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Multi-stage	Stochastic	Integer	Programming

Scenario	tree	representation
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min$
!∈#

𝑝! ⋅ 𝑓! (𝑥!, 𝑧!, 𝑦!)

𝑥!, 𝑧!, 𝑦! ∈ 𝑋!(𝑥$ ! , 𝑧$ ! )

𝑥! ∈ ℝ%
𝑦! ∈ ℝ&

𝑧! ∈ ℤ'

𝑠. 𝑡.

Cont.	and	integer	
state	variables

Cont.	local	variables

Assumptions:
• Linear	constraints	and	objective
• Stochasticity	given	by	a	Markov	Chain

Extremely	challenging	
problems!!



How	to	Solve	these	Problems? 3

Exact	techniques
u SDDiP (Zou,	Ahmed	&	Sun,	2019)

u SDDP	for	MINLP	(Zhang	&	Sun,	2022)

Approximations
u Linear	decision	rules	(LDR)	(Kuhn	et	al.,	

2011)

u Two-stage	LDR	(Bodur &	Luedtke,	2018)

• Convexify	the	cost-to-go	functions
• Some	limitations	on	the	implementation	side	

• Transform	into	1- or	2-stage	stochastic	problems
• Good	approximations	in	practice
• Only	for	the	continuous	variables

Our	work:
Build	an	approximation	with	
convex	cost-to-go	functions



Contributions

Main	idea:
Create	a	partial	extended	

formulation	with	only	integer	
variables	in	the	first	stage

Aggregation	framework:
u Impose	additional	structure	to	the	

integer	variables	based	on	the	
stochastic	process	(e.g.,	Markov	Chain)
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Methodology:
u Branch-and-cut algorithm	integrated	with	

SDDP.

u Exact	and	approximated	method.

u MC-based	two-stage	linear	decision	rules.

u Approximated	method.

Application:
u Hurricane	disaster	relief	logistics	planning.



Aggregation	Framework

Claim:
The	problem	would	be	easier	to	
solve	if	we	only	have	1st-stage	

integer	variables.

Why?
u Piece-wise	convex	cost-to-go	functions.

u Amenable	for	decomposition	
algorithms	(e.g.,	SDDP)

Partially	Extended	Reformulation

Issue:	
Too	many	first-stage	variables!!
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𝑦! ∈ ℝ&

𝑧 ∈ ℤ'×|#|

min$
!∈#

𝑝! ⋅ 𝑓! (𝑥!, 𝑦!, 𝑧)

𝑥!, 𝑦! ∈ 𝑋!(𝑥$ ! , 𝑧)

𝑥! ∈ ℝ%

𝑠. 𝑡.

Integer	first–stage	variables

Cont.		state	and	local	
variables



Aggregation	Framework

Our	Solution:	Aggregate	integer	variables	based	on	
the	underlying	stochastic	process	(e.g.,	Markov	Chain)
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Here-and-now
(current	stage)

Markov-based
(current	MC	state)

Previous	and	
current	MC	state



Methodology
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Branch-and-Cut	+	SDDP

Decomposition	for	
the	aggregated	model

Branch-and-Cut	(B&C)	
+

Stochastic	Dual	Dynamic	Programming	(SDDP)
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1st Stage

𝑧* and (𝑥+, 𝑦+)

Remaining	scenario	tree
(Multi-stage	problem)

𝑥!, 𝑦! ∀𝑛 ∈ 𝑁 ∖ {1}

solutionBenders	cut

SDDP	for	MC

𝑡 = 2 T3 …

…

Integer	
solution

…

B&C	tree	search

… …



SDDP	Algorithm

SDDP	sub-problems
u One	per	MC-state

u Also	affected	by	the	aggregation

Forward	and	backwards	pass
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Computationally	expensive!!



Two-Stage	Linear	Decision	Rules	(2S-LDR)

Goal:	
Approximate	a	multi-stage	problem	with	a	
two-stage	problem	using	a	linear	
transformation	of	the	state	variables	
(Bodur &	Luedtke,	2018)

u Random	variable	realizations:	
𝜉!" = 𝜉#,!, … , 𝜉",! ∀𝑛 ∈ 𝑁"

u 2S-LDR:
𝑥! 𝜉!" = 𝜉!"

%𝜇 ∀𝑛 ∈ 𝑁"

Three	2S-LDR	alternatives
u Stage-history	LDR:

𝑥! 𝜉!" = 𝜇"𝜉!"

u Stage-based	LDR:
𝑥! 𝜉!" = 𝜇"𝜉",!

u Novel	MC-based	decision	rule:
𝑥! 𝜉!" = 𝜇",&(!)𝜉",!
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New	1st stage	variables	
for	linear	transformation



Two-Stage	Linear	Decision	Rules	(2S-LDR)

Aggregated	framework
and 2S-LDR

Decomposition	scheme
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min 𝑐%𝑧) + J
!∈+

𝑝!𝑄!(𝜇, 𝑧))

(𝜇, 𝑧)) ∈ 𝑋′

𝜇" ∈ ℝ,⋅.
! ∀𝑡 ∈ [𝑇]

𝑧") ∈ ℤ.⋅/! ∀𝑡 ∈ [𝑇]

𝑠. 𝑡.

Cost-to-go	
function	for	
each	node

1st Stage
𝑧*, 𝜇

𝑦! ∈ 𝑄!(𝜇̂, 𝑧̂*)

Solution
(𝜇̂, 𝑧̂")Benders	

cuts

𝑦!! ∈ 𝑄!!(𝜇̂, 𝑧̂*)…						

Solution
(𝜇̂, 𝑧̂")

One	sub-problem	per	
node	in	the	scenario	tree



Hurricane	Disaster	Relief	Planning	
WITH	CONTINGENCY	MODALITY
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Hurricane	Disaster	Relief	Planning	

Description
u Produce	and	distribute	resources	from	

distribution	centers	(DCs)	to	shelters

u Multiple	stage:

u Start	when	the	hurricane	originates	at	
sea	and	ends	at	landing

u Update	information	of	the	hurricane	in	
each	stage

Objective:	minimize	cost	
u Unsatisfied	demand

u Transportation,	production,	and	inventory
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Hurricane	Disaster	Relief	Planning	 14

Contingency	modalities
u Increase	capacity	of	DCs:

u Choose	only	one	modality

u Ones	active,	it	stays	active

Uncertainty
u Stochastic	demand	depends	on	

hurricane	intensity	and	location

u Evolution	of	the	hurricane	is	given	
by	a	Markov	chain	(MC)



Multi-stage	Stochastic	Model

Scenario	Tree	Formulation
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Local	variables:

u Production	 𝑣 ,	distribution	 𝑦 ,
unsatisfied	demand	 𝑤

State	variables:

u Contingency	modality	activation	 𝑧

u Inventory	 𝑥# and	capacity	 𝑥$

1st stage 2nd stage Tth stage

Hurricane’s
landing

Hurricane	
originates

…
𝜉+ 𝜉, 𝜉-.+

𝑣!, 𝑤!, 𝑦! 𝑣", 𝑤", 𝑦" 𝑣# , 𝑤# , 𝑦#

𝑥$,!, 𝑥&,!, 𝑧! 𝑥&,", 𝑥$,", 𝑧" 𝑥$,# , 𝑥&,# , 𝑧#

min.
%∈'

𝑝% 𝐹 𝑥%# , 𝑦%, 𝑤%, 𝑣% + .
(∈)

𝑧%𝑐(

.
(∈)

𝑧% ≤ 1

𝑧* % ( ≤ 𝑧%(

(𝑥%# , 𝑥%$ , 𝑧%) ∈ 𝑋%(𝑥* %
# , 𝑥* %

$ , 𝑧*(%))

𝑧%( ∈ {0,1}

∀𝑛 ∈ 𝑁

∀𝑛 ∈ 𝑁, 𝑙 ∈ 𝐿

∀𝑛 ∈ 𝑁

∀𝑛 ∈ 𝑁, 𝑙 ∈ 𝐿

𝑠. 𝑡.

Operational	
cost

Modality	
cost

Choose	one	
modality

Modality	
remains	active

Local	variables	and	
operational	constraints



Stochasticity:	Markov	Chain

Markov	Chain	(MC)	for	the	hurricane
u Region	represented	by	a	grid

u States:	intensity	+	location

u Cone-shape	movement	until	landing

u MC	for	intensity	(Pacheco	&	Batta,	2016)
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Initial	state
Location:	(7,0)
Intensity:	4

ocean

land

(0,0)

(0,5)

(9,0)

(0,9)



MC-based	Tranformations	and	LDR

MC-based	Transformations
for	Modalities

u HN:	stage-based	
𝑧".)

u MA:	MC-based
𝑧/&"(!)'
*

u MM:	double	MC-based
𝑧"&! ! &!-. 0 ! .
)

u PM:	MC	+	Intensity
𝑧"&! ! &!-.

/ 0 ! .
)

2S-LDR	for	Inventory

u Stage-based	(LDR-T):

𝑥*+, 𝑑* = +
-∈,

𝑑*-𝜇/ * +-

u Stage	+	history	(LDR-TH)	:

𝑥*+, 𝑑* = +
-∈,

+
*!∈0(*)

𝑑*-𝜇/ *! /+-

u Stage	+	MC	state:

𝑥*+, 𝑑* = +
-∈,

𝑑*-𝜇/3" * +-
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Empirical	Results
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Experimental	Set-up

Experiments
u CPLEX	20.1	+	callback

u Single	thread

u Time	limit:	6	hour

Techniques
u Extensive	model

u B&C	+	SDDP

u 2S-LDR

Instances
u Small	size:	4x5	grid	and	5	stages

u Large	size:	5x6	grid	and	6	stages

u 6	level	of	intensity

u Initial	capacity:	

u 20%,	25%,	30%	of	maximum	demand

u Modality	options:

u Setting	1:	10%,	20%,	30%	or	40%

u Setting	2:	15%,	30%,	45%	or	60%

u 10	instances	per	configuration
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Value	of	MC-based	Policies 20

0%
HN

100%
Original

HN:	Here-and-now	transformation
MA:	MC-based	transformation	considering	current	MC	state
PM:	MC-based	transformation	considering	current	MC	state	and	previous	state	intensity
MM:	MC-based	transformation	considering	current	and	previous	MC	state
FH:	Full-history	multi-stage	problem



Exact	Methods	– Extensive	(Ex)	vs.	SDDP	(S) 21

HN:	Here-and-now	transformation
MA:	MC-based	transformation	considering	current	MC	state
PM:	MC-based	transformation	considering	current	MC	state	and	previous	state	intensity
MM:	MC-based	transformation	considering	current	and	previous	MC	state
FH:	Full-history	multi-stage	problem

Poor	performance	of	SDDP	due	to	large	number	of	sub-problems:	
69 for	HN	and	294 for	MM



Exact	Methods	– Extensive	(Ex)	vs.	SDDP	(S) 22

HN:	Here-and-now	transformation
MA:	MC-based	transformation	considering	current	MC	state
PM:	MC-based	transformation	considering	current	MC	state	and	previous	state	intensity
MM:	MC-based	transformation	considering	current	and	previous	MC	state
FH:	Full-history	multi-stage	problem

Extensive	model	cannot	solve	larger	instances.



Approximated	Methods 23

S-LB	&	S-UB:
Lower	and	upper	bounds	based	on	SDDP	
algorithm.	Expensive	but	effective.

LDR:
High-quality	solutions	and	small	
computational	times



Approximated	Methods 24



Summary

u Aggregation	framework	for	MSILP	with	mixed-integer	state	variables.

u Reformulation	and	aggregation	of	integer	variables	in	the	1st stage.	

u Several	transformations based	on	the	stochastic	process	(Markov	chain).

u B&C	framework	integrated	with	the	SDDP algorithm.

u MC-based	2LDR.

u Hurricane	disaster	relief	planning	applications.

u Extensive	empirical	results	showing	trade-offs.
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Thank	you!

Questions?

Paper	available	
in	OO	and	ArXiv


