Copositive Duality for Discrete Energy Markets

Cheng Guo

School of Mathematical and Statistical Sciences Clemson University

Joint work with Merve Bodur and Josh Taylor

MIP Workshop 2023

Cheng Guo, Merve Bodur & Josh Taylor

COP Duality for Discrete Markets & Games

Design A Pricing Scheme for Energy Markets with Discreteness

- · Pricing is central to energy markets
- Electricity prices are based on shadow prices
 - Idealized market structure
- Discrete decisions in day-ahead market: start-up, on/off statuses
- Our solution: convexification of MIP

Introduction	Convexification	Pricing Scheme	CuttingPlaneAlgo	Summary
Outline				

- Convexification of Unit Commitment using copositive programming
- Pricing Scheme in Discrete Energy Markets
 - Pricing and individual rationality in spot market
 - Pricing and individual rationality in day-ahead market
- Cutting plane algorithm for copositive programs

Convexification	CuttingPlaneAlgo	Summary

Introduction

2 Convexification of Unit Commitment

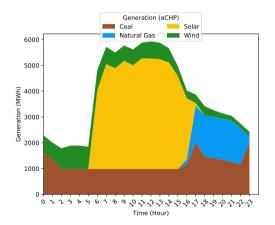
Pricing Scheme in Discrete Energy Markets

4 A Novel Cutting Plane Algorithm for COP

5 Summary

Unit Commitment (UC) Problem

• In the day-ahead market, decide the operation schedule of generators at each hour



MIP Model for Unit Commitment

$$\begin{array}{ll} \min & \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} \left(c_g^{\rho} p_{gt} + c_g^{u} u_{gt} \right) \\ \text{s.t.} & \sum_{g \in \mathcal{G}} p_{gt} = d_t & \forall t \in \mathcal{T} \\ & \mathbf{a}_{jgt}^{\phi \top} \mathbf{x} = b_{jgt} & \forall j = 1, ..., m, g \in \mathcal{G}, t \in \mathcal{T} \\ & \mathbf{x} \in \mathbb{R}^n_+ \\ & z_{gt} \in \{0, 1\} & \forall g \in \mathcal{G}, t \in \mathcal{T} \end{array}$$

- *p_{gt}*: production level
- *u_{gt}*: turn on decision
- *z_{gt}*: on/off status
- $\ddot{\phi}$: slack variables

•
$$\mathbf{x}^{\top} = (\mathbf{z}^{\top}, \mathbf{u}^{\top}, \mathbf{p}^{\top}, \ddot{\boldsymbol{\phi}}^{\top})$$

	Convexification		cheme CuttingPlaneAlgo						
$MIP \rightarrow$	$MIP \rightarrow Completely \; Positive \; Programming \; (CPP) \; (Burer, \; 2009)$								
\mathcal{P}^{MIP} (nor	nconvex):	\mathcal{P}^{CPP} (con	vex):						
min	$\mathbf{c}^{ op}\mathbf{x}$	min	$c^ op \mathbf{x}$						
s.t.	$a_j^{ op} \mathbf{x} = b_j, \qquad \forall j = 1,, n$	n s.t. a	$\mathbf{a}_j^ op \mathbf{x} = b_j$	orall j=1,,m					
	$x^k \in \{0,1\}, \qquad \forall k \in \mathcal{B}$		$\mathbf{a}_j^ op X \mathbf{a}_j = b_j^2$	orall j=1,,m					
	$x \in \mathbb{R}^n_+$		$\mathbf{x}^k = X_{kk}$	$orall k \in \mathcal{B}$					
• If <i>x^k</i>	$\in \{0,1\}$, then $x^k = (x^k)^2$		$\left[egin{array}{cc} 1 & \mathbf{x}^{ op} \ \mathbf{x} & X \end{array} ight] \in \mathcal{C}^*$						

• Let $X = \mathbf{x}\mathbf{x}^{\top}$, Enforce $\mathbf{x}^{k} = X_{kk}$

• Constraints to enforce $X = \mathbf{x}\mathbf{x}^{\top} \rightarrow$ there are different ways to do this for MIQP!

▶ Reformulation-Linearization Technique (RLT) constraint: $\mathbf{a}_j^\top X \mathbf{a}_j = b_j^2$

$$\bullet \left[\begin{array}{cc} 1 & \mathbf{x}^\top \\ \mathbf{x} & X \end{array} \right] \in \mathcal{C}^*$$

• Strong duality holds for CPP under regularity condition is satisfied.

CI FMS#N

Introduction	Convexification	Pricing Scheme	CuttingPlaneAlgo	Summary

Introduction

2 Convexification of Unit Commitment

③ Pricing Scheme in Discrete Energy Markets

A Novel Cutting Plane Algorithm for COP

5 Summary

Setup of the Energy Market

- Supply: power plants, demand: utilities
- Independent system operator (ISO) holds auctions to match supply and demand
 - Day-ahead market: unit commitment
 - Spot market: no discrete decision

Pricing Scheme in Spot Market

• Spot market: ISO minimizes total cost

$$\begin{array}{ll} \min_{p_{gt}} & \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} c_g^p p_{gt} \\ \text{s.t.} & \sum_{g \in \mathcal{G}} p_{gt} = d_t, \ \forall t \in \mathcal{T} \\ & (p_{gt}) \in X'_{gt}, \ \forall g \in \mathcal{G}, t \in \mathcal{T} \end{array}$$

- Let the optimal primal and dual solution be p_{gt}^* and λ_t^* .
- λ_t^* is the electricity price: More demand \rightarrow more expensive technology \rightarrow higher λ_t^*

λ_t^* Guarantees Individual Rationality in Spot Markets

• Profit-maximizing problem for g has the same solution as the ISO's problem:

$$\begin{array}{ll} \max_{p_{gt}} & \sum_{t \in \mathcal{T}} (\lambda_t^* - c_g^p) p_{gt} \\ \text{s.t.} & (p_{gt}) \in X_{gt}', \ \forall t \in \mathcal{T} \end{array}$$

• How to prove this? Decompose the Lagrangified ISO's problem

r

Proof for Individual Rationality in Spot Markets

• Lagrangify the demand constraint in the min-cost problem using λ_t^* . Due to convexity, p_{gt}^* is optimal to the following:

$$\begin{array}{ll} \min_{p_{gt}} & \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} c_g^p p_{gt} + \sum_{t \in \mathcal{T}} \lambda_t^* (\sum_{g \in \mathcal{G}} p_{gt} - d_t) \\ \text{s.t.} & (p_{gt}) \in X_{gt}', \ \forall g \in \mathcal{G}, t \in \mathcal{T} \end{array}$$

• Drop constant term $\lambda_t^* d_t$, reverse the sense:

$$\begin{array}{ll} \max_{p_{gt}} & \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} (\lambda_t^* - c_g^p) p_{gt} \\ \text{s.t.} & (p_{gt}) \in X_{gt}', \ \forall g \in \mathcal{G}, t \in \mathcal{T} \end{array}$$

• Decomposable by g

Cheng Guo, Merve Bodur & Josh Taylor

Pricing for Markets with Discrete Decisions is Challenging

- No dual price in MIP
- Literature on discrete energy market
 - Restricted pricing
 - Convex hull pricing Extended locational marginal pricing
- Literature on indivisible goods
 - Discrete convexity
 - Alpha-price mechanism
- Still an open question

[O'Neil et al., 2005]

[Hogan and Ring, 2003; Gribik et al., 2007]

[Danilov et al., 2001; Baldwin and Klemperer, 2019] [Milgrom and Watt, 2022]

MIP Workshop 2023

	Convexification	Pricing Scheme	CuttingPlaneAlgo	
Recap: Unit	Commitment Pro	blem & CPP Re	formulation	
\mathcal{UC} : min	$\sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} \left(c_g^p p_{gt} + c_g^u u_{gt} \right)$)		
s.t.	$\sum_{g\in\mathcal{G}} ho_{gt} = d_t$	$orall t \in \mathcal{T}$		(λ_t)
	$\mathbf{a}_{jgt}^{\phi op}\mathbf{x}=b_{jgt}$	orall j=1,,m,	${\pmb g}\in {\mathcal G}, {\pmb t}\in {\mathcal T}$	
	$z_{gt} \in \{0,1\}$	$orall oldsymbol{g} \in \mathcal{G}, t \in \mathcal{T}$	-	
\mathcal{P}^{CPP} :	min $\mathbf{c}^{\top}\mathbf{x}$			
	s.t. $\mathbf{a}_j^\top \mathbf{x} = b_j$	orall j=1,,m		
	$\mathbf{a}_j^ op X \mathbf{a}_j = b_j^2$	orall j=1,,m		
	$x^k = X_{kk}$	$orall k \in \mathcal{B}$		
	$\left[\begin{array}{cc} 1 & \mathbf{x}^{\top} \\ \mathbf{x} & X \end{array}\right] \in \mathcal{C}^*$			CLEMS % N

Cheng Guo, Merve Bodur & Josh Taylor

COP Duality for Discrete Markets & Games

MIP Workshop 2023 14 / 25

Convexification of UC

• CPP reformulation:

$$\mathcal{UC}^{\mathsf{CPP}} = \min \quad \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} \left(c_g^p p_{gt} + c_g^u u_{gt} \right)$$

s.t.
$$\sum_{g \in \mathcal{G}} p_{gt} = d_t \qquad \forall t \in \mathcal{T} \qquad (\lambda_t)$$

$$\mathbf{a}_{jgt}^{\phi \top} \mathbf{x} = b_{jgt} \qquad \qquad \forall j = 1, ..., m, g \in \mathcal{G}, t \in \mathcal{T} \qquad (\phi_{jgt})$$

$$\operatorname{Tr}(\mathbf{a}_t^{\lambda} \mathbf{a}_t^{\lambda \top} X) = d_t^2 \qquad \forall t \in \mathcal{T}$$
 (Λ_t)

$$\mathsf{Tr}(\mathbf{a}_{jgt}^{\phi}\mathbf{a}_{jgt}^{\phi\top}X) = b_{jgt}^2 \qquad \forall j = 1, ..., m, g \in \mathcal{G}, t \in \mathcal{T} \qquad (\Phi_{jgt})$$

$$z_{gt} = Z_{gt}$$
 $\forall g \in \mathcal{G}, t \in \mathcal{T}$ (δ_{gt})

$$\begin{bmatrix} 1 & x^{\top} \\ x & X \end{bmatrix} \in \mathcal{C}_{n+1}^* \tag{\Omega}$$

• Dual problem:

$$\begin{split} \mathcal{UC}^{\mathsf{COP}} &= \max \quad \sum_{t \in \mathcal{T}} \left(d_t \lambda_t + d_t^2 \Lambda_t + \sum_{j=1}^m \sum_{g \in \mathcal{G}} \left(b_{jgt} \phi_{jgt} + b_{jgt}^2 \Phi_{jgt} \right) \right) \\ &\text{s.t.} \quad (\boldsymbol{\lambda}, \boldsymbol{\phi}, \boldsymbol{\Lambda}, \boldsymbol{\Phi}, \boldsymbol{\delta}, \Omega) \in \mathcal{F}^{\mathsf{COP}} \end{split}$$

Shadow Price for Day-Ahead Market: Copositive Dual Pricing (CDP)

Let $(\lambda^*, \phi^*, \Lambda^*, \phi^*)$ be an optimal solution for \mathcal{UC}^{COP} . Under the CDP mechanism, at hour t the system operator:

(i) collects from the load:

$$d_t \lambda_t^* + d_t^2 \Lambda_t^* + \sum_{g \in \mathcal{G}} \sum_{j=1}^m \left(b_{jgt} \phi_{jgt}^* + b_{jgt}^2 \Phi_{jgt}^* \right)$$

(ii) pays to the generator g:

$$p_{gt}^*\lambda_t^* + P_{gt}^*\Lambda_t^* + \sum_{j=1}^m \left(\mathbf{a}_{jgt}^{\phi}\mathbf{x}^*\phi_{jgt}^* + \mathsf{Tr}(\mathbf{a}_{jgt}^{\phi}\mathbf{a}_{jgt}^{\phi\top}X^*)\Phi_{jgt}^*\right) + \sum_{g'\in\mathcal{G}\setminus\{g\}} f(\Lambda_t^*, p_{gt}^*, p_{g't}^*)$$

Proof for Individual Rationality in Day-Ahead Markets

• Lagrangified CPP:

Cheng Guo,

$$\begin{array}{ll} \min & \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} \left(c_g^p p_{gt} + c_g^u u_{gt} \right) + \lambda_t^* \sum_{t \in \mathcal{T}} (d_t - \sum_{g \in \mathcal{G}} p_{gt}) + \Lambda_t^* \sum_{t \in \mathcal{T}} (d_t^2 - \operatorname{Tr}(\mathbf{a}_t^\lambda \mathbf{a}_t^{\lambda \top} X)) \\ \text{s.t.} & \mathbf{a}_{jgt}^{\phi \top} \mathbf{x} = b_{jgt} & \forall j = 1, ..., m, g \in \mathcal{G}, t \in \mathcal{T} \\ & \operatorname{Tr}(\mathbf{a}_{jgt}^{\phi} \mathbf{a}_{jgt}^{\phi \top} X) = b_{jgt}^2 & \forall j = 1, ..., m, g \in \mathcal{G}, t \in \mathcal{T} \\ & z_{gt} = Z_{gt} & \forall g \in \mathcal{G}, t \in \mathcal{T} \\ & \left[\begin{matrix} 1 & x^\top \\ x & X \end{matrix} \right] \in \mathcal{C}_{n+1}^* \\ \end{array}$$

- Idea: decompose this by g. But how?
 - First idea: make the conic constraint decomposable
 - Second idea: make $\Lambda_t^* = 0$
- A decomposable "Lagrangified MIP"

$$\begin{array}{c} \min \quad \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} \left(c_g^p p_{gt} + c_g^u u_{gt} \right) + \lambda_t^* \sum_{t \in \mathcal{T}} (d_t - \sum_{g \in \mathcal{G}} p_{gt}) \\ \underbrace{\text{s.t.} \quad \mathbf{a}^{\phi \top}_{t} \mathbf{x}}_{\text{Merve Bodur & Josh Taylor}} \underbrace{\forall i = 1, \dots, m, g \in \mathcal{G}, t \in \mathcal{T}}_{\text{COP Duality for Discrete Markets & Games}} \underbrace{\text{MIP Workshop 2023} \quad 17 / 25}_{\text{MIP Workshop 2023}} \end{aligned}$$

Some Other Analytical Results

- System operators: Revenue from load = Payment to generators
- Generators: Total revenue = total costs (revenue neutrality)
- Supports market equilibrium
- A modified version of CDP that ensures individual revenue adequacy and uses linear prices
 - Results for CDP can be extended to this

Introduction		CuttingPlaneAlgo	Summary

Introduction

2 Convexification of Unit Commitment

③ Pricing Scheme in Discrete Energy Markets

4 A Novel Cutting Plane Algorithm for COP

5 Summary

Solve the Dual Pricing Problem (A Copositive Program)

$$\begin{split} \mathcal{UC}^{\mathsf{COP}} &= \max \quad \sum_{t \in \mathcal{T}} \left(d_t \lambda_t + d_t^2 \Lambda_t + \sum_{j=1}^m \sum_{g \in \mathcal{G}} \left(b_{jgt} \phi_{jgt} + b_{jgt}^2 \Phi_{jgt} \right) \right) \\ &\text{s.t.} \quad (\lambda, \phi, \Lambda, \Phi, \delta, \Omega) \in \mathcal{F}^{\mathsf{COP}} \end{split}$$

• $\mathcal{F}^{\mathsf{COP}}$ includes conic constraint $\Omega \in \mathcal{C}_{n+1}$

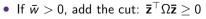
- In literature: solved with SDP restriction
 - Define \mathcal{S}^+ and \mathcal{N} $(\ni X_{ij} \ge 0, \forall i, j)$
 - $\blacktriangleright \ \mathcal{S}^+ + \mathcal{N} \subseteq \mathcal{C}$

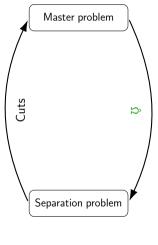
A Novel Cutting Plane Algorithm for Solving COP Exactly

$$\begin{array}{ll} \max_{\Omega, \boldsymbol{\lambda}} & \mathbf{q}^{\top} \boldsymbol{\lambda} + \mathsf{Tr}(\boldsymbol{H}^{\top} \Omega) \\ \text{s.t.} & \mathbf{d}^{\top} \boldsymbol{\lambda} + \mathsf{Tr}(\boldsymbol{D}_{i}^{\top} \Omega) = \boldsymbol{g}_{i}, \quad \forall i = 1, ..., m \\ & \boldsymbol{\lambda} \geq \mathbf{0} \\ & \Omega \in \mathcal{C}^{n_{\epsilon}} \end{array}$$

• Separation problem [Anstreicher, 2020]:

$$\begin{array}{ll} \max_{w, \boldsymbol{u}, \boldsymbol{z}} & w \\ \text{s.t.} & \hat{\Omega} \boldsymbol{z} \leq -w \boldsymbol{1} + M(1-\boldsymbol{u}) \\ & \boldsymbol{1}^\top \boldsymbol{u} \geq q \\ & w \geq 0 \\ & 0 \leq \boldsymbol{z} \leq \boldsymbol{u} \\ & \boldsymbol{u} \in \{0, 1\}^{n_c} \end{array}$$





, *n*

Tighten the Master Problem Via Second-Order Cone Program

$$\begin{array}{ll} \max_{\Omega, \boldsymbol{\lambda}} & \mathbf{q}^{\top} \boldsymbol{\lambda} + \operatorname{Tr}(\boldsymbol{H}^{\top} \Omega) \\ \text{s.t.} & \mathbf{d}^{\top} \boldsymbol{\lambda} + \operatorname{Tr}(\boldsymbol{D}_{i}^{\top} \Omega) = \boldsymbol{g}_{i}, \quad \forall i = 1, ..., m \\ & \boldsymbol{\lambda} \geq \mathbf{0} \\ & \boldsymbol{V} + \boldsymbol{N} = \Omega \\ & \boldsymbol{N} \geq \mathbf{0} \\ & \boldsymbol{V} \in \mathcal{S}_{n}^{+} \\ & \boldsymbol{V}_{ii} \geq \mathbf{0} \\ & \boldsymbol{V}_{ii} \geq \mathbf{0} \\ & \boldsymbol{\nabla}_{ii} \mathbf{V}_{jj} \geq \boldsymbol{V}_{ij}^{2} \\ & \boldsymbol{\nabla}_{ii} \in \mathcal{C}^{n_{c}} \end{array}$$

- Converges to a feasible (not necessarily optimal) solution
- No worse than the SDP approximation $\mathcal{S}^+ + \mathcal{N} \subseteq \mathcal{C}$

Cheng Guo, Merve Bodur & Josh Taylor

Comments and Performance of Cutting Plane Algorithms

- Straightforward to implement (vs simplicial partition [Bundfuss and Dür, 2008])
- Experiment on the max clique problem (2nd DIMACS dataset)
 - ► Cutting plane is more accurate and sometimes faster than the SDP approximation
- Significant speedup with the SOC-strengthened master problem
- To be improved:
 - Speed up the separation problem
 - Bounding the master problem at initialization
 - Tighter master problem
 - Other types of cuts

	CuttingPlaneAlgo	Summary

Summary

- A notion of duality for discrete problems
- Pricing scheme for discrete energy markets with good properties
- Novel cutting plane algorithm for copositive programs

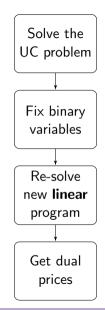
- Optimization and duality theory play important roles in classical economic models: utility theory, pricing, game theory, ···
- Real-life markets (e.g. energy markets) are not always ideal: discreteness, nonlinearities, uncertainties, market power, ···
- More realistic optimization models and more rigorous analysis are needed for energy markets and other economic problems

Restricted Pricing (RP)

 Used in many ISOs such as PJM, ISO-NE, CAISO, and ERCOT

$$\begin{array}{ll} \min_{u_g,p_g} & \sum_{g \in \mathcal{G}} f(u_g,p_g) \\ \text{s.t.} & \sum_{g \in \mathcal{G}} p_g = d & (\lambda^{\mathsf{RP}}) \\ & (u_g,p_g) \in X_g, \quad \forall g \in \mathcal{G} \\ & u_g = u_g^* \end{array}$$

• Generators are not necessarily profitable



Convex Hull Pricing (CHP)

- Less profit deficient than RP
- Value function v(d) is parameterized by the demand d

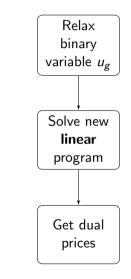
$$egin{aligned} & \chi(d) = \min_{u_g, p_g} & \sum_{g \in \mathcal{G}} f(u_g, p_g) \ & ext{ s.t. } & \sum_{g \in \mathcal{G}} p_g = d & (\lambda^{\mathsf{CHP}}) \ & & (u_g, p_g) \in X_g, \ & \forall g \in \mathcal{G} \end{aligned}$$

• Take subgradient as the price:

Approximated Convex Hull Pricing (aCHP)

- Implemented by MISO
- Should use a tight UC formulation

$$\begin{split} \min_{u_g,p_g} & \sum_{g \in \mathcal{G}} f(u_g,p_g) \\ \text{s.t.} & \sum_{g \in \mathcal{G}} p_g = d \\ & (u_g,p_g) \in X_g, \quad \forall g \in \mathcal{G} \tilde{X}_g, \quad \forall g \in \mathcal{G} \end{split}$$



Primal-dual Pricing

• Seeks a revenue-adequate price

min Duality gap

- s.t. Primal LP constraints
 - Dual LP constraints
 - Integrality restrictions
 - Revenue-adequacy constraints

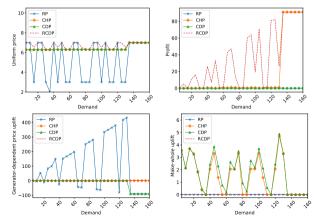
Experiments: COP Algorithm Comparison

- Max clique problem for testing COP algorithms
 - Cutting plane usually converges in a few iterations and sometimes faster than the SDP approximation

					Mosek			lane
Instance	$ \mathcal{N} $	$ \mathcal{E} $	ω	Obj	Gap(%)	Time(sec)	Time(sec)	#Iter
c-fat200-1	200	1534	12	12	0	566.81	13.87	2
c-fat200-2	200	3235	24	24	0	638.72	18.90	2
c-fat200-5	200	8473	58	60.35	3.89	606.33	12.19	2
hamming6-2	64	1824	32	32	0	1.51	6.05	2
hamming6-4	64	704	4	4	0	1.59	1.55	4
johnson8-2-4	28	210	4	4	0	0.20	9.53	2
johnson8-4-4	70	1855	14	14	0	2.47	11.82	2
johnson16-2-4	120	5460	8	8	0	31.88	62.75	2
keller4	171	9435	11	13.47	18.34	426.16	-	-
MANN_a9	45	918	16	17.48	8.47	0.45	547.62	2

Experiments: Scarf's Example

- Although CDP has generator-dependent payment, its behavior is more similar to CHP than RP
- RCDP requires no uplift payment



Cheng Guo, Merve Bodur & Josh Taylor

COP Duality for Discrete Markets & Games

Experiments: Performance of UC Instances I

- Strengthened cutting plane algorithm is much faster
- Negative optimality gaps:
 - No strong duality
 - Bounds on Ω
 - SOC constraints
 - Revenue adequacy constraints (for RCDP)

Table: Time (seconds), Optimality Gap (%) and Number of Iterations of Cases 1-3

		CDP LP		CDP SOC		F	RCDP LP			RCDP SOC		
Case	Time	Gap	#lter	Time	Gap	#lter	Time	Gap	#lter	Time	Gap	#lter
1	187.4	0	1051	80.2	-0.34	121	244.5	0	1303	50.4	0	55
2	195.3	0	1038	89.1	0	62	249.5	0	1339	76.2	0	55
3	536.7	-4.97	1635	68.5	-7.28	131	319.5	-4.18	1310	78.0	-7.34	146
												01.72.10.4

Experiments: Performance of UC Instances II

- Performance is more likely to be affected by the number of generators than the length of the time horizon
- Separation problem takes much longer time than the master problem

	CDP	LP	CDP	SOC	RCD	P LP	RCDF	RCDP <mark>SOC</mark>	
Case	Gap	#lter	Gap	#lter	Gap	#lter	Gap	#lter	
4	14.41	3279	3.32	212	15.43	3212	3.77	207	
5	14.80	3750	5.85	230	15.03	2985	4.15	243	
6	9.08	2979	-1.25	310	4.95	3247	-0.93	394	
7	88.78	1171	18.71	99	110.13	909	17.63	109	
8	49.04	3895	16.13	228	27.06	5496	0.91	344	
9	106.28	1549	21.35	102	130.37	1734	21.52	132	
10	80.94	1724	17.96	224	132.40	1826	18.12	250	

Table: Optimality Gap (%) and Number of Iterations of Cases 4-10