} = 1$) is a tricky, four-page exercise left to the reader.

Soni et. al (UW ISyE) MC-GF2 MIP 34/45

MIP Formulation 3—Monkey In Silk

$$\begin{split} \min \quad & \sum_{(ij) \in \Omega} |X_{ij} - z_{ij}| \\ (u^i, v^j, z_{ij}) \in \mathcal{I}_{ij} \quad \forall (ij) \in \Omega \end{split}$$

Computational Results

MIP	% Missing	Rank	Time	Nodes	Opt
1	0	2	41.81	70237	24
2	0	2	9.42	13746	24
3	0	2	5.00	12588	24
1	0	3	7184.56	10437394	12
2	0	3	2137.15	1272534	12
3	0	3	1765.4	1962326	12
1	10	2	14.04	27757	17
2	10	2	6.63	20296	17
3	10	2	3.65	22560	17
1	10	3	320.59	996422	7
2	10	3	357.02	353021	7
3	10	3	188.81	332773	7
1	20	2	2.91	5872	14
2	20	2	3.64	8927	14
3	20	2	4.28	3357	14
1	20	3	4106.07	13393830	8
2	20	3	2199.89	2366186	8
3	20	3	381.94	645413	8

Discussion

- Frankly, the computational results are not where we want them to be.
- We can now only "reliably" solve linear index coding problems of sizes up to around 12 by 12.
- And worse, the "monkey in silk" formulation or the "pig in lipstick formulation" aren't typically much better than the "pig" formulation

A Word on Separation

- We don't do it—Our computational results (to this point) just explicitly enumerate all inequalities
- However, separation of the SQT inequalities is "trivial" (linear time/greedy)

Soni et. al (UW ISyE) MC-GF2 MIP 37/45

Can we do more?

• MIP3 (Silk Monkey) formulation is

$$\begin{split} &(u^i, \nu^j, z_{ij}) \in \operatorname{conv}(\mathcal{I}_{ij}) \quad \forall (ij) \in \Omega \\ &(u^i, \nu^j, z_{ij}) \in \{0, 1\}^{dr + rn + |\Omega|} \end{split}$$

- We know the intersection of the convex hulls
- If it were only true that

$$\operatorname{conv} \Big(\cap_{ij \in \Omega} \mathcal{I}_{ij} \Big) = \cap_{ij \in \Omega} \operatorname{conv} (\mathcal{I}_{ij})$$

we wouldn't need integer variables.

Next Steps: Two Rows of U

$$\mathcal{T} = \{(u, w, v, z_u, z_w) \in \{0, 1\}^{3r+2} \mid z_u = \bigoplus_{k=1}^r u_k v_k, z_w = \bigoplus_{k=1}^r w_k v_k\}$$

LOTS of Inequalities: Monkey+Pig

Monkey + Pig Inequalties: Basic Idea

- Pick two indices $\{i, j\} \in [r]$ and make two tri-partitions of $[r] \setminus \{i, j\}, (S^u, Q^u, T)$ and (S^w, Q^w, T) , with $|S^u|, |S^w|$ even.
- Fix variables

$$u_{i} = v_{i} = 1 \ \forall i \in S^{u}$$

$$u_{i} = 0 \ \forall i \in Q^{u}$$

$$v_{i} = 0 \ \forall i \in T$$

$$w_{i} = v_{i} = 1 \ \forall i \in S^{w}$$

$$w_{i} = 0 \ \forall i \in Q^{w}$$

to give the face

$$z_{\mathbf{u}} = \mathbf{u}_{\mathbf{i}} \mathbf{v}_{\mathbf{i}} \oplus \mathbf{u}_{\mathbf{j}} \mathbf{v}_{\mathbf{j}}$$
$$z_{\mathbf{w}} = \mathbf{w}_{\mathbf{i}} \mathbf{v}_{\mathbf{i}} \oplus \mathbf{w}_{\mathbf{j}} \mathbf{v}_{\mathbf{j}}$$

41 / 45

Interesting Families

• Accounting for the symmetries where we swap $(i \leftrightarrow j)$ or $(u \leftrightarrow w)$ there are four fundamental "interesting" families of inequalities, involving both z_u and z_w

$$\begin{split} (1-u_i) + \nu_j + z_u + (1-z_w) &\geq 1 \\ (1-u_i) + (1-u_j) + (1-w_i) + (1-w_j) + (1-z_u) + z_w &\geq 1 \\ (1-u_i) + (1-u_j) + \nu_i + \nu_j + z_u + 2(1-z_w) &\geq 2 \\ (1-u_i) + (1-u_j) + 2(1-w_i) + (1-\nu_i) + \nu_j + (1-z_i) + 2z_j &\geq 2 \end{split}$$

• Lifting each of these gives exponentially-large new families of facet-defining inequalities for the set \mathcal{T} .

Soni et. al (UW ISyE) MC-GF2 MIP 42 / 45

Hard At Work—Remaining Items

- ullet Work out separation and implement new inequalities for ${\mathcal T}$
- Improved computational results?
- Write it up.

 Akhilesh has < 3 months to get it all done!

Soni et. al (UW ISyE) MC-GF2 MIP 43 / 45

Any Questions?

- ullet Three MIP Formulation for Matrix Completion in \mathbb{F}_2
- ullet Ideas for convexifying inner products in \mathbb{F}_2

Another ChatGPT Apology Limerick

Write a limerick apologizing for a bad math talk

There once was a talk full of math,
But the speaker was quite in a bath,
The graphs were all skewed,
The theorems were crude,
I'm sorry for causing your wrath!