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Interior point method vs 
Simplex



Simplex IPM
Dantzig, 1947 Karmarkar 1984

Fast in practice Fast in practice
Exponential in worst case Polynomial in the input size

Polynomial smoothed 
complexity 

Easy to warm start
Numerically stable



Complexity of LP algorithms

§ 𝑛 variables, 𝑚 equality constraints

§ Total encoding L.

§ Worst case bound for Simplex: !
" ≤ 2!

§ Worst case bound for IPMs: poly 𝑛, 𝐿
… lots of recent improvements, see Yin Tat’s talk

min 𝑐!𝑥
𝐴𝑥 = 𝑏
𝑥 ≥ 0

2" poly(𝑛, 𝐿)VS



Complexity of LP algorithms
min 𝑐!𝑥
𝐴𝑥 = 𝑏
𝑥 ≥ 0

§ Some problems with polynomial encoding can be 
formulated as LPs with exponential entries

§ Is there any function 𝑓(𝑛) and an IPM method with 
running time

min poly 𝑛, 𝐿 , 𝑓 𝑛 ?

§ Strongly polynomial algorithm: poly(𝑛) arithmetic 
operations

2" poly(𝑛, 𝐿)VS



Is there a strongly polynomial 
algorithm for Linear 

Programming?

Smale’s 9th question



§ Combinatorial problems: two variable per inequality 
systems, network flows, discounted MDPs, …

§ Tardos ’86: poly 𝑛, log Δ!
dependence only on 𝐴, but not on 𝑏 and 𝑐.

Δ! = max{| det 𝐵 |: 𝐵 submatrix of 𝐴}

§ Layered-least-squares (LLS) Interior Point Method
Vavasis & Ye ’96: poly 𝑛, log �̅�! LP algorithm 
in the real model of computation
�̅�!: Dikin–Stuart–Todd condition number

min 𝑐!𝑥, 𝐴𝑥 = 𝑏 𝑥 ≥ 0

Strongly polynomial algorithms for 
classes of Linear Programs 



Primal and dual LP
§ 𝐴 ∈ ℝ"×$, 𝑐 ∈ ℝ", 𝑏 ∈ ℝ$

§ Complementary slackness:  Primal and dual solutions 
(𝑥, 𝑠) are optimal if 𝑥%𝑠 = 0: 
𝑥& = 0 or 𝑠& = 0 for each 𝑖 ∈ 𝑛 .

§ Optimality gap: 
𝑐%𝑥 − 𝑏%𝑦 = 𝑥%𝑠.

min 𝑐%𝑥
𝐴𝑥 = 𝑏
𝑥 ≥ 0

max 𝑏%𝑦
𝐴%𝑦 + 𝑠 = 𝑐

𝑠 ≥ 0



The central path
§ For each 𝜇 > 0, there exists a unique 

𝑧(𝜇) = (𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)) such that
𝑥 𝜇 !𝑠 𝜇 ! = 𝜇 ∀𝑖 ∈ 𝑛

the central path element for 𝜇.

§ The central path is the algebraic curve 
{𝑧(𝜇): 𝜇 > 0}

§ For 𝜇 → 0, the limit is an 
optimal solution 𝑧∗ = (𝑥∗, 𝑦∗, 𝑠∗).

§ The duality gap is 𝑠 𝜇 #𝑥(𝜇) = 𝑛𝜇.

§ Interior point algorithms: walk down along 
the central path with 𝜇 decreasing 
geometrically.

𝑥∗



The Mizuno–Todd–Ye 
Predictor-Corrector Algorithm

§ Start from point 𝑧$ = (𝑥$, 𝑦$, 𝑠$) 'near' 
the central path at some 𝜇$ > 0.

§ Alternate between 
§ Predictor steps: 'shoot down' the 

central path, decreasing 𝜇 by a 
factor at least 1 − 1/𝑂( 𝑛).
May move slightly 'farther' from the 
central path.

§ Corrector steps: do not change 
parameter 𝜇, but move back 'closer' 
to the central path.

Within 𝑂( 𝑛) iterations, 𝜇 decreases by 
a factor 2.

𝑥∗



§ 𝑂 𝑛(.* log �̅�! iterations

§ �̅�!: Dikin–Stuart–Todd condition number

§ Combinatorial structure of central path:
≤ $

+ short and curved segments connected by 
long and straight parts

Layered Least Squares Interior Point Method
Vavasis-Ye ’96

Short =
𝑂 𝑛".$ log �̅�%

LLS IPM glides 
through the long 

parts in 
𝑂 𝑛".$ log �̅�%



Scaling invariant bounds

§ Central path is invariant under diagonal rescalings, but �̅�% and 
the Vavasis–Ye algorithm are not.

§ poly 𝑛, log �̅�%∗ algorithms
§ Predictor-Corrector Trust Region algorithm

Lan, Monteiro & Tsuchiya ’09
computing the step directions has weakly polynomial 
dependence on 𝑏 and 𝑐

§ Scaling invariant LLS
Dadush, Huiberts, Natura, V. ’20
using combinatorics of circuit imbalances

§ poly 𝑛, log �̅�%∗ bound on the Sonnevend–Stoer–Zhao curvature 
of the central path
Monteiro & Tsuchiya ’08

�̅�%∗ = inf{�̅�%&: 𝐷 ∈ ℝ'×' positive diagonal}



§ �̅�%∗ can be still unbounded

§ Is poly 𝑛, log �̅�%∗ a tight bound on what an IPM can achieve, 
or…

§ Could even strongly polynomial IPMs exist?

2" poly(𝑛, log �̅�N∗ )VS



Impossibility results
§ THEOREM (Allamigeon, Benchimol, Gaubert & Joswig ’18): No 

path following method can be strongly polynomial that stays in 
the wide neighbourhood of the standard log barrier central 
path.

§ Proof using tropical geometry: studies the tropical limit of a 
family of parametrized linear programs.

§ Allamigeon, Gaubert & Vandame ’22: 
extension to arbitrary self-concordant 
barrier functions
IPM analogue of Klee–Minty cube

§ Previous work: 
Deza, Terlaky & Zinchenko ’09



THEOREM (Allamigeon, Dadush, Loho, Natura & V. ’22)
There exists a primal-dual path following method where the 
number of iterations is

O(n3.*log n) min 𝑂(2$),min no. of iterations
of any path following method

2"poly(𝑛, log �̅�N∗ )min{ , }



Following a piecewise linear 
path in the wide neighbourhood

For any piecewise linear curve with 𝑇 pieces on (0, 𝜇4) in 
the 𝜃-wide neighbourhood, our IPM makes at most

𝑂 𝑛3.*𝑇 log
𝑛

1 − 𝜃
iterations is the ℓ+-neighbourhood.

�̅� 𝑧 =
𝑥&𝑠
𝑛

𝐶𝑃 = 𝑧 = 𝑥, 𝑦, 𝑠 :
𝑥𝑠
�̅� 𝑧 = 𝟏

𝒩'(𝛽) = 𝑧 = 𝑥, 𝑦, 𝑠 :
𝑥𝑠
�̅� 𝑧

− 𝟏 ≤ 𝛽

𝒩()(𝜃) = 𝑧 = 𝑥, 𝑦, 𝑠 :
𝑥𝑠
�̅� 𝑧

≥ 1 − 𝜃 𝟏



GOAL: Show the existence of a piecewise linear curve with ≤ 2$
pieces in the wide neighbourhood

Max Central Path 
�̅� 𝜇 = �̅�3 𝜇 , �̅�+ 𝜇 ,… , �̅�$ 𝜇 ,
�̅�(𝜇) = �̅�3(𝜇), �̅�+(𝜇), … , �̅�$(𝜇)

The Max Central Path

�̅�& = max 𝑥&
𝐴𝑥 = 𝑏
𝑥 ≥ 0

𝑐%𝑥 ≤ 𝑂𝑃𝑇 + 𝑛𝜇

�̅�& = max 𝑠&
𝐴%𝑦 + 𝑠 = 𝑐

𝑠 ≥ 0
𝑏%𝑦 ≥ 𝑂𝑃𝑇 − 𝑛𝜇

LEMMA: H̅ I
+$

≤ 𝑥 𝜇 ≤ �̅� 𝜇 and  J̅ I
+$

≤ 𝑠 𝜇 ≤ �̅� 𝜇

�̅� 𝜇 and �̅�(𝜇) not primal & dual feasible, but averaging the 
corresponding solutions gives a PL curve in the wide 
neighbourhood



§ The Max Central Path has 𝑂 2$ segments

§ It is also bounded by the total length of 2𝑛
shadow vertex simplex paths

§ Shadow Vertex Simplex:
average case analysis Borgwardt ’87
smoothed complexity Spielman & Teng ’04 

§ The Max Central Path is also related to the 
tropical central path used in the lower 
bounds

The Max Central Path



Following a piecewise linear 
path in the wide neighbourhood
For any piecewise linear curve with 𝑇 pieces on (0, 𝜇4) in the 𝜃-
wide neighbourhood, our IPM makes at most

𝑂 𝑛3.*𝑇 log
𝑛

1 − 𝜃
iterations is the ℓ+-neighbourhood.

�̅� 𝑧 =
𝑥&𝑠
𝑛

𝐶𝑃 = 𝑧 = 𝑥, 𝑦, 𝑠 :
𝑥𝑠
�̅� 𝑧 = 𝟏

𝒩'(𝛽) = 𝑧 = 𝑥, 𝑦, 𝑠 :
𝑥𝑠
�̅� 𝑧

− 𝟏 ≤ 𝛽

𝒩()(𝜃) = 𝑧 = 𝑥, 𝑦, 𝑠 :
𝑥𝑠
�̅� 𝑧

≥ 1 − 𝜃 𝟏



Polarization of central path 
segments
If there is a linear segment in the wide 
neighbourhood of the central path 
segment

𝐶𝑃 𝜇), 𝜇$ = 𝑥 𝜇 : 𝜇) ≤ 𝜇 ≤ 𝜇$ ,
then this segment is polarized
∃𝐵 ∪ 𝑁 = 1,2, … , 𝑛
𝛾𝑥! 𝜇$ ≤ 𝑥 𝜇 ≤ 𝑛𝑥! 𝜇$ ∀𝑖 ∈ 𝐵
1
𝑛
𝜇
𝜇$
𝑥! 𝜇$ ≤ 𝑥 𝜇 ≤

1
𝛾
𝜇
𝜇$
𝑥! 𝜇$ ∀𝑖 ∈ 𝑁

same for 𝑠(𝜇) with 𝐵 and 𝑁 swapped

𝜇*
𝜇"

B N



Subspace Layered Least Squares 
IPM

New LLS step direction that can 
traverse any polarized segment 
𝐶𝑃 𝜇), 𝜇$ in 𝑂(𝑛).+ log 𝑛) iterations, 
no matter the length

STEP 1: guess the polarizing partition 
𝐵 ∪ 𝑁

Δ𝑥,, Δ𝑠, : Standard affine scaling step

[𝐵 ≔ 𝑖:
Δ𝑥!,

𝑥!
<

Δ𝑠!,

𝑠!
, �̂� ≔ 𝑛 ∖ [𝐵

B N

LEMMA (Roughly): If we are still far from the end of the polarized 
segment, this reveals the polarizing partition:

[𝐵 = 𝐵, �̂� = 𝑁



Predictor-Corrector Trust Region algorithm
Lan, Monteiro & Tsuchiya ’09

Given (𝐵, 𝑁), select the primal direction 
Δ𝑥 ∈ ker 𝐴 such that 

§ make the most progress in 
decreasing variables in 𝑁, while

§ barely change the variables in B

Analogously for Δ𝑠 ∈ im 𝐴#

PROBLEM: cannot compute in strongly 
polynomial time

B N



Subspace Layered Least Squares 
IPM B N

Given (𝐵, 𝑁), select the primal direction 
Δ𝑥 ∈ ker 𝐴 such that 

§ make the most progress in decreasing 
variables in 𝑁, 
restricting 𝛥𝑥- ∈ 𝑉 for a subspace 
𝑉 ⊆ Proj.(ker 𝐴 )

§ 𝑉 is chosen such that any 𝛥𝑥- ∈ 𝑉 can 
be extended to 𝛥𝑥/, 𝛥𝑥- ∈ ker(𝐴)
with small 𝛥𝑥/

§ 𝑉 obtained using an (approximate) 
singular value decomposition



Analysis
B N

Focus on subspaces 𝑉 ⊆ Proj.(ker 𝐴 ) 
and 𝑈 ⊆ Proj0(im 𝐴# )  used in the 
algorithm.

In 𝑂( 𝑛 log 𝑛) iterations

§ We reach the end of the polarized 
segment, or

§ dim(𝑉) and dim(𝑈) increase

Can happen at most 𝑛 times 



THEOREM (Allamigeon, Dadush, Loho, Natura & V. ’22)
There exists a primal-dual path following method where the 
number of iterations is

O(n3.*log n) min 𝑂(2$),min no. of iterations
of any path following method

The same holds for the Lan–Monteiro–Tsuchiya trust region 
algorithm.

2"poly(𝑛, log �̅�N∗ )min{ , }



Summary and open questions
§ Have IPM beaten Simplex yet? Not quite: 
§ Subexponential randomized simplex: 

Kalai ’92, Matoušek, Sharir & Welzl ’92
§ IPM has exponential lower bounds

§ The number of iterations of our algorithm is universally the best 
for any log barrier IPM—up to a factor 𝑂(𝑛!.#log 𝑛)

QUESTIONS
§ Improving on �̅�$∗ , can we find a tighter condition number that is 

always bounded as 𝑂 2& ?
§ Does our algorithm obtain new strongly polynomial algorithms for 

some problems? 
§ Find a tighter analysis of our algorithm
§ Find such “universal” IPM for any self-concordant barrier
§ Develop a strongly polynomial variant of the trust region step


