USC

Searching large neighborhoods for
Integer linear programs with contrastive learning

Bistra Dilkina

Associate Professor of Computer Science
Co-Director of USC Center on Al in Society
University of Southern California

MIP Workshop
Apr 25, 2023

Constraint Reasoning and Optimization

Decision making problems of larger size and new problem structure
drive the continued need to improve combinatorial solving methods

Worst Case complexity

No. of atoms
on earth 10

>

Multi-Agent
10301,020 SM Systems
10150,500 Integrating renewables
in Power Grid
1015.050
103010

Corridor Planning

| 50
1030 e g% Wind Farm Layout
.- |

USC

ML <= Combinatorial Optimization USC

Exciting and growing research area

Infusing Discrete Optimization
with Machine Learning

Infusing ML with Constrained Decision Making

‘ Initialize

SurCO: MINLP solving using
Differentiable optimization

Neural Networks

LNS for MAPF

[Destroy LNS for MIP MIPaaL: MIP as a layer in

" o ;T" , | Surommeopumiton
x'(y) = argminc(y)"x
; integral Vi Predict surrogate cost ¢ = €(y) &
X X . Predictions ¢ 3 Solution Solution —) " :: MMMMMMMMMMMM
Noele Sellee e fin | 20es o Exact Solving fi)r MILP Backdoors 2o]
Greedy Heuristic 2 : ClusterNET: Differentiable kmeans for
Conflict Selection in CBS .g\——‘. .3 | =5 a class graph optimization problems
H'gh'levj’c—o?sﬁamﬂree - - A Features Predictions Solution Objective
’ A %* PR— . . Branching ogetc | " o -) —
W am e istance s | forte e y
e step H- atXat time step 1 3 I argmax . Arms Trafficking s I~
- X
: i@ i B g =,
1 * 1
JEEE /Rt

~

Money Laundering , i g
o .\
*n O O Fearbie 1cheon!

. ;.::;:;uahwu! i = { . l
Decision-focused learning for
. . submodular optimization and LP
MAPF

Graph Optimization

Integer Programming | . 4 '—l]
@
BN = - B3
Problem Type ° .

Augment discrete optimization Learning methods that incorporate the
algorithms with learning components combinatorial decisions they inform

(XX X

USC
O\ Meta Al

Searching Large Neighborhoods
for Integer Linear Programs
with Contrastive Learning

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, Benoit Steiner

(USC)

(Meta Al, FAIR) (Meta Al, FAIR)

Al

USC

Mixed Integer Programs & their applications

Flexible mathematical program framework

min, cx objective

S.t. Ax <b constraints
xj € ZVj €J integrality

Energy Systems Scientific Discovery Conservation Planning Disaster Response and Planning

—~

USC
Large Neighborhood Search (LNS)

l

1. Find an initial solution via any method

Initialize
Destroy 2. Select a.subset of k variables X' c X: |X'| = k
\ and unassign them.
: } 3. Reassign selected variables X' while keeping all other
Repair . .
variable assignments frozen

Compared to other local search methods,
LNS explores a large neighborhood of possible next solutions in each step

USC
LNS and its applications

* LNS for Constraint Programming
* Perron et al, 2004, 2006; Berthold er al, 2012

» LNS for Vehicle Routing Problems
* Ropke & Pisinger, 2006; Azi et al., 2014
* LNS for Traveling Salesman Problem
* Smith & Imeson, 2017
* LNS for scheduling
« Kovacs et al., 2012; Zulj et al., 2018
» LNS for path planning problems
 Li et al., 2022; 2021

* LNS for Mixed Integer Problems
* Fischetti & Lodi, 2003; Danna et al., 2005; Ghosh, 2007; Berthold, 2014; Maher et al., 2017;
Hendel, 2022

USC
Large Neighborhood Search (LNS) for MIP

l

Initialize 1. Find an initial solution via any method

Opportunity for ML guidance

Destroy 2. Select a subset of k variables X' c X: |X'| = k /

and unassign them.

. 3. Reassign selected variables X’ while keeping all other
Repair } variable assignments frozen:

l solve sub-ILP over X'

USC

Imitation Learning in Decomposition-based LNS

[Jialin Song, Ravi Lanka, Yisong Yue, Bistra Dilkina.
A General Large Neighborhood Search Framework for Solving Integer Linear Programs, NeurlPS, 2020 |

The first work on applying ML-guided LNS to solve ILP

Decompose variables into k equally sized variable subsets, re-optimize each variable subset in turn

Algorithm 1 Decomposition-based LNS

|

Input: an optimization problem P, an initial solutions S'x, a decomposition X = X; U XoU---U X, a
solver F'
for:=1,--- ,kdo
Sx = FIX_AND_OPTIMIZE(P,Sx, X, F)
end for
return Sx

Learn predict good decompositions from offline data
with imitation learning using behavior cloning (BC-LNS) and forward training (FT-LNS)

Data collection: given current solution, sample multiple random decompositions and evaluate solution
improvement, add the best decomposition for training set for imitation learning

MVC BA 1000 MVC ER 1000 MAXCUT BA 500 MAXCUT ER 500
Gurobi 440.08 + 1.26 482.15 £ 0.82 | —3232.53 + 16.61 | —4918.07 & 12.43
Random-LNS | 433.59 & 0.51 471.21 £ 0.36 | —3583.63 = 3.81 | —5488.49 X 6.60
BC-LNS 433.09 - 0.53 | 470.20 £ 0.34 | —3584.90 - 4.02 | —5494.76 + 6.51
FT-LNS 432.00 £ 0.52 | 470.04 X037 | —3586.29+ 3.33 | —5496.29 - 6.69
RL-LNS 434.16 + 0.38 471.52 £ 0.15 | —3584.70 X 1.49 | —5481.57 + 2.97
Table 1: Comparison of different LNS methods and Gurobi for MVC and MAXCUT problems.
CATS Regions 2000 CATS Regions 4000 CATS Arbitrary 2000 CATS Arbitrary 4000
Gurobi —94559.9 + 2640.2 —175772.9 + 2247.89 | —69644.8 &+ 1796.9 —142168.1 & 4610.0
Random-LNS —99570.1 £ 790.5 —201541.7 &+ 1131.1 —85276.6 & 680.9 —170228.3 + 1711.7
BC-LNS —101957.5 = 752.7 | —207196.2 + 1143.8 —86659.6 & 720.2 | —172268.1 + 1594.8
FT-LNS —102247.9 - 709.0 | —208586.3 & 1211.7 | —87311.8 & 676.0 —169846.7 &+ 5293.2

Table 2: Comparison of different LNS methods and Gurobi for CATS problems.

Objective Values with LNS Iterations Objective Values with LNS Iterations

000000 —— Random-LNS

BC-LNS
—— FT-LNS

—— Random-LNS

~85000 - BC-LNS
— FT-LNS ~76000 -

0000000

000000

£ -80000

000000

0000000

-102500

T T T T T
2 4 6 8 10 2 4 6 8 10
LLLLLLLLLLLL LNS Iteraions

(a) CATS with 2000 items and (b) CATS with 2000 items and
4000 bids from regions distribu- 4000 bids from arbitrary distri-
tion. bution.

USC
Large Neighborhood Search (LNS) for MIP

l

Initialize 1. Find an initial solution via any method

\ Opportunity for ML guidance
Destroy 2. Select a subset of k variables X' c X: |X'| = k

\ and unassign them.

Repair

3. Reassign selected variables X’ while keeping all other
variable assignments frozen Algorithm 1 LNS for ILPs

: Input: An ILP.

2” + Find an intial solution to the input ILP

t+ 0

while time limit not exceeded do
X' + Select a subset of variables to destroy
2! + Solve the ILP with additional constraints {z; = xb ¢ X t}
t—t+1

return z*

PUR—
[a—

USC

RL-LNS: Reinforcement Learning Approach in LNS for MIP

[Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang.
Learning Large Neighborhood Search Policy for Integer Programming . NeurlPS, 2021]

Learning to select destroy sets by reinforcement learning

Update dynamic features

Static features

,|4><d,l

| | | | -

Variable f 174 Destroy operator
min./.ll@+ ﬂz@ + ,113@+ ;i et Teatures L>| Sample
A11%1 + A12X; + Ay3X3 + A14%4 < by - @f ——)|:|

SOLVER
(Repair operator)

IP formulation

Incidence matrix A —>|
n(aclse)

I|3>< c 4x1

Constraint features C
L

CISISIS)

a21x1 + azzxz + a23X3 + a24X4 S bz

a31x1 + a32x2 + a33X3 + a34X4 S b3

IP formulation
J L J

GNN based Policy Environment

J

State s,

O Variable to optimize QO Current solution value O Reoptimized solution value

Data collection: collected with training
Training: GCN over bipartite MIP graph with features from [Gasse et al, 2019],

each variable is predicted separately (shared parameters)

trained with Actor-Critic
Test: compares favorably to decomposition-based R-LNS and FT-LNS,

as well as random U-LNS, SCIP and Gurobi

-Variable nodes -Constraint nodes

USC
Large Neighborhood Search (LNS) for MIP

l

TEPNE 1. Find an initial solution via any method
Initialize Opportunity for ML guidance
\ Oracle: Local Branching (slow but good)
. / . G __
Destroy 2. Select a subset of k variables X' € X: |X'| =k

and unassign them.

. 3. Reassign selected variables X’ while keeping all other
Repair }

variable assignments frozen Algorithm 1 LNS for ILPs

: Input: An ILP.

2” + Find an intial solution to the input ILP

t+ 0

while time limit not exceeded do
X' + Select a subset of variables to destroy
2! + Solve the ILP with additional constraints {z; = xiiwi ¢ X t}
t—t+1

return z*

PUR—
[a—

USC

Local Branching (Fischetti & Lodi, 2003)

LNS-destroy: Given an ILP and a feasible solutions x*,
choose at most k variables to reoptimize while fixing the rest

How to find the optimal subset of k variables?
(the k variables to select, which maximize the objective value of the repaired solution)

Local Branching: solve a MIP with n variables and m + 1 constraints

min,, cTx objective
S.t. Ax <b constraints
x; € {0,1} Vi integrality

Variable i is selected
z X; + 2 (1 —-x;)) =k [for LNS if changed
i =0 L =1 value from x*

USC
IL-LNS: Imitation Learning Approach in LNS for MIP

[Sonnerat, N., Wang, P., Kitena, I., Bartunov, S., and Nair, V. Learning a large neighborhood search algorithm
for mixed integer programs”. arXiv preprint, 2021]

Learning to imitate Local Branching

Neural Neighborhood

Initialize Selection Sub-problem

|"PUt MIP assignment I Select 7, I = I
mm(* . T o] variablesto [%] wit b’|7r xt—f—l [
Neural 0 1 { unassign w| VAMabes | o¢f the-shelf B Output
. . — = — ——— — final
s.t. AI <b Diving 12 N Solver L assignment

T E R” l L l

0 0 0
r;€Z,ie€Zl C{l,..., n} —

Update currﬂt assignment

Data collection: solve MIPs for Local Branching (2-3 hours each)
Training: GCN over bipartite MIP graph with features from [Gasse et al, 2019],

-Variable nodes -Constraint nodes

each variable is predicted separately (shared parameters)
Test: combines Initial Solution by Neural Diving + IL-LNS, compares to SCIP

USC
Summary: ML in LNS for MIP

Method Representation Neural Architecture Action Training method

Song et al. NeurlPS 2020 PCA of A matrix MLP Partition variables Imitating best sampled
into p sets partition

Sonnerat et al. 2021 Variable-constraint | GCN Select subset of k Imitating oracle

IL-LNS graph variables (local branching)

Wu et al. NeurlIPS 2021 Variable-constraint | GCN Select subset of k Standard RL

RL-LNS graph variables

- Liu, Fischetti, Lodi. Learning to search in local branching. AAAI 2022 - ML to tune the runtime limit and neighborhood sizes
for Local Branching.

Learn the Repair heuristic for Routing Problems
- André Hottung, Kevin Tierney. Neural large neighborhood search for routing problems. Artificial Intelligence 2022
- Falkner et al. Large Neighborhood Search based on Neural Construction Heuristics, 2022

https://arxiv.org/abs/2004.00422
https://arxiv.org/abs/2107.10201
https://openreview.net/forum?id=IaM7U4J-w3c

Our approach: CL-LNS

Instead of learning only from the best samples provided by local branching...

We also learn to distinguish between good and bad samples with contrastive learning

Contrastive pairs

ra

similarity(,—m
e

Positive Pair

Negative Pair

)

2 —
I(,E) Iog(esim"arity(m &) + esim"arity() " esimilarity())

USC

A contrastive loss is a function whose value is low when the predicted action is similar to the positive samples

and dissimilar to the negative samples (similarity measured by dot products)

USC

Prior Work on Contrastive Learning for COP

 Contrastive learning of visual representations (Hjelm et al., 2019; He et al., 2020; Chen et al., 2020)
and graph representations (You et al., 2020; Tong et al., 2021)

« Mulamba et al. (2021) derive a contrastive loss for decision-focused learning to solve COPs with
uncertain inputs that can be learned from historical data

» Duan et al. (2022) use contrastive pre-training to learn good representations for SAT.

Training and data collection pipeline

MIP instances

min

S.t.

clx For each
Axr <b instance
x € {0,1}"

solution

Find an initial

Supervised contrastive
learning to predict good
neighborhood

NN

Run 10 LNS steps

Find the best-
improving
neighborhood

reoptimize

Run Local

Branching
MIIP for 1
hour

Add to dataset /

In addition, find

1. Positive examples:
suboptimal
neighborhoods

2. Negative examples:
bad neighborhoods
similar to the good ones
3. Compute features

—

USC

USC

Contrastive learning - Data collection

For each training instance, we use the following procedure to collect data
* LNS + an exhaustive Local Branching search in the destroy step

1. Find an initial solution via any method

Initialize
\ 2. Run Local Branching with 1-hour cutoff to select the
. Destroy subsets of k variables that give the best improvement
- Collect multiple good subsets (up to 10)
10 LNS steps \ - Collect multiple bad subsets similar to the good ones (up to 90)
_ 3. Reassign selected variables X' while keeping all other
_{ Repair } variable assignments frozen

! .

Contrastive learning - Data collection details

SCIP: Solve the
Local Branching ILP

\ 4

A set of solutions:
- Optimal LB solution
- Sub-optimal solution

- Sub-optimal solution

Top solutions

\

Positive Samples

S~

Negative samples

- Take the optimal solution
- Randomly perturb it to
get negative samples

USC

Contrastive learning - Data collection details

SCIP: Solve the
Local Branching ILP

A set of solutions:
- Optimal LB solution

_| - Sub-optimal solution

- Sub-optimal solution

\

} Top solutions

Positive Samples

S~

Negative samples

- Take the optimal solution
- Randomly perturb it to
get negative samples

Optimal sample := variables changed in the optimal solution found by
local branching solved by SCIP within 1 hours

best_improve := improvement of the optimal sample over incumbent objective value

Positive samples:

All solutions found by local branching with improvement >= 0.5 * best_improve

up to max of 10 solutions

USC

Contrastive learning - Data collection details

A set of solutions:
- Optimal LB solution Top solutions
SCIP: Solve the - Sub-optimal solution T~
, > Positive Samples
Local Branching ILP

- Sub-optimal solution :
Negative samples
- Take the optimal solution

- Randomly perturb it to
get negative samples

Optimal sample := variables changed in the optimal solution found by
local branching solved by SCIP within 1 hours
best_improve:= improvement of the optimal sample over incumbent objective value

Negative samples (P * Num Positive Samples, P=9):

Randomly replace 5% of variables in the optimal sample, Solve it with SCIP
Record it as a negative sample if improvement <= 0.05 * best_improve
If not enough negative samples found, increase to 10% to 20%, 30%...100%

USC

USC

Features + ML Architecture

Variable features:
Static features from MIP:
[Gasse et al 2019] features (23)

+ [Khalil et al 2017] features (72) — not used in [Sonnerat et al, 2021]

Dynamic features: Include the features of past W incumbent solutions, Feature
size=W"*3

Features: incumb exists, incumbent value, LB-relax value

Edge features and constraint features: Static from MIP, the same as used in
preViOUS work -Variable nodes -Constraint nodes

Features

Gasse et al 2019

Khalil et al 2017 (at root)

‘eature escription oun eference
Feat Descript Count Ref
Category Name (count) Description Static Features (18)
. . : : Objective function coeffs. Value of the coefficient (raw, positive only, negative only) 3
ty}?e (3) Va'nable_ t'ype (C(?ntln}lous’_ blr}ary’ lnteg.er) Num. constraints Number of constraints that the variable participates in (with a non-zero coefficient) 1
obj_coef The decision variable’s objective coefficient The degree of a constraint is the number of variables that participate in it. A variable may participate in
has_1b Does the variable have a lower bound? Stats. for constraint degrees ~ multiple constraints, and statistics over those constraints’ degrees are used. The constraint degree is 4
has_ub Does the variable have an upper bound? computed on the root LP (mean, stdev., min, max) — :
V Vars § e i S f . £ A variable’s positive (negative) coefficients in the constraints it participates in (count, mean, stdev., min, 10
root_lp_at_lb Variable at it’s lower bound in the root LP? tats. for constraint coefts. .y
X 3y % ?
root_lp_at_ub Variable z?t it’s upper bognd in the root LP? Dynamic Features (54)
root_lp_frac Is the variable fractional in the root LP? — — —— ' , '
Ip_basis (4) Variable root LP status (basic, lower, upper, superbasic) Slack and ceil distances min{Z; — |73, [2}] — &} and [&;] — 7} — . 2
Pseudocosts Upwards and downwards values, and their corresponding ratio, sum and product, weighted by the 5 (Achterberg
E Edges coef Constraint coefficient fractionality of z; i : i S i 2009)
Infeasibility statistics Number and fraction of nodes for which applying SB to variable z; led to one (two) infeasible children 4
obj_cos_sim Cosine similarity of objective and constraint (during data collection) . . . ,
3 e Stats. for constraint desrees A dynamic variant of the static version above. Here, the constraint degrees are on the current node’s LP. 7
bias Constant bias : g The ratios of the static mean, maximum and minimum to their dynamic counterparts are also features
C Constrs root_lp_tight Constraint tightness in the root LP . . (Alvarez,
Min/max for ratios of L .
root_lp_dual Dual value In the root LP constraint coeffs. to RHS Minimum and maximum ratios across positive and negative right-hand-sides (RHS) 4 Louveaux, and
T R X R ' Wehenkel 2014)
sense (3) Constraint direction (S: 25 :) Min/max for one-to-all The statistics are over the ratios of a variable’s coefficient, to the sum over all other variables’ coefficients, (Alvarez,
coefficient ratios for a given constraint. Four versions of these ratios are considered: positive (negative) coefficient to sum of 8 Louveaux, and
positive (negative) coefficients Wehenkel 2014)
An active constraint at a node LP is one which is binding with equality at the optimum. We consider 4
weighting schemes for an active constraint: unit weight, inverse of the sum of the coefficients of all
Stats. for active constraint variables in constraint, inverse of the sum of the coefficients of only candidate variables in constraint, dual 24 (Patel and
coefficients cost of the constraint. Given the absolute value of the coefficients of x; in the active constraints, we Chinneck 2007)

compute the sum, mean, stdev., max. and min. of those values, for each of the weighting schemes. We also
compute the weighted number of active constraints that z; is in, with the same 4 weightings

Table 1: Description of the atomic features.

26

USC

ntrastive learning — ML Architecture/——
Co aslive lea 9 c ecture Training data for one LNS step
V, E, C Features
]IcnpUt Embedding Variable side Final embedding + —
catures layers message passing Sigmoid = [0,1]" Spos Positive Samples a = {0,1}"
A VA — V2 =——>7(x)
Snheq Negative samples a’ = {0,1}"
n X d n X 64 ! % 64 n X1 9
E /
m X n\ -Variable nodes -Constraint nodes
C = C! C?
m X ¢ m X 64 m X 64

Constraint side
message passing

ML Architecture: ILP Graph + Embedding layers to d=64 + graph attention network
(GAT) (Brody et al., 2022) with H=8 attention heads + two rounds of message passing
+ MLP + sigmoid -> [0,1] score per variable

We use the same message-passing mechanism in previous work (Gasse et al., 2019)
We replace convolution layers with attention layers

USC

ntrastive learning - L ' —
Contrastive lea 9 oss Function Training data for one LNS step
< V, E, C Features
:fnpUt Embedding Variable side Final embedding + —
catures layers message passing Sigmoid = [0,1]" Spos Positive Samples a = {0,1}"
Ve Vi V2 > 7(x)
n X d n X 64 A n x 1 Sneg Negative samples a’ = {0,1}"
E=_
o _,
C =———p C! C?
m X ¢ m X 64 m X 64 supervised contrastive loss
Constraint side InfoNCE
message passing (Oord et al., 2018,;
He et al., 2020)
Loss computation: 1
The final loss is summed -——— E log .
- |Spos| D ales exp(a’'Tn(x)/T)
over multiple LNS steps aESpos a'€SpegU{a}
in the batch

optimizes the negative log probability of the final embedding being similar to the positive samples

Testing pipeline

Run until timeout

A MIP instance 0
1
min c'x Compute
Find an initial 0 | features
> —
S.t. Az < b solution 0
x € {0,1}" -

Neighborhood selection during testing:
e Given a neighborhood size k

>

Use the ML model to
predict r(x) and select
variables to destroy

el \
7
~ O e

LR WA

reoptimize

* Greedily choose k variables with the largest embedding values (x)

Adaptive Neighborhood Size (Sonnerat et al.)

 When no improving solution is found, k <« kXa wherea > 1
 We upper bound k by half of the number of variables

>

Experimental Setup

MVC: Minimum Vertex Cover
MIS: Maximum Independent Set
CA: Combinatorial Auction

SC: Minimum Set Cover

USC

Small Instances Large Instances
Name MVC-S MIS-S CA-S SC-S MVC-L MIS-L CA-L SC-L
#Variables 1,000 6,000 4,000 4,000 2,000 12,000 8,000 8,000
#Constraints 65,100 23,977 2,675 5,000 | 135,100 48,027 5,353 5,000
Training and Testing Testing only

USC

Baselines

- BnB: SCIP Branch and Bound solver (with the aggressive mode -improving the objective value)
- RANDOM: LNS with random neighborhood selection

- LB-RELAX: LNS with local branching relaxation heuristics [Huang et al, CPAIOR 2023]

- IL-LNS: SOTA imitation learning approach [Sonnerat et al, 2021]

- RL-LNS: SOTA reinforcement learning approach [Wu et al, 2021]

VS.

- CL-LNS (ours)

Primal Gap

USC

Results: Primal Gap over Time (secs)

e BN B e RANDOM LB-RELAX ‘ IL-LNS e RL-LNS m— CL-LNS
1071 1071
Q -2 Q. Q
10_2 o 10 © ©
= £ E
a a a
107 1073
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
Min Vertex Set-S Min Vertex Set-L Max Independent Set-S Max Independent Set-L
Y 10_1' 3 10-1;
10-1 1079 RS\
3 3 \R‘ 3 3
© © © ©
O O O O
£ g107 £ £
a . a a . a
1072 1072 10-2
0 1000 2000 3000 %75 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
Min Set Cover-S Min Set Cover-L

Combinatorial Auctions-S Combinatorial Auctions-L

USC

Primal gap % at 60 minutes - Small instances

- Min Vertex Set-S 6 Max Independent Set-S

2

Primal Gap:
normalized difference

1.5
3 between the primal bound
2 v (at time cutoff) and a
05 - . precomputed best known
0 * . 0 i 00 i i . ODIECVE Value v*

o
BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS as /0

[N

. . L. _ _ v — v*
Combinatorial Auctions-5S i Min Set Cover-S | | « 100%

max(v, v*, €)
2.5
1.5
1rr :
L i

BnB RANDOM LB-RELAX IL-LNS RL-ANS CL-LNS BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS

=

o B N W A~ U1 OO N
wv

USC

Primal Integral at 60 minutes - Small instances

90
80
70
60
50
40
30
2
1

o O

0

300

250

200

150

100

5

o

0

Min Vertex Set-S

Iii-l_

BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS

Combinatorial Auctions-S

BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS

250

200

150

100

50

160
140
120
100

80

20

Max Independent Set-S

BnB RANDOMLB-RELAX IL-LNS RL-LNS CL-LNS

Min Set Cover-S

BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS

The primal integral at
time q is the integral
on [0, q] of the primal
gap as a function of
runtime.

Captures the quality of
and

the speed at which
solutions are found.

USC

Primal gap at 60 minutes - Large instances

; Min Vertex Set-L) Max Independent Set-L
2.5 7
6
2
5
1.5 4
1 3
2
0.5
s 1 e 1 .
0 R — 0 e l— —
BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS
Combinatorial Auctions-L Min Set Cover-L
7 4.5
6 4
3.5
5
3
4 2.5
3 2
1.5
2
1
! i i -
0 —— 0

BnB RANDOM LB-RELAX [IL-LNS RL-LNS CL-LNS BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS

USC

Primal Integral at 60 minutes - Large instances

Min Vertex Set-L . Max Independent Set-L
160 5
140 300
120 250
100 200
80
150
60

100

40
3 1M . H
. o 0 — B e

BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS

o

Combinatorial Auctions-L Min Set Cover-L
400 250
350
200
300

250

150
200
150 100
100
50
0 0

BnB RANDOMLB-RELAX IL-LNS RL-LNS CL-LNS BnB RANDOMLB-RELAX IL-LNS RL-LNS CL-LNS

Survival Rate with
Primal Gap <= 1.00%

Survival Rate with
Primal Gap =1.00%

USC

Results: Su rvival Rate at a given primal gap threshold is the fraction of instances with

primal gaps below the threshold under the method of choice

- BNB e RANDOM LB-RELAX IL-LNS m— RL-LNS — CL-LNS
1.0 —_— 1.0 1.0 — 1.0 —
—— s S e P % w
0.8 =5 0.8 ‘ =3 0.8 ! =50.8
=5 =5 =5
(] (] (O] J
0.6 = V0.6 = V0.6 ‘ = V1 0.6 (
o % o % o % |
0.4 w004 © O 0.4 TOO0.4
2T == 2 =
0.2 W € £0.24 £ £0.2] CEo0.2
g N N
0.0{ ' ' ' DLE: . . . 0.01° . . . 0.01° : ' .
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds
Min Vertex Set-S Min Vertex Set-L Max Independent Set-S Max Independent Set-L
1.0 1.0 1.0 1.0
N X X
0.8 £ 3 0.81 =8 0.81 £ 3 0.81
=5 =5 =3
(O] [} Q
0.61 = V0.6 = V1 0.6/ = V0.6
<G <G < G
0.4 w004 w004 TOO0.4
i 2= 2= 2=
0.2 2E0.2 CE0.2 € E£0.2
nag - N
0.01 - - . 0.0{" . — 0.0 , 0.0 . , ,
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Runtime in Seconds Runtime in Seconds Runtime in Seconds Runtime in Seconds

Combinatorial Auctions-S Combinatorial Auctions-L Min Set Cover-S Min Set Cover-L

USC
Ablation Study

- Imitation Learning vs. Contrastive Learning
- GCN vs GAT
- Partial features (PF) vs Full features (FF)
PF: Features from IL-LNS [Sonnerat et al, 2021] approach (Gasse et al. 2019)
FF: PF + additional variable features computed at the root node of BnB (Khalil et al. 2016)

IL-LNS(-GCN-PF) ~ ----- CL-LNS-GCN-PF == CL-LNS(-GAT-FF)

IL-LNS-GAT-FF ———= CL-LNS-GAT-PE IL-LNS benefits from GAT+FF but still

underperforms all CL-LNS variants

On MVC-S, CL-LNS-GAT-PF has better
primal integral than CL-LNS-GCN-PF =
benefit of replacing GCN with GAT.

[
o
N
__—4'-_7‘
=
o
o

Primal Gap
Primal Gap

2]

On CA-S, CL-LNS-GAT-FF has better
primal integral than CL-LNS-GAT-PF =

r/"':- .
[
o
|

......

-w
e

e
0 1000 2000 3000 0 1000 2000 3000 benefit of replacing PF with FF.
Runtime in Seconds Runtime in Seconds
(a) MVC-S (b) CA-S Adding the two enhancements to the

overall best performance of CL-LNS

USC

Conclusion

» proposed CL-LNS to learn efficient and effective destroy heuristics in LNS for ILPs.
» Based on the novel idea of using Contrastive Loss

» Presented a novel data collection process tailored for CL-LNS

» Used GAT with a richer set of features to further improve its performance

» CL-LNS significantly outperformed state-of-the-art approaches on four benchmarks, according to multiple
metrics

« CL-LNS achieved good generalization performance to larger instances

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina and Benoit Steiner. ICML 2023

https://arxiv.org/pdf/2302.01578.pdf

NIiH)

National Institutes

USC

CRITICAL INFRASTRUCTURE
RESILIENCE INSTITUTE

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

Design discrete optimization algorithms ‘ DEPARTMENT of the INTERIOR

. ; SE CLIMATE SCIENCE CENTER
with learning components
Learning methods that incorporate the 00 Meta AI

ML 4 Combinatorial
Optimization

Exciting and growing research area

combinatorial decision making they inform Qu ALCOMNMVWN
B Microsoft
m Microso
Thank you! Ex¢onMobil

sz | PAUL G. ALLEN
XCH Georgia | FAMILY FOUNDATION
Tech |

