Monoidal Strengthening

Felipe Serrano

joint work with Sven Wiese, Gonzalo Muñoz, Antonia Chmiela MIP Workshop · May 24, 2022

- Introduced by Balas and Jeroslow in 1980
- It is a technique for strengthening intersection cuts by exploiting the integrality of non-basic integer variables

• We can deduce conditions over the feasible set of a MIP of the form

$$\sum r^j x_j \in S$$
$$x_j \ge 0$$

where *S* is closed and $0 \notin S$

• Consider the constraints $x_j \ge 0$ and the disjunction

$$\sum_{j} lpha_{j} x_{j} \geq 1$$

 $ee \sum_{j} eta_{j} x_{j} \geq 1$

• This is equivalent to $x_j \ge 0$ and

$$\sum_{j} egin{pmatrix} lpha_{j} \ eta_{j} \end{pmatrix} x_{j} \in \mathcal{S} := \{y \in \mathbb{R}^{2} \, : \, y_{1} \geq 1 \lor y_{2} \geq 1\}$$

- Let $\alpha = (1, -2, 1)$ and $\beta = (-3, -\frac{1}{2}, 2)$
- Disjunction $\sum_j \alpha_j x_j \ge 1 \vee \sum_j \beta_j x_j \ge 1$

• Equivalently
$$\sum_{j} \begin{pmatrix} \alpha_{j} \\ \beta_{j} \end{pmatrix} x_{j} \in S := \{y \in \mathbb{R}^{2} : y_{1} \geq 1 \lor y_{2} \geq 1\}$$

• A feasible solution must describe a path into S

• A feasible solution must describe a path into S

• For example,
$$x = (\frac{1}{2}, \frac{3}{5}, \frac{3}{2})$$

- A convex set C is an S-free set if it does not contain any point of S in its interior
- Thus, if x is going to be feasible for $\begin{pmatrix} \sum r^j x_j \in S \\ x_j \ge 0 \end{pmatrix}$, it better be that $x_i \ge 0$ and $\sum r^j x_i \notin int(C)$

- ϕ is a sublinear if it is
 - positively homogeneous: $\phi(rx) = \phi(r)x$ for all $x \ge 0$
 - subadditive: $\phi(\sum_j r^j) \leq \sum_j \phi(r^j)$
- As C is convex with 0 in its interior, there is ϕ sublinear such that

$$C = \{x : \phi(x) \le 1\}$$

int $C)^c = \{x : \phi(x) \ge 1\}$

• If
$$x_j \ge 0$$
 and $\sum_j r^j x_j \notin int(C)$, then

$$1 \le \phi(\sum_j r^j x_j) \le \sum_j \phi(r^j x_j) = \sum_j \phi(r^j) x_j$$

• Intersection cut:

$$1 \leq \sum_{j} \phi(r^{j}) x_{j}$$

• $\phi(r) = ||r||$ is sublinear and $C = \{r : \phi(r) \le 1\}$

• $\phi(r) = ||r||$ is sublinear and $C = \{r : \phi(r) \le 1\}$

• $\phi(r) = ||r||$ is sublinear and $C = \{r : \phi(r) \le 1\}$

• Discussion: coefficient of x₂ doesn't make much sense

• An S-free set C is maximal if there is no other S-free set that strictly contains C

- Recall $\sum_{j} \begin{pmatrix} \alpha_{j} \\ \beta_{j} \end{pmatrix} x_{j} \in S := \{y \in \mathbb{R}^{2} : y_{1} \geq 1 \lor y_{2} \geq 1\}$
- $\phi(r) = \max\{r_1, r_2\}$ is sublinear and $C = \{r : \phi(r) \le 1\}$ is maximal S-free

- Recall $\sum_{j} \begin{pmatrix} \alpha_{j} \\ \beta_{j} \end{pmatrix} x_{j} \in S := \{ y \in \mathbb{R}^{2} : y_{1} \geq 1 \lor y_{2} \geq 1 \}$
- $\phi(r) = \max\{r_1, r_2\}$ is sublinear and $C = \{r : \phi(r) \le 1\}$ is maximal S-free
- Intersection cut: $1 \leq \sum_{j} \phi \begin{pmatrix} \alpha_{j} \\ \beta_{j} \end{pmatrix} x_{j} \iff \sum_{j} \max\{\alpha_{j}, \beta_{j}\} x_{j} \geq 1$

- Recall $\sum_{j} \begin{pmatrix} \alpha_{j} \\ \beta_{j} \end{pmatrix} x_{j} \in S := \{y \in \mathbb{R}^{2} : y_{1} \geq 1 \lor y_{2} \geq 1\}$
- $\phi(r) = \max\{r_1, r_2\}$ is sublinear and $C = \{r : \phi(r) \le 1\}$ is maximal S-free
- Intersection cut: $1 \le \sum_{j} \phi \begin{pmatrix} \alpha_{j} \\ \beta_{j} \end{pmatrix} x_{j} \iff \sum_{j} \max\{\alpha_{j}, \beta_{j}\} x_{j} \ge 1$

• Discussion: coefficients make sense

• S closed, $0 \notin S$ and

$$\sum r^j x_j \in S$$
$$x_j \ge 0$$

- C convex, S-free, $0 \in \text{int } C$, and $C = \{x : \phi(x) \leq 1\}$ with ϕ sublinear
- Intersection cut:

$$1 \leq \sum_{j} \phi(r^{j}) x_{j}$$

• How can we strengthen the cut?

• From

$$\sum r^j x_j \in S$$
$$x_j \ge 0$$

to

$$\sum (r^{j} + m^{j})x_{j} \in S + \sum m^{j}x_{j} \subseteq S + \sum m^{j} \operatorname{dom}(x_{j})$$

 $x_{j} \geq 0$

• If C is $(S + \sum m^{j} \operatorname{dom}(x_{j}))$ -free, we can build a possibly stronger cut:

$$\sum \phi(r^j + m^j) x_j \ge 1$$

• From

$$\sum r^j x_j \in S$$
$$x_j \ge 0$$

to

$$\sum (r^j + m^j) x_j \in S + \sum m^j x_j \subseteq S + \sum m^j \operatorname{dom}(x_j)$$

 $x_j \ge 0$

• If C is $(S + \sum m^{j} \operatorname{dom}(x_{j}))$ -free, we can build a possibly stronger cut:

$$\sum \phi(r^j + m^j) x_j \ge 1$$

 The technique is called "monoidal strengthening" because ∑ m^j dom(x_j) is a monoid: a set closed under addition, with an identity element. • If M is a monoid such that $x_j M \subseteq M$ for all x_j in its domain, then we can obtain the relation

$$x_j \geq 0$$
 and $\sum_j (r^j + m^j) x_j \in S + M.$

If M is a monoid such that x_jM ⊆ M for all x_j in its domain, then we can
obtain the relation

$$x_j \geq 0$$
 and $\sum_j (r^j + m^j) x_j \in S + M.$

• If, in addition, C is also (S + M)-free, then we can get the cut

$$\sum_{j} \phi(r^{j} + m^{j}) x_{j} \ge 1$$

If M is a monoid such that x_jM ⊆ M for all x_j in its domain, then we can
obtain the relation

$$x_j \geq 0$$
 and $\sum_j (r^j + m^j) x_j \in S + M.$

• If, in addition, C is also (S + M)-free, then we can get the cut

$$\sum_{j} \phi(r^{j} + m^{j}) x_{j} \ge 1$$

• The best cut we can obtain with this procedure is

$$\sum_{j} \left(\inf_{m \in M} \phi(r^{j} + m) \right) x_{j} \geq 1$$

Proposition If M is a monoid, C is (S + M)-free, and dom $(x_j)M \subseteq M$, then

$$\sum_{j} \left(\inf_{m \in M} \phi(r^{j} + m)
ight) x_{j} \geq 1, \, \, \textit{is valid}$$

- The objective is to find a monoid such that
 - dom $(x_j)M \subseteq M$ (because then we can modify the rays and still be in S + M)
 - C is (S + M)-free (because then we can still use ϕ to build the cut)
- C is (S + M)-free $\iff C M$ is S-free
- To build *M* we ask ourselves, how can we move *C* keeping it *S*-free?

Continuous variables (dom $(x_j) = \mathbb{R}_+$)

•
$$x_j \ge 0$$
 and $\begin{pmatrix} 1 \\ -3 \end{pmatrix} x_1 + \begin{pmatrix} -2 \\ -\frac{1}{2} \end{pmatrix} x_2 + \begin{pmatrix} 1 \\ 2 \end{pmatrix} x_3 \in S$
• $x_j \ge 0$ and $\begin{pmatrix} 1 \\ -3 \end{pmatrix} x_1 + \left(\begin{pmatrix} -2 \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} 2 \\ \frac{1}{2} \end{pmatrix} \right) x_2 + \begin{pmatrix} 1 \\ 2 \end{pmatrix} x_3 \in S + \begin{pmatrix} 2 \\ \frac{1}{2} \end{pmatrix} \mathbb{R}_+$
• Is $C, S + \begin{pmatrix} 2 \\ \frac{1}{2} \end{pmatrix} \mathbb{R}_+$ -free?

Continuous variables (dom $(x_j) = \mathbb{R}_+$)

•
$$x_j \ge 0$$
 and $\begin{pmatrix} 1 \\ -3 \end{pmatrix} x_1 + \begin{pmatrix} -2 \\ -\frac{1}{2} \end{pmatrix} x_2 + \begin{pmatrix} 1 \\ 2 \end{pmatrix} x_3 \in S$
• $x_j \ge 0$ and $\begin{pmatrix} 1 \\ -3 \end{pmatrix} x_1 + \left(\begin{pmatrix} -2 \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} 2 \\ \frac{1}{2} \end{pmatrix} \right) x_2 + \begin{pmatrix} 1 \\ 2 \end{pmatrix} x_3 \in S + \begin{pmatrix} 2 \\ \frac{1}{2} \end{pmatrix} \mathbb{R}_+$
• Is C , $S + \begin{pmatrix} 2 \\ \frac{1}{2} \end{pmatrix} \mathbb{R}_+$ -free? Is $C - \begin{pmatrix} 2 \\ \frac{1}{2} \end{pmatrix} \mathbb{R}_+$, S-free?

- Applying monoidal strengthening to a continuous variable is only possible when *C* is not maximal
- From now on, we only consider $dom(x_j) = \mathbb{Z}_+$
- Then, we can drop the requirement dom $(x_j)M \subseteq M$, since $\mathbb{Z}_+M = M$

Proposition (Balas, Jeroslow) If M is a monoid, C is (S + M)-free, and $x_j \in \mathbb{Z}_+$, then

$$\sum_{j} \left(\inf_{m \in M} \phi(r^{j} + m) \right) x_{j} \ge 1, \text{ is valid}$$

• Consider

$$\frac{5}{2}x_1 - \frac{1}{2}x_2 - x_3 \in S := \mathbb{Z} - \frac{1}{3}$$
$$x_1, x_2 \in \mathbb{Z}$$
$$x_i \ge 0$$

• Maximal S-free set $C = \left[-\frac{1}{3}, \frac{2}{3}\right]$

• How can we move C and keep it S-free?

• Consider

$$\frac{5}{2}x_1 - \frac{1}{2}x_2 - x_3 \in S := \mathbb{Z} - \frac{1}{3}$$
$$x_1, x_2 \in \mathbb{Z}$$
$$x_i \ge 0$$

• Maximal S-free set $C = \left[-\frac{1}{3}, \frac{2}{3}\right]$

- How can we move C and keep it S-free?
- Move it by $\mathbb{Z}.$ So the monoid is $-\mathbb{Z}=\mathbb{Z}$

Example (cont.): $\frac{5}{2}\overline{x_1-\frac{1}{2}x_2-x_3}\in\mathbb{Z}-\frac{1}{3}$

- Cut before monoidal strengthening: $\frac{15}{4}x_1 + \frac{3}{2}x_2 + 3x_3 \ge 1$
- Cut after monoidal strengthening: $\frac{3}{4}x_1 + \frac{3}{4}x_2 + 3x_3 \ge 1$

Example (cont.): $\frac{5}{2}x_1 - \frac{1}{2}x_2 - x_3 \in \mathbb{Z} - \frac{1}{3}$

- Cut before monoidal strengthening: $\frac{15}{4}x_1 + \frac{3}{2}x_2 + 3x_3 \ge 1$
- Cut after monoidal strengthening: $\frac{3}{4}x_1 + \frac{3}{4}x_2 + 3x_3 \ge 1$
- Why did the cut get better?

• MS modifies r^1 from $\frac{5}{2}$ to $\frac{1}{2} \implies$ harder to leave C

$$-0.5$$
 0.0 $r^{1}-2$ 0.5 1.0 1.5 2.0 2.5

Example (cont.): $\frac{5}{2}x_1 - \frac{1}{2}x_2 - x_3 \in \mathbb{Z} - \frac{1}{3}$

- Cut before monoidal strengthening: $\frac{15}{4}x_1 + \frac{3}{2}x_2 + 3x_3 \ge 1$
- Cut after monoidal strengthening: $\frac{3}{4}x_1 + \frac{3}{4}x_2 + 3x_3 \ge 1$
- Why did the cut get better?

• MS modifies
$$r^1$$
 from $\frac{5}{2}$ to $\frac{1}{2} \implies$ harder to leave C

$$-0.5$$
 0.0 $r^{1}-2$ 0.5 1.0 1.5 2.0 2.5

• MS modifies
$$r^2$$
 from $-\frac{1}{2}$ to $\frac{1}{2} \implies$ harder to leave C
 r^2
 -0.6 -0.4 -0.2 0.0 0.2 $r^2 + 1.0.4$ 0.6 0.8

Back to disjunctive cut

- Consider again $S = \{y \in \mathbb{R}^2 : y_1 \ge 1 \lor y_2 \ge 1\}$ and $C = \{y : y_1 \le 1, y_2 \le 1\}$
- How can we move C and keep it S-free?

Back to disjunctive cut

- Consider again $S = \{y \in \mathbb{R}^2 : y_1 \ge 1 \lor y_2 \ge 1\}$ and $C = \{y : y_1 \le 1, y_2 \le 1\}$
- How can we move C and keep it S-free?
- The only way is to move it towards rec C, so the monoid would be $\operatorname{rec} C$
- This is exactly what we do not want

Back to disjunctive cut

- Consider again $S = \{y \in \mathbb{R}^2 : y_1 \ge 1 \lor y_2 \ge 1\}$ and $C = \{y : y_1 \le 1, y_2 \le 1\}$
- How can we move C and keep it S-free?
- The only way is to move it towards rec C, so the monoid would be $\operatorname{rec} C$
- This is exactly what we do not want

Proposition If $M \subseteq -\operatorname{rec}(C)$, then $\inf_{m \in M} \phi(r + m) = \phi(r)$. Hence, monoidal strengthening does not strengthen.

Other reasons for why MS cannot work

$$S = \{ y \in \mathbb{R}^2 : y_1 \ge 1 \lor y_2 \ge 1 \}$$
$$C = \{ y : y_1 \le 1, y_2 \le 1 \}$$
$$M = -\operatorname{rec}(C)$$

- The monoid is "continuous" (is a convex cone)
- *S* is a (translated) cone

Making monoidal strengthening work for disjunctive cut

•
$$S = \{y \in \mathbb{R}^2 : y_1 \ge 1 \lor y_2 \ge 1\}$$

• To make some room for C to move we need to truncate S

Making monoidal strengthening work for disjunctive cut

•
$$S = \{y \in \mathbb{R}^2 : y_1 \ge 1 \lor y_2 \ge 1\}$$

• To make some room for C to move we need to truncate S

 $S := \{y \in \mathbb{R}^2 : y_1 \ge 1 \lor y_2 \ge 1, y_i \ge b_i\}$

Making monoidal strengthening work for disjunctive cut

- The conditions $y_i \ge b_i$ mean that our disjunctive terms $\sum_j \alpha_j x_j \ge 1$ and $\sum_j \beta_j x_j \ge 1$ become valid inequalities when relaxing the right-hand side to b_1 and b_2 , resp.
- This is a non-trivial condition as it cannot always be achieved!

More general:

•
$$S = \{(x, y) \in \mathbb{R}^{n+m} : ||x|| \le ||y||, a^{\mathsf{T}}x + d^{\mathsf{T}}y = -1\}$$

• $C_{\lambda} = \{(x, y) \in \mathbb{R}^{n+m} : \|y\| \le \lambda^{\top} x, a^{\top} x + d^{\top} y = -1\}$ with $\|\lambda\| = 1$.

Theorem

Let $(x_0, 0)$ be the "apex" of C_{λ} . If $||d|| < -a^T \lambda$, then M defined by

 $\{0,0\} \cup \{(x,y) \in \langle \{\lambda,a\} \rangle \times \mathbb{R}^m : a^\mathsf{T} x + d^\mathsf{T} y = 0, \|x - x_0\| \geq \|y\|, (a - \lambda^\mathsf{T} a \lambda)^\mathsf{T} x \leq -1\}$

is a monoid and C - M is S-free.

- Monoidal strengthening is a technique for strengthening intersection cuts
- Continuous monoidal strengthening is related to maximal S-free sets
- When looking for a monoid we need to ask how to move C while keeping it S-free and avoiding rec(C)

Current and future work

- Implementation of monoidal strengthening for QP in SCIP (and COPT)
- Investigate monoidal strengthening for semi-continuous variables