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Cubic Correlation Clustering

Let n>3, ce R(g)+(5), S be the set containing all binary vectors
inducing a clustering.

min Z CpgrXpgXprXqr + Z CpgXpq
par(3) pa<(3)

st. x€S8.
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Cubic Correlation Clustering

Let n>3, ce R(§)+(g), S be the set containing all binary vectors
inducing a clustering.

min Z CpgrXpgXprXqr + Z CpgXpq
pare(3) pac(3)

st. x€S8.

= Example of nonlinear
combinatorial optimization
problem

= NP-hard to solve

~ Goal: computing a partial solution
to the problem efficiently
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Motivation: Correlation Clustering

= Goal: given n points somehow °

related, cluster them °

°
= No prior knowledge of L4
. °
optimal number of clusters o .
(Bansal et al. '04) °
° °
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Motivation: Correlation Clustering

= Goal: given n points somehow
related, cluster them

= No prior knowledge of
optimal number of clusters
(Bansal et al. '04)

= For any two points p, q, we
introduce binary variable xp,q: : :

Xpg = 1 <= p, q in same cluster
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Motivation: Cubic objective

Want to compare three points at the same time.

Applications (Levinkov et al. '22):
= subspace clustering (affine lines in 2D or linear planes in 3D)

= scale-invariant recognition of symbols and rigid objects under
scaling, rotation, translations
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Motivation: Partial optimality

= Helpful in reducing size of the instance: then either exact
algorithm or heuristic

= Recent local search heuristics for several applications of
higher-order correlation clustering (Levinkov et al. '17, '22)

= Successful approach for linear objective functions (Alush,
Goldberger '12; Lange et al. '18, '19)
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Motivation: Partial optimality

= Helpful in reducing size of the instance: then either exact
algorithm or heuristic

= Recent local search heuristics for several applications of
higher-order correlation clustering (Levinkov et al. '17, '22)

= Successful approach for linear objective functions (Alush,
Goldberger '12; Lange et al. '18, '19)

= Fixing variables to 0 leads potentially to smaller instances (cut
condition)

.
»
.
.

Se--

\

& m e

4/16



Overview results

= |In contrast to some usual approaches: we do not introduce
additional variables and we do not employ a LP (or convex)
relaxation (Adams et al. '98)

= Generalize all partial optimality for linear objective function
and establish new conditions

= Total of 11 criteria: 3 cut, 8 join

= We can check all of them efficiently: either via an exact
algorithm or through a heuristic

= Tested on two datasets

= Obtained by combining appropriately improving maps
(Shekhovtsov '13)
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Improving maps: Join

Let x € S, R C [n], the elementary join map or is defined as

1 if pg € ('2?)
or(X)pg =41 ifVP e{p,q}\R 3¢ € R: xyqy =1

Xpg Otherwise
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Improving maps: Cut

Let x€ S, R C [n], the elementary cut map os(g) is defined as

0 if pged(R)

Xpq Otherwise

M~i
AV

Ué(R)(X)pq = {
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First cut criterion

Proposition

If there exists R C [n] such that
g >0  Vpged(R)
Cpgr = 0 Vpar € TR

then there is an optimal solution x* such that x;; = 0 for all ij € 5(R).

= Can be tested exactly
by greedy algorithm

= Split instance in
independent smaller
instances
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Second cut criterion

Proposition
Let ij € (5). If there exists R C [n] with ij € 6(R) and
C;J'r = Coqr T Z Cpq>
pPare Ts(r) pqed(R)

then there is an optimal solution x* such that XE- =0.

= Can be tested exactly
by reducing it to a min
st-cut problem

= Does not divide the

instance in
independent smaller
instances

Cpg = 0 Cpg <0

Cpgr > 0 Cpgr < 0
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Join criterion

Proposition
If there exists R C [n] such that cpq < 0, cpqr < 0 inside of R, and

max{ Z Cpar + Z Cpq} < Z Cpar + Z Cpq

RICR )/ )/ — —
R 40 pqr€T5(R/)ﬁ(3 pqES(R',R\R’) pare Ts(ryNT pqES(R)NP

then there is an optimal solution x* such that x; = 1, for all jj € (’2?)

R = Can be tested with a
heuristic:
combination of a
greedy region

4‘ growing and min

st-cut problem

= Leads to one smaller
instance
Cpq = 0 Cpg <0

Cpgr > 0 Copar < 0
par = par = 10/16



Practical impact

Goal: examine effectiveness empirically by computing percentage of

fixed optimal values

= Combine partial optimality criteria
in a recursive algorithm

= Start with join criteria
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Practical impact

Goal: examine effectiveness empirically by computing percentage of
fixed optimal values

= Combine partial optimality criteria
in a recursive algorithm

= Start with join criteria

= Then move to cut criteria
= First the one that divides
instance in connected
components
= Lastly the remaining ones
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Partition dataset: Description

= Instances defined with respect to a
partition into four sets

= « € [0,1]: similarity between intra-
and inter-clusters’ costs

= € [0,1]: quantity of triples’ costs
relative to quantity of pairs’ costs
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Partition dataset: Results
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= 30 repetitions, number of points fixed to 48

= The percentage of fixed variables decreases with increasing «,
while 8 has no big effect

= « increases, runtime increases (< 1 minute)
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Triangles dataset: Description

= Geometric problem of finding
equilateral triangles in a noisy
point cloud

= We fix three equilateral triangles in
the plane

= For each vertex of a triangle, we
draw points around it from a
Gaussian distribution with standard
deviation o
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Triangles dataset: Results
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= 30 repetitions, number of points fixed to 45

= The percentage of fixed variables decreases with increasing o

= o increases, runtime increases (< 40 seconds)
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Conclusions

= Generalized all partial optimality criteria for linear objectives
to the cubic setting, and developed new ones

= Devised exact or heuristic algorithms to test each condition

= Tested them on two datasets
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Conclusions

= Generalized all partial optimality criteria for linear objectives
to the cubic setting, and developed new ones

= Devised exact or heuristic algorithms to test each condition

= Tested them on two datasets

Next steps:

= Currently working on a linearization approach and a
branch-and-cut algorithm: using partial optimality conditions
as a preprocessing

= Instances encoded by sparse (hyper)graphs
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Thanks for your attention!

Questions? email: silvia.di_gregorio@tu-dresden.de
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