Partial optimality in Cubic Correlation Clustering

Silvia Di Gregorio joint work with Bjoern Andres and David Stein

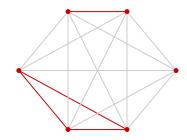
> Faculty of Computer Science, TU Dresden

> > May 22, 2023

Cubic Correlation Clustering

Let $n \ge 3$, $c \in \mathbb{R}^{\binom{n}{3}+\binom{n}{2}}$, S be the set containing all binary vectors inducing a clustering.

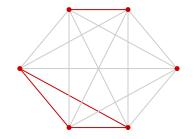
min
$$\sum_{pqr \in \binom{n}{3}} c_{pqr} x_{pq} x_{pr} x_{qr} + \sum_{pq \in \binom{n}{2}} c_{pq} x_{pq}$$
s.t. $x \in S$.



Cubic Correlation Clustering

Let $n \ge 3$, $c \in \mathbb{R}^{\binom{n}{3}+\binom{n}{2}}$, S be the set containing all binary vectors inducing a clustering.

min
$$\sum_{pqr \in \binom{n}{3}} c_{pqr} x_{pq} x_{pr} x_{qr} + \sum_{pq \in \binom{n}{2}} c_{pq} x_{pq}$$
s.t. $x \in S$.



- Example of nonlinear combinatorial optimization problem
- NP-hard to solve

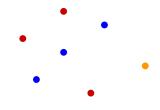
Goal: computing a partial solution to the problem efficiently

Motivation: Correlation Clustering

- Goal: given n points somehow related, cluster them
- No prior knowledge of optimal number of clusters (Bansal et al. '04)

Motivation: Correlation Clustering

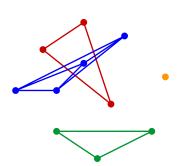
- Goal: given n points somehow related, cluster them
- No prior knowledge of optimal number of clusters (Bansal et al. '04)



Motivation: Correlation Clustering

- Goal: given n points somehow related, cluster them
- No prior knowledge of optimal number of clusters (Bansal et al. '04)
- For any two points p, q, we introduce binary variable x_{pa}:

$$x_{pq} = 1 \iff p, q \text{ in same cluster}$$

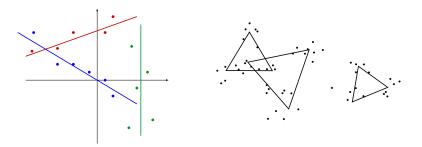


Motivation: Cubic objective

Want to compare three points at the same time.

Applications (Levinkov et al. '22):

- subspace clustering (affine lines in 2D or linear planes in 3D)
- scale-invariant recognition of symbols and rigid objects under scaling, rotation, translations

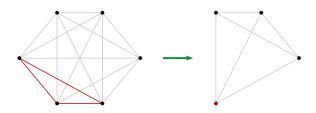


Motivation: Partial optimality

- Helpful in reducing size of the instance: then either exact algorithm or heuristic
- Recent local search heuristics for several applications of higher-order correlation clustering (Levinkov et al. '17, '22)
- Successful approach for linear objective functions (Alush, Goldberger '12; Lange et al. '18, '19)

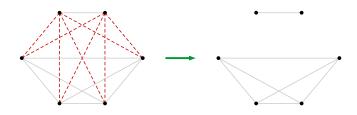
Motivation: Partial optimality

- Helpful in reducing size of the instance: then either exact algorithm or heuristic
- Recent local search heuristics for several applications of higher-order correlation clustering (Levinkov et al. '17, '22)
- Successful approach for linear objective functions (Alush, Goldberger '12; Lange et al. '18, '19)
- Fixing variables to 1 leads to a smaller instance (join condition)



Motivation: Partial optimality

- Helpful in reducing size of the instance: then either exact algorithm or heuristic
- Recent local search heuristics for several applications of higher-order correlation clustering (Levinkov et al. '17, '22)
- Successful approach for linear objective functions (Alush, Goldberger '12; Lange et al. '18, '19)
- Fixing variables to 0 leads potentially to smaller instances (cut condition)



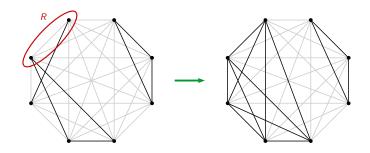
Overview results

- In contrast to some usual approaches: we do not introduce additional variables and we do not employ a LP (or convex) relaxation (Adams et al. '98)
- Generalize all partial optimality for linear objective function and establish new conditions
- Total of 11 criteria: 3 cut, 8 join
- We can check all of them efficiently: either via an exact algorithm or through a heuristic
- Tested on two datasets
- Obtained by combining appropriately improving maps (Shekhovtsov '13)

Improving maps: Join

Let $x \in S$, $R \subseteq [n]$, the *elementary join map* σ_R is defined as

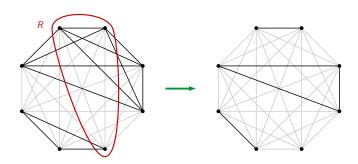
$$\sigma_R(x)_{pq} := \begin{cases} 1 & \text{if } pq \in \binom{R}{2} \\ 1 & \text{if } \forall p' \in \{p,q\} \setminus R \ \exists q' \in R \colon x_{p'q'} = 1 \\ x_{pq} & \text{otherwise} \end{cases}$$



Improving maps: Cut

Let $x \in S$, $R \subseteq [n]$, the elementary cut map $\sigma_{\delta(R)}$ is defined as

$$\sigma_{\delta(R)}(x)_{pq} := \begin{cases} 0 & \text{if } pq \in \delta(R) \\ x_{pq} & \text{otherwise} \end{cases}$$



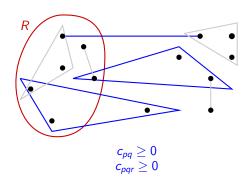
First cut criterion

Proposition

If there exists $R \subseteq [n]$ such that

$$c_{pq} \ge 0$$
 $\forall pq \in \delta(R)$
 $c_{pqr} \ge 0$ $\forall pqr \in T_{\delta(R)}$

then there is an optimal solution x^* such that $x_{ij}^* = 0$ for all $ij \in \delta(R)$.



- Can be tested exactly by greedy algorithm
- Split instance in independent smaller instances

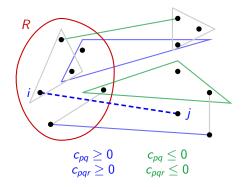
Second cut criterion

Proposition

Let $ij \in \binom{n}{2}$. If there exists $R \subseteq [n]$ with $ij \in \delta(R)$ and

$$c_{ij}^{+} \geq \sum_{pqr \in \mathcal{T}_{\delta(R)}} c_{pqr}^{-} + \sum_{pq \in \delta(R)} c_{pq}^{-},$$

then there is an optimal solution x^* such that $x_{ij}^* = 0$.



- Can be tested exactly by reducing it to a min st-cut problem
- Does not divide the instance in independent smaller instances

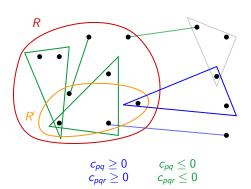
Join criterion

Proposition

If there exists $R \subseteq [n]$ such that $c_{pq} \le 0$, $c_{pqr} \le 0$ inside of R, and

$$\max_{\substack{R' \subset R \\ R' \neq \emptyset}} \left\{ \sum_{\substack{pqr \in T_{\delta(R')} \cap {R \choose 3}}} c_{pqr} + \sum_{\substack{pq \in \delta(R',R \setminus R')}} c_{pq} \right\} \leq \sum_{\substack{pqr \in T_{\delta(R)} \cap T^{-}}} c_{pqr} + \sum_{\substack{pq \in \delta(R) \cap P^{-}}} c_{pq}$$

then there is an optimal solution x^* such that $x_{ij}^*=1$, for all $ij\in {R\choose 2}$.

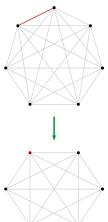


- Can be tested with a heuristic: combination of a greedy region growing and min st-cut problem
- Leads to one smaller instance

Practical impact

Goal: examine effectiveness empirically by computing percentage of fixed optimal values

- Combine partial optimality criteria in a recursive algorithm
- Start with join criteria

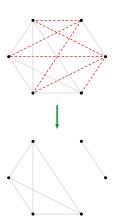




Practical impact

Goal: examine effectiveness empirically by computing percentage of fixed optimal values

- Combine partial optimality criteria in a recursive algorithm
- Start with join criteria
- Then move to cut criteria
 - First the one that divides instance in connected components



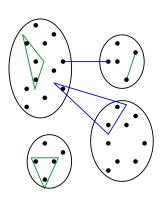
Practical impact

Goal: examine effectiveness empirically by computing percentage of fixed optimal values

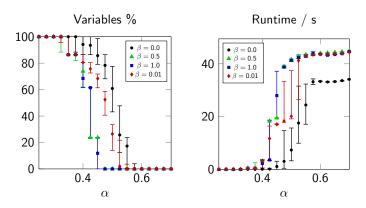
- Combine partial optimality criteria in a recursive algorithm
- Start with join criteria
- Then move to cut criteria
 - First the one that divides instance in connected components
 - Lastly the remaining ones

Partition dataset: Description

- Instances defined with respect to a partition into four sets
- $\alpha \in [0,1]$: similarity between intraand inter-clusters' costs
- $\beta \in [0,1]$: quantity of triples' costs relative to quantity of pairs' costs



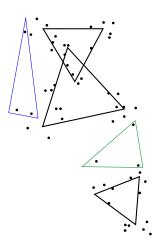
Partition dataset: Results



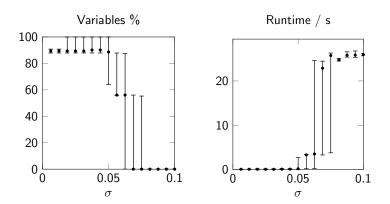
- 30 repetitions, number of points fixed to 48
- The percentage of fixed variables decreases with increasing α , while β has no big effect
- $m{lpha}$ increases, runtime increases (< 1 minute)

Triangles dataset: Description

- Geometric problem of finding equilateral triangles in a noisy point cloud
- We fix three equilateral triangles in the plane
- For each vertex of a triangle, we draw points around it from a Gaussian distribution with standard deviation σ



Triangles dataset: Results



- 30 repetitions, number of points fixed to 45
- The percentage of fixed variables decreases with increasing σ
- σ increases, runtime increases (< 40 seconds)

Conclusions

- Generalized all partial optimality criteria for linear objectives to the cubic setting, and developed new ones
- Devised exact or heuristic algorithms to test each condition
- Tested them on two datasets

Conclusions

- Generalized all partial optimality criteria for linear objectives to the cubic setting, and developed new ones
- Devised exact or heuristic algorithms to test each condition
- Tested them on two datasets

Next steps:

- Currently working on a linearization approach and a branch-and-cut algorithm: using partial optimality conditions as a preprocessing
- Instances encoded by sparse (hyper)graphs

Thanks for your attention!

Questions? email: silvia.di_gregorio@tu-dresden.de