Carnegie Mellon University Tepper School of Business

Column Elimination

Willem-Jan van Hoeve Carnegie Mellon University

Includes joint work with Ziye Tang and Anthony Karahalios

Partially supported by ONR Grants N00014-18-1-2129 and N00014-21-1-2240, and NSF Award #1918102

Plan

- Column generation: brief introduction
 - graph coloring
- Decision diagrams: an alternative approach
 - column elimination
 - graph coloring
- More structural connections
 - vehicle routing

Graph Coloring

- Assign a color to each vertex
- Adjacent vertices are colored differently
- Minimize the number of colors needed

- Fundamental combinatorial optimization problem
- Many applications, e.g., rostering, scheduling, ...
- Challenge for exact methods: good lower bounds

MIP formulation: Work with color classes

- Let *I* be the set of all independent sets (color classes)
- Binary variable x_i : use independent set i
- Ensure that each vertex is colored
- Comparatively strong LP relaxation

$$\begin{array}{ll} \min & \sum_{i \in I} x_i \\ \text{s.t.} & \sum_{i \in I} a_{ij} x_i = 1 \quad \forall j \in V \\ & x_i \in \{0,1\} \qquad \forall i \in I \end{array}$$

(1) (2)(3) (4)(1) (2)(3) (4)(1) (2)(4)(3) (4)(3) (4)

 $I = \{\{1\}, \{2\}, \{3\}, \{4\}, \\ \{1,2\}, \{1,4\}, \{2,3\}\}$

drawback: I has exponential size

Solve LP via Column Generation

- Master Problem
 - Restricted set *I* of variables ('columns')
 - Initialize to ensure feasibility, e.g., $\{\{1\},\{2\},\{3\},\{4\}\}$
 - Solve LP relaxation: shadow price π_i for vertex *i*
- Pricing Problem
 - Find new LP variable (an independent set) with negative reduced cost: $1 \sum_{i} \pi_{i} y_{i} < 0$
 - This is an integer program (binary y_i)
 - Add to *I* if it exists, otherwise Master LP solution is optimal
- Repeat until Master LP is optimal

Integer Optimality: Branch-and-Price

Branching constraint: vertices i and j have the same color vs. *different* color

> Branch-and-Price for graph coloring: [Mehrotra&Trick 1996] [MMT2011] [GM2012] [HCS2012] [MSJ2016] ...

Column 'elimination' instead of column generation?

- Column generation works with *restricted* set of columns
 - no valid lower bound until optimal LP basis is found *
 - stability and convergence issues due to degenerate LP solutions
 - solving LP as MIP is not sufficient—embed in branch-and-price search
- Alternative: work with *relaxed* set of columns
 - initial relaxation includes columns that are not feasible
 - apply an iterative refinement algorithm to eliminate infeasible columns
 - use *decision diagrams* for compact representation and efficiency
 - no need for shadow prices or branch-and-price; just "MIP-it" (or use standard branch-and-bound)

[vH, *IPCO* 2020] [vH, *Math. Prog.* 2021]

Representing all independent sets as decision diagram

- Exact decision diagram: each r-t path corresponds to an independent set
- Prior work: compilation method that builds the unique minimum size diagram

[Bergman, Cire, vH, Hooker, 2012, 2014]

Reformulating the MIP model

Integer variable y_a: 'flow' through arc a

Two Main Challenges

- 1. Exact decision diagrams can be of exponential size (in the size of the input graph)
 - Use *relaxed* decision diagrams instead
 - Provides lower bound on coloring number
- 2. Solving the constrained integer flow problem is NP-hard
 - Less relevant in practice: MIP solvers scale well
 - But we can also use LP relaxation (polynomial)

Exact and Relaxed Decision Diagrams

Decision diagram D for problem P is $\begin{cases} exact & \text{if } \operatorname{Sol}(D) = \operatorname{Sol}(P) \\ relaxed & \text{if } \operatorname{Sol}(D) \supseteq \operatorname{Sol}(P) \end{cases}$

input graph

11

Incremental Refinement by Eliminating Conflicts

Analysis of overall procedure

Lemma: Conflicts can be found in polynomial time (in the size of the diagram) via a path decomposition of the flow

Lemma: Eliminating *k* conflicts yields diagram of at most O(*kn*) size

- Eliminating one conflict increases each layer by at most one node

Lemma: In each iteration, compilation via conflict elimination produces a valid lower bound

Lemma: Eliminating all conflicts yields the unique exact diagram

Theorem: Algorithm terminates with an optimal solution (if time permits)

Is there any hope that this might work? Yes!

• **Theorem:** Relaxed decision diagram can be *exponentially smaller* than exact decision diagram for proving optimality

Proof sketch:

- There exists a graph coloring instance class (i.e., paths),
- and associated vertex ordering, such that
- the exact decision diagram is of exponential size
- while a polynomial-size relaxed decision diagram exists that proves optimality

Evaluation on DIMACS benchmark instances

(Each instance is solved to optimality by at least one of the two methods)

Column Elimination: How to prove optimality faster?

1. Add upper bound heuristics

[vH, Math. Prog. 2021]

2. Two phases: first solve LPs, then solve MIPs

3. Run portfolio approach over multiple orderings

[Karahalios & vH, *Constraints* 2022]

Vertex ordering can have dramatic impact

4. Embed column elimination in branch-and-bound

Branch-and-Bound with Column Elimination

Design choices:

- Zykov branching (or Ryan/Foster) on two vertices that do not share an edge with highest sum of degrees
- Best-bound node processing order
- Branch after 20s of not improving neither lower nor upper bound

Comparison with Branch-and-Price

- Benchmark: DIMACS Coloring
 instances
- Branch-and-Price: [Held, Cook, & Sewell, 2012]
- Column Elimination: Uses portfolio of orderings [Karahalios & vH, 2022]

Comparison with State of the Art

- Benchmark: DIMACS Coloring
 instances
- Branch-and-Price: [Held, Cook, & Sewell, 2012]
- Column Elimination: Uses portfolio of orderings [Karahalios & vH, 2022]

 CliColCom: [Heule, Karahalios, & vH, CP2022]

Generalization

- Column elimination via decision diagrams is a promising alternative to column generation
- Q: What is needed to apply this to other problems?
- A: Dynamic programming formulation of 'pricing problem'
 - Provides the transition rules to compile the decision diagram
 - Instead of solving for one column, we explicitly represent all columns
 - Solve the LP (or IP) over the entire set of columns! No need to price.
- Next application: Vehicle Routing

Case Study: Truck-Drone Routing

- One truck + one drone
- Possible legs include: truck, drone, combined
- Example route duration =

truck speed: 1 unit per edge drone speed: 0.5 unit per edge

Definition of TSP-D

- TSP-D: Traveling Salesperson with a Drone
- Drone speed = α * truck speed (for some fixed α)
- Goal: minimize route duration
- Assumptions:

Drone cannot be dispatched from the truck while the truck is traveling

Drone can only visit one customer before rejoining with the truck

State of the art: Branch-and-Price

- Master LP: set partitioning model
- Pricing: DP model (with ng-route relaxation)

[Roberti & Ruthmair, TS2021]

Dynamic Programming Model for TSP-D

Decision Diagram Compilation for TSP-D

- Top-down DD compilation can be defined by state transition function of DP model [Bergman et al. 2016]
 - DD nodes are associated with DP states
 - DD arc labels are given by allowed controls
 - similar to state-transition graph in DP
- Apply the previous DP model for TSP-D
 - exact diagram represents all feasible solutions
 - shortest path = optimal solution, but exponential size
- How to compile relaxed decision diagram?
 - apply route relaxation DP (e.g., ng-route), or
 - define new relaxed DD via Column Elimination

Derive Bound From Constrained Network Flow

Constrained integer network flow model (NP-hard):

 $\sum \gamma_a y_a$ \min $a \in A_D$ s.t. $\sum_{a \in \delta^+(u)} y_a = \sum_{a \in \delta^-(u)} y_a, \quad \forall u \in V_D, u \neq r, t$ $\sum y_a = 1$ $a \in \delta^+(r)$ $\sum y_a = 1$ $a \in \delta^{-}(t)$ $y_a = 1, \quad \forall i \in N$ l(a) is a visit to customer i $y_a \in \{0,1\}, \quad \forall a \in A_D$

Lagrangian relaxation:

- Add dual variable to arc weights
- Shortest path in DD (integral)

LP relaxation:

- $0 \le y_a \le 1$ - Use off-the-shelf LP solver

Equivalence of Relaxation Bounds

- Observation: Given a DP model representing a route relaxation R, the associated decision diagram D_R contains exactly all feasible paths corresponding to R
- Let
 - SPLP(R) be the set partitioning LP model with the DP pricing problem
 - CFLP(D_R) be constrained network flow LP defined over D
 - LR(D_R) be the Lagrangian relaxation of the constrained network flow defined over D

Theorem: SPLP(R), CFLP(D_R), and LR(D_R) have the same optimal objective value

Going Beyond the ng-Route Bound

Resolve conflicts along solution paths by refining the DD

Overall Framework

Experimental Evaluation on TSP-D

- Evaluate two variants
 - DD-Flow: lower bound from constrained network flow LP
 - DD-Lagrangian: lower bound from Lagrangian
 - both apply iterative refinement based on conflicts
- Comparison with state-of-the-art bound for TSP-D
 - column generation model from [Roberti&Ruthmair, TS2021]
 - set partitioning LP using ng-route relaxation
- Benchmark
 - random instance generation [Poikonen et al., 2019]
- Upper bound
 - best solution found by CP in 1h [Tang et al, CPAIOR19]

Optimality gap improvement over time

Optimality gap for varying problem sizes

(Time limit for DD methods is the ng-route solving time)

Optimality gap for larger instances

- Column generation does not scale beyond 30 locations
- We therefore compare to LP relaxation of MIP model proposed by [Roberti&Ruthmair, 2019]

Conclusion

- Column Elimination with relaxed decision diagrams can be used as an alternative for column generation/branch-and-price
 - Replaces pricing problem with incremental refinement by eliminating conflicts
 - Provides a lower bound at each iteration. Can solve as LP or MIP.
 - Avoids LP degeneracy and related convergence and stability issues
 - When defined on the dynamic program for pricing problem it produces the same set partitioning LP bound
- Competitive results on graph coloring and TSP+drone routing