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Multi-stage Stochastic Integer Programming

Scenario tree representation

O
‘<.<:O min Z Pn - fn (xn»Zn: yn)
@) nenN
< o
./. » s.t. (Xn,Zn,yn) € Xn(xa(n)»za(n))
O< 0 yn € R™ } Cont. local variables
O
O<:O X, €ER Cont. and integer
wid ® B d Z, € A state variables
Assumptions: Extremely challenging

* Linear constraints and objective
 Stochasticity given by a Markov Chain problems! '



How to Solve these Problems?

Exact techniques R | |

* Convexify the cost-to-go functions
» SDDiP (Zou, Ahmed & Sun, 2019) > < Some limitations on the implementation side
» SDDP for MINLP (Zhang & Sun, 2022)

( )

Our work:
Build an approximation with
convex cost-to-go functions

Approximations
N
> Linear decision rules (LDR) (Kuhn etal, * Transform into 1- or 2-stage stochastic problems
2011) >~ o .
* Good approximations in practice
» Two-stage LDR (Bodur & Luedtke, 2018) D * Only for the continuous variables



Contributions

Main idea:

Create a partial extended
formulation with only integer
variables in the first stage

Aggregation framework:

» Impose additional structure to the
integer variables based on the
stochastic process (e.g., Markov Chain)

Methodology:

» Branch-and-cut algorithm integrated with
SDDP.

» Exact and approximated method.
» MC-based two-stage linear decision rules.

» Approximated method.

Application:

» Hurricane disaster relief logistics planning.




Aggregation Framework

Claim:

The problem would be easier to
solve if we only have 1st-stage
integer variables.

Why?

» Piece-wise convex cost-to-go functions.

» Amenable for decomposition
algorithms (e.g., SDDP)

Partially Extended Reformulation

min Z Pn fn (X0, Y, 2)
nenN
s.t. (X, ) € Xn(xa(n)r Z)

yn € R™ Cont. state and local
.. €R" variables
n

7 € ZlX“V'} Integer first-stage variables

Issue:
Too many first-stage variables!!




Aggregation Framework

Our Solution: Aggregate integer variables based on
the underlying stochastic process (e.g., Markov Chain)

Scenario Tree HN MA MM

T R -
S S

t=1 2 3 1 t=1 2 3 1 t=1 2 3 1 t=1

Here-and-now Markov-based Previous and
(current stage) (current MC state) current MC state



Methodology



Branch-and-Cut + SDDP

Decomposition for Branch-and-Cut (B&C)

the aggregated model +
Stochastic Dual Dynamic Programming (SDDP)

15t Stage B&C tree search e mmmmm e,
; e SDDP for MC :
A and (x1; }’1) Integer e : :
solution ,* I :
|
Benders cut solution : :
! I
! :
. . . N !
Remaining scenario tree S t=2 3 T :
|
|

(Multi-stage problem) T o

(X, yn ) VN E N\ {1}



SDDP Algorithm

SDDP sub-problems ke o I% @
» One per MC-state C< y C< %’
» Also affected by the aggregation g .4 k.
t=1 2 3 4 t=1 2 3 4

' vall
Forward and backwards pass Computationally expensive!!

Forward pass Backward pass

o) L (Goa)

(24, %) -

X<,

t=1 2 3 4




Two-Stage Linear Decision Rules (2S-LDR)

Goal: Three 2S-LDR alternatives
Approximate a multi-stage problem with a
two-stage problem using a linear

transformation of the state variables
(Bodur & Luedtke, 2018)

» Stage-history LDR:
xn(fﬁ) = .utfrg

» Stage-based LDR:

£ty —
» Random variable realizations: xn($n) = “tgt,n

&= (51,11: ---rft,n) vn € N;
» 2S-LDR: » Novel MC-based decision rule:
xn(fﬁ) = fﬁTu Vn € N; xn(‘fﬁ) = .ut,m(n)ft,n

|

New 15t stage variables
for linear transformation



Two-Stage Linear Decision Rules (2S-LDR) &

Aggregated framework Decomposition scheme
and 2S-LDR

T4 | p Cost-to-go
minc z° + ZPnQn(,LL,Z )| +— function for

nen each node

Solution
(@, 24)

Solution

n A Benders
(@, 24)

cuts

s.t. (u, ZA) e X’
z ezt vt e [T]
u, € REC vt e [T]

Yn € Qn(iL,2*) S Vv, € Qy ([, 24)

One sub-problem per
node in the scenario tree



Hurricane Disaster Relief Planning
WITH CONTINGENCY MODALITY



Hurricane Disaster Relief Planning

Description

» Produce and distribute resources from
distribution centers (DCs) to shelters

» Multiple stage:

» Start when the hurricane originates at
sea and ends at landing

» Update information of the hurricane in
each stage

Objective: minimize cost
» Unsatisfied demand

» Transportation, production, and inventory

Continental United States Hurricane Strikes 1950-2021*

The GOES-16 enhanced imagery shows 2021 Hurricanes Ida and Nicholas in detail.

ith21 s(ocms. the 2021 season ranks as the third-busiest Atlantic season on record, behind last year’s unprecedented 30 named storms, and the 27 named storms and one
in 2005. The most destructive storm of 2021 was Category-4 Hurricane lda, which came ashore near Port Fourchon, Louisiana, on August 29.
When Ida made landfall, i i winds were estil d around 150 mph and
aircraft esti its mini central pressure as 930 mb (27.46 in). This

ranks as the d t-int hurri to strike Louisk record, after i
Katrina in 2005. The other landfalling hurricane was Calegory 1 Nicholas, which came
ashore near Sargent Beach, Texas on 14, with i
near 75 mph and a pressure estimated near 991 mb (29.26 inches).

Edna (1954)

@ Edna (1954)

Diana (1984

GOES-16. August 29, 2021 b Mﬁr:ma%tsx o
Salty (20.

© 1740 UTC {Geo-color) " D ot g Goston (2004) :

1sakas (2020)
Nicholas
GOES 5, September 14, 2021
@ M50 UTC (Geo-color)

Hurricane Information
icane Informatios SaffieSimpson
Since 1950, there have been 123 hurricanes that have directly Nicholas [2021) Hurricane Categories
impacted the continental United States. CM“ " (at Strike or Landfall)
Due to coverage density of storms, actual strike locations Cesp (19 .c 5 Sustained Winds (mph)
are approximate. Easy (1950) @ Cotegory 17485
Hanna (2020y o Lﬂ ) Gladys (1968) @

*Strikes-include hurricanes that did not make direct landfall but did 2 (1985) @ Gegeey2-56-110
produce hurricane force winds over land. Beutah (1967) @%ien 1980) ® R,

There were 1o herricane strikies in the continental United States for the years 1951, 1958, 1962,
1973, 1978, 1981, 1962, 1990, and 1954 in the 25h century, and 2000, 2001, 2006, 2009, 2010, 2013, and 2015 0 farin 019
the 215t contury. i 1)002\

image source: NOAANESOLS

@ ey 4—131-155

NOAA National Centers for Environmental Information

www.ncei.noaa.gov

” Febouary 022



Hurricane Disaster Relief Planning

Contingency modalities
» Increase capacity of DCs:
» Choose only one modality

» Ones active, it stays active

Atla

Fri 8AM 75mph Cat 1 NNE 7mph
Thu 8PM 90mph Cat 1 NNE 7mph

Uncertainty

Thu 8AM 110mph Cat 2 N 7mph
Wed,8PM 120mph Cat 3 N 8mph

» Stochastic demand depends on
hurricane intensity and location

#—Wed 8AM“130mph Cat 4 N 9mph
H

H BAHAMAS
&— Tue 8PM 130mph Cat 4 NNW 11mph

i——Tue 8AM 120mph Cat 3 NNW 12mph
1 CUBA

» Evolution of the hurricane is given
by a Markov chain (MC)

.'I'—Mon 8PM 105mph Cat 2 NNW 13mph
. YXAYMANIS

.'.. DOMINICAN REP.
i Mon 8AM 80mph Cat 1 NW 12mph
thththth Sun 8PM 65mph NW 14mph

st p “e3—Sun 11AM 50mph WNW 14mph




Multi-stage Stochastic Model

Scenario Tree Formulation

Hurricane's

Hurricane
originates landing
Operational Modality
cost cost
A A
( o
min Z Dn (F (xL, Vo, Wy, V) + z zncl)
nenN leL
(xl,l xC,l Zl) (xC,Z xI,Z ZZ) (xI,T xC,T ZT)
Choose one
s. L. Z zn =1 VR EN modality
el Modality
Local variables:
Zam)l < Zny VReEN, €L remains active
» Production (v), distribution (y), vneNLEL
unsatisfied demand (w) zmy € {0,1} ’
State variables: (xf, xS, 2,) € Xn(xé(n),xg(n),za(n)) vn €N
\ )
Y

» Contingency modality activation (z)
Local variables and

» Inventory (x!) and capacity (x¢) operational constraints



Stochasticity: Markov Chain

MarkOV Chain (M C) for the hurricane = [ Note: The cone contains the probable path of the storm center but does not show

the size of the storm. Hazardous conditions can occur outside of the cone.
\ N

» Region represented by a grid

» States: intensity + location

» Cone-shape movement until landing
>

MC for intensity (Pacheco & Batta, 2016)

land {

ocean <

Hurricane Larry Current information: x Forecast positions:

Friday September 03, 2021 Center location 14.8 N 40.7 W @ Tropical Cyclone Q Post/Potential TC
11 AM AST Advisory 12 Maximum sustained wind 90 mph Sustained winds: D <39 mph
NWS National Hurricane Center Movement WNW at 16 mph $39-73 mph H74-110 mph M > 110 mph

Potential track area: Watches: Warnings: Current wind extent:
Day 1-3 Day 4-5 Hurricane  TropStm  [MHurricane [l Trop Stm [Hurricane | Trop Stm

Initial state
Location: (7,0)
Intensity: 4




MC-based Tranformations and LDR

MC-based Transformations 2S-LDR for Inventory
for Modalities
» HN: stage-based » Stage-based (LDR-T):
A
Z
tl x?ﬁj(dn) — z dni“t(n)ji
» MA: MC-based i€l
Zfim (1 » Stage + history (LDR-TH) :
» MM: doubleAMC-based xl(dy) = z z i)z
Ztmt(n)mt_l(a(n))l i€l n'eP(n)
» PM: MC + Intensity » Stage + MC state:

A .
Ztmt(n)mﬁ_l(a(n))l xrlzj (dyp) = z Anilltm,(n)ji

LEI




Empirical Results



Experimental Set-up

Experiments
» CPLEX 20.1 + callback
» Single thread

» Time limit: 6 hour

Techniques

» Extensive model
» B&C + SDDP

» 2S-LDR

Instances

>

>
>
>

Small size: 4x5 grid and 5 stages
Large size: 5x6 grid and 6 stages
6 level of intensity
Initial capacity:
» 20%, 25%, 30% of maximum demand
Modality options:
» Setting 1: 10%, 20%, 30% or 40%
» Setting 2: 15%, 30%, 45% or 60%

10 instances per configuration




Value of MC-based Policies

Average Objective Value % Gap closed
Modality Cap.| HN MA PM MM FH |[MA(PM MM )
20% |104,162 102,572 92,924 92,924 82,193 |7.5] 51.9 51.9
Type-1 25% | 73,879 73,442 66,650 66,238 62,972 |3.2| 69.4 73.1
30% | 48,970 48,951 47,425 47,314 47,117|0.3] 89.5 96.7
20% | 104,135 102,625 92,612 92,612 81,182|6.7] 50.9 50.9
Type-2 25% | 73,919 73,487 66,573 65,958 63,654 | 3.3|] 75.6 81.2
30% | 48,970 48,968 47,540 47,349 47,253 | 0.0\ 80.3 97.0{

0% 100%

HN Original

HN: Here-and-now transformation

MA: MC-based transformation considering current MC state
PM: MC-based transformation considering current MC state and previous state intensity
MM: MC-based transformation considering current and previous MC state

FH: Full-history multi-stage problem




Exact Methods - Extensive (Ex) vs. SDDP (S)

| Average Time (sec) | Gap (%)

| HN | MA | PM | MM | PM MM

Modality Cap.| Ex | & [Ex | s [ Ex | 8 [ Ex | S | S S
20% | 260]1,221| 712 (5,969 961 | 4,553 | 1,853 - - 149

Type-1 25% | 132| 195| 361 (1,313 487 | 2,760 626 - - 3.5
30% 73| 102] 109 | 272 222 | 3,380 367 - - 21

20% | 253 1,138 | 919 |5,880| 2,047 |13,224 | 2,951| 20,699 |19.9 17.8

Type-2 25% | 167| 140| 393 (1,324| 651 | 3,635| 817 - 6.2
30% | 82| 102| 119| 205| 271 4,347| 556 gl = 23
Average | 161 483 | 436 )2,494| 773) 5316 | 1,195] 20,699 |19.9 7.8

Poor performance of SDDP due to large number of sub-problems:
69 for HN and 294 for MM

HN: Here-and-now transformation

MA: MC-based transformation considering current MC state

PM: MC-based transformation considering current MC state and previous state intensity
MM: MC-based transformation considering current and previous MC state

FH: Full-history multi-stage problem



Exact Methods - Extensive (Ex) vs. SDDP (S)

| # Optimal | # Feasible | Opt. Gaps (%)
Modality Cap.|HN MA PM MM|HN MA PM MM| HN MA PM MM

20% | 2 0 0 0 810 7 1[53.4 518 56.1 82.0
Type-l 26% | 5 2 0 0/ 5 8 6 0[357 262 279 -
30% (10 8 0 0/ 0 1 4 0| - 154 43 -
20% | 3 0 0 0] 7 10 7 1[43.5 529 614 86.0
Type2 25% | 6 3 0 0| 4 7 6 0[37.2 249 328 -
30% |9 8 0 0/ 1 1 6 0[120 133 64 -
Total/Av. |35 21 0 0]25 37 36 2[36.4 30.7 31.5 84.0

Extensive model cannot solve larger instances.

HN: Here-and-now transformation

MA: MC-based transformation considering current MC state

PM: MC-based transformation considering current MC state and previous state intensity
MM: MC-based transformation considering current and previous MC state

FH: Full-history multi-stage problem



Approximated Methods

Table 3

Solution time and quality of 2SLDR and SDDP bounds. Results for PM over small-size instances.

Average Time (sec)

Relative Difference (%)

Modality Cap. | LDR-TH (LDR-T LDR-MY S-LB| Ex |LDR-TH (£DR-T LDR-M)5-UB|S-LB )
20% | 813.0| 164.4 157.9|549.1| 961.3| 0.12| 0.26 0.11 |0.01 | 0.36

Type-1 25% | 380.1| 843 77.7|347.0| 487.2| 0.08| 011 0.03 {026 0.71
30% | 408.2| 79.0 85.9(400.7f 222.0| 0.12| 0.25 0.00 [0.55| 1.24

20% | 1406.0(247.2 265.2|940.5(2047.3| 0.13| 0.26 0.13 |0.00 | 0.28

Type-2 25% | 670.5| 108.2 98.1|534.4| 651.0| 0.09 | 0.3 0.04|0.23| 0.49
30% | 532.6| 90.0 89.5[434.8| 270.6| 0.12| 0.26 0.01|0.98| 1.29

Average | 701.7\128.9 129.1)534.4 773.2| 0.11 \_0.21 0.05A0.34| 0.73

LDR: S-LB & S-UB:

High-quality solutions and small

computational times

Lower and upper bounds based on SDDP
algorithm. Expensive but effective.




Approximated Methods

Table 4 Solution time and quality of 2SLDR and SDDP bounds. Results for PM over large-size instances.
Average Time (sec) Opt. Gap (%)
Modality Cap.| LDR-T LDR-M S-LB (opt)|LDR-T LDR-M S-UB

(
20% | 5,353 3,732 13,564 (9) 0.62 0.39 0.24
Type-l 26% | 4,235 4,716 13,557 (6) 2.56  2.06 1.91
30% | 1,555 1,675 2,067 (10) | 0.80 0.63 0.27
(5)
(4)
(10
(

20% | 7,489 4,855 18,323 9.00 7.33 9.01
Type-2 25% | 6,664 5,560 14,790 498 4.38 4.28
30% 1,717 1,640 6,971 ) 0.81 0.63 0.30

Av. (Total) 4,502 3,696 11,545 (44) 3.13  2.57 2.67




Summary

» Aggregation framework for MSILP with mixed-integer state variables.
» Reformulation and aggregation of integer variables in the 15 stage.

» Several transformations based on the stochastic process (Markov chain).

» B&C framework integrated with the SDDP algorithm.
» MC-based 2LDR.

Paper available
in 00 and ArXiv

» Hurricane disaster relief planning applications.

» Extensive empirical results showing trade-offs. Thank you!

Questions?




