Column Elimination

Willem-Jan van Hoeve
Carnegie Mellon University

Includes joint work with Ziyi Tang and Anthony Karahalios

Partially supported by ONR Grants N00014-18-1-2129 and N00014-21-1-2240, and NSF Award #1918102
Plan

• Column generation: brief introduction
 – graph coloring

• Decision diagrams: an alternative approach
 – column elimination
 – graph coloring

• More structural connections
 – vehicle routing
Graph Coloring

- Assign a color to each vertex
- Adjacent vertices are colored differently
- Minimize the number of colors needed

- Fundamental combinatorial optimization problem
- Many applications, e.g., rostering, scheduling, …
- Challenge for exact methods: good lower bounds
MIP formulation: Work with color classes

- Let I be the set of all independent sets (color classes).
- Binary variable x_i: use independent set i.
- Ensure that each vertex is colored.
- Comparatively strong LP relaxation.

Objective function:

$$\min \sum_{i \in I} x_i$$

Subject to:

$$\sum_{i \in I} a_{ij} x_i = 1 \quad \forall j \in V$$

$$x_i \in \{0, 1\} \quad \forall i \in I$$

Drawback: I has exponential size.
Solve LP via Column Generation

- **Master Problem**
 - Restricted set I of variables (‘columns’)
 - Initialize to ensure feasibility, e.g., $\{1\}, \{2\}, \{3\}, \{4\}$
 - Solve LP relaxation: shadow price π_i for vertex i

- **Pricing Problem**
 - Find new LP variable (an independent set) with negative reduced cost: $1 - \sum_i \pi_i y_i < 0$
 - This is an integer program (binary y_i)
 - Add to I if it exists, otherwise Master LP solution is optimal

- Repeat until Master LP is optimal
Integer Optimality: Branch-and-Price

Solve LP with ColGen

\[c(i) = c(j) \]

\[c(i) \neq c(j) \]

Branching constraint: vertices i and j have the same color vs. different color

Solve LP with ColGen

Solve LP with ColGen

Branch-and-Price for graph coloring:
[Mehrotra&Trick 1996] [MMT2011] [GM2012]
[HCS2012] [MSJ2016] …
Column ‘elimination’ instead of column generation?

• Column generation works with *restricted* set of columns
 – no valid lower bound until optimal LP basis is found *
 – stability and convergence issues due to degenerate LP solutions
 – solving LP as MIP is not sufficient—embed in branch-and-price search

• Alternative: work with *relaxed* set of columns
 – initial relaxation includes columns that are not feasible
 – apply an iterative refinement algorithm to eliminate infeasible columns
 – use *decision diagrams* for compact representation and efficiency
 – no need for shadow prices or branch-and-price; just “MIP-it” (or use standard branch-and-bound)

* But can use reduced cost information to find *approximate* LP bound

[vH, IPCO 2020]
[vH, Math. Prog. 2021]
Representing all independent sets as decision diagram

• **Exact decision diagram:** each r-t path corresponds to an independent set

• Prior work: compilation method that builds the unique minimum size diagram

Reformulating the MIP model

- Integer variable y_a: ‘flow’ through arc a

$$
(F) = \min \sum_{a \in \delta^+(r)} y_a \quad \text{minimize number of paths (colors)}
$$

s.t. \quad \sum_{a=(u,v) | L(u)=j, \ell(a)=1} y_a = 1 \quad \forall j \in V \quad \text{— one 1-arc per vertex}

$$
\sum_{a \in \delta^-(u)} y_a - \sum_{a \in \delta^+(u)} y_a = 0 \quad \forall u \in N \setminus \{r, t\} \quad \text{— ‘flow conservation’}
$$

$$
y_a \in \{0, 1, \ldots, n\} \quad \forall a \in A \quad \text{integrality}
$$
Two Main Challenges

1. Exact decision diagrams can be of exponential size (in the size of the input graph)
 - Use relaxed decision diagrams instead
 - Provides lower bound on coloring number

2. Solving the constrained integer flow problem is NP-hard
 - Less relevant in practice: MIP solvers scale well
 - But we can also use LP relaxation (polynomial)
Exact and Relaxed Decision Diagrams

- Decision diagram D for problem P is

 \[\begin{align*}
 \text{exact} & \quad \text{if } \text{Sol}(D) = \text{Sol}(P) \\
 \text{relaxed} & \quad \text{if } \text{Sol}(D) \supseteq \text{Sol}(P)
 \end{align*}\]

\[\begin{align*}
\text{exact} & \quad \text{if } \text{Sol}(D) = \text{Sol}(P) \\
\text{relaxed} & \quad \text{if } \text{Sol}(D) \supseteq \text{Sol}(P)
\end{align*}\]

input graph

\[\begin{align*}
\text{relaxed} & \quad \text{(5 nodes)} \\
\text{relaxed} & \quad \text{(8 nodes)} \\
\text{exact} & \quad \text{(10 nodes)}
\end{align*}\]
Incremental Refinement by Eliminating Conflicts

input graph

Optimal!
Lemma: Conflicts can be found in polynomial time (in the size of the diagram) via a path decomposition of the flow

Lemma: Eliminating k conflicts yields diagram of at most $O(kn)$ size
 – Eliminating one conflict increases each layer by at most one node

Lemma: In each iteration, compilation via conflict elimination produces a valid lower bound

Lemma: Eliminating all conflicts yields the unique exact diagram

Theorem: Algorithm terminates with an optimal solution (if time permits)
Theorem: Relaxed decision diagram can be \textit{exponentially smaller} than exact decision diagram for proving optimality

Proof sketch:
- There exists a graph coloring instance class (i.e., paths),
- and associated vertex ordering, such that
- the exact decision diagram is of exponential size
- while a polynomial-size relaxed decision diagram exists that proves optimality

Is there any hope that this might work? Yes!
Evaluation on DIMACS benchmark instances

- Relaxed decision diagram can be orders of magnitude smaller than exact decision diagram to prove optimality, but not always

DSJR500.1 \((n=500, m=3,555)\)
- Exact DD: \(\geq 1\text{M nodes}\)
- Relaxed DD: 627 nodes

(Each instance is solved to optimality by at least one of the two methods)
Column Elimination: How to prove optimality faster?

1. Add upper bound heuristics
 [vH, Math. Prog. 2021]

2. Two phases: first solve LPs, then solve MIPs

3. Run portfolio approach over multiple orderings
 - Vertex ordering can have dramatic impact
 [Karahalios & vH, Constraints 2022]

4. Embed column elimination in branch-and-bound
Branch-and-Bound with Column Elimination

Design choices:
- Zykov branching (or Ryan/Foster) on two vertices that do not share an edge with highest sum of degrees
- Best-bound node processing order
- Branch after 20s of not improving neither lower nor upper bound
Comparison with Branch-and-Price

- Benchmark: DIMACS Coloring instances
- Branch-and-Price: [Held, Cook, & Sewell, 2012]
- Column Elimination: Uses portfolio of orderings [Karahalios & vH, 2022]
Comparison with State of the Art

- Benchmark: DIMACS Coloring instances
- Branch-and-Price: [Held, Cook, & Sewell, 2012]
- Column Elimination: Uses portfolio of orderings [Karahalios & vH, 2022]
- CliColCom: [Heule, Karahalios, & vH, CP2022]
Column elimination via decision diagrams is a promising alternative to column generation.

Q: What is needed to apply this to other problems?

A: Dynamic programming formulation of ‘pricing problem’
 – Provides the transition rules to compile the decision diagram
 – Instead of solving for one column, we explicitly represent all columns
 – Solve the LP (or IP) over the entire set of columns! No need to price.

Next application: Vehicle Routing
Case Study: Truck-Drone Routing

• One truck + one drone
• Possible legs include: truck, drone, combined
• Example route duration =
 \[
 \max\{1, 0.5 + 0.5\} + 1 + \max\{1+1, 0.5 + 0.5\} + \max\{1, 0.5 + 0.5\}
 = 6
 \]

truck speed: 1 unit per edge
drone speed: 0.5 unit per edge
Definition of TSP-D

- TSP-D: Traveling Salesperson with a Drone
- Drone speed = $\alpha \times$ truck speed (for some fixed α)
- Goal: minimize route duration
- Assumptions:

State of the art: Branch-and-Price
- Master LP: set partitioning model
- Pricing: DP model (with ng-route relaxation)

[Roberti & Ruthmair, TS2021]
Dynamic Programming Model for TSP-D

State definition \((S, LC, LT, t)\), where
- \(S\) = customers visited so far
- \(LC\) = latest location visited by both vehicles
- \(LT\) = latest location visited by truck alone
- \(t\) = time spent by the truck traveling alone since leaving LC

Set of controls
- truck leg for customer \(i\): \(T_i\)
- drone leg: \(D_i\)
- combined leg: \(C_i\)

Route: \(T_1, T_2, D_4, C_3, C_0\)

Roberti&Ruthmair, 2021
Decision Diagram Compilation for TSP-D

• Top-down DD compilation can be defined by state transition function of DP model
 [Bergman et al. 2016]
 – DD nodes are associated with DP states
 – DD arc labels are given by allowed controls
 – similar to state-transition graph in DP

• Apply the previous DP model for TSP-D
 – exact diagram represents all feasible solutions
 – shortest path = optimal solution, but exponential size

• How to compile relaxed decision diagram?
 – apply route relaxation DP (e.g., ng-route), or
 – define new relaxed DD via Column Elimination
Derive Bound From Constrained Network Flow

Constrained integer network flow model (NP-hard):

\[
\begin{align*}
\min & \quad \sum_{a \in A_D} \gamma_a y_a \\
\text{s.t.} & \quad \sum_{a \in \delta^+(u)} y_a = \sum_{a \in \delta^-(u)} y_a, \quad \forall u \in V_D, u \neq r, t \\
& \quad \sum_{a \in \delta^+(r)} y_a = 1 \\
& \quad \sum_{a \in \delta^-(t)} y_a = 1 \\
& \quad \sum_{l(a) \text{ is a visit to customer } i} y_a = 1, \quad \forall i \in N \\
& \quad y_a \in \{0, 1\}, \quad \forall a \in A_D
\end{align*}
\]

Lagrangian relaxation:
- Add dual variable to arc weights
- Shortest path in DD (integral)

LP relaxation:
- \(0 \leq y_a \leq 1\)
- Use off-the-shelf LP solver
Equivalence of Relaxation Bounds

• **Observation:** Given a DP model representing a route relaxation R, the associated decision diagram D_R contains exactly all feasible paths corresponding to R

• Let
 – $\text{SPLP}(R)$ be the set partitioning LP model with the DP pricing problem
 – $\text{CFLP}(D_R)$ be constrained network flow LP defined over D
 – $\text{LR}(D_R)$ be the Lagrangian relaxation of the constrained network flow defined over D

Theorem: $\text{SPLP}(R)$, $\text{CFLP}(D_R)$, and $\text{LR}(D_R)$ have the same optimal objective value
Going Beyond the ng-Route Bound

- Resolve conflicts along solution paths by refining the DD

Type 1: objective function
- Duration = 7
- Path length = 6
- Route 2: T3, T2, D4, C1, C0

Type 2: repeated visits
- Customer 3 repeated
Overall Framework

- Construct initial DD-based route relaxation
- Compute lower bound (LP flow or Lagrangian)
- Refine conflicts along solution paths
Experimental Evaluation on TSP-D

- Evaluate two variants
 - DD-Flow: lower bound from constrained network flow LP
 - DD-Lagrangian: lower bound from Lagrangian
 - both apply iterative refinement based on conflicts
- Comparison with state-of-the-art bound for TSP-D
 - column generation model from [Roberti&Ruthmair, TS2021]
 - set partitioning LP using ng-route relaxation
- Benchmark
 - random instance generation [Poikonen et al., 2019]
- Upper bound
 - best solution found by CP in 1h [Tang et al., CPAIOR19]
Optimality gap improvement over time

- DD-Flow
- DD-Lagrangian
- ng-route

Time Percentages (%) w.r.t ng-route computation time
Number of locations = 15

Time Percentages (%) w.r.t ng-route computation time
Number of locations = 20
Optimality gap for varying problem sizes

(Time limit for DD methods is the ng-route solving time)
Optimality gap for larger instances

- Column generation does not scale beyond 30 locations
- We therefore compare to LP relaxation of MIP model proposed by [Roberti & Ruthmair, 2019]
Conclusion

• Column Elimination with relaxed decision diagrams can be used as an alternative for column generation/branch-and-price
 – Replaces pricing problem with incremental refinement by eliminating conflicts
 – Provides a lower bound at each iteration. Can solve as LP or MIP.
 – Avoids LP degeneracy and related convergence and stability issues
 – When defined on the dynamic program for pricing problem it produces the same set partitioning LP bound

• Competitive results on graph coloring and TSP+drone routing