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Network Design Tools -- Our (early 1990s) Little Cottage Industry at Bellcore

Data: Square nodes have large fixed cost
(switches), Hexagonal nodes have medium
fixed cost, Circular nodes and links have
per unit cost. There is partial capacity.

Problem: Given end-to-end new demands,

determine min-cost expansion to
accommodate all new demands.

Type: MILP

Technologies: SONET, Frame Relay, ATM,
IP over optics.



Novel Extension -- Beyond Typical Regulated Monopoly-Inspired Models

Overanons Reseancy [orms}

Combined Network Design and Multiperiod Pricing: Dat a Dem and _ p rl ce e | astl Clty an d p reVI ous

Modeling, Solution Techniques, and Computation

g SRR 0 fixed costs

Problem: maximize profit (revenue — cost)
over multi-year planning horizon

Type: Novel (very) non-linear objective function

Context: Inspired by companies like Level3
who were putting tons of dark fibers to own
telecom infrastructure globally (early 2000s)




Multicommodity Flow Problem (myMCF) -- Can one solve it ‘analytically’?*

* Include fixed costs? Too complex
e Path-based solution? Maybe later
e Cost minimization? Start with capacity-guided:

Given an arbitrary graph G with weighted symmetric
adjacency matrix4 = AT = (aij) and traffic matrix T =
(tx), the required flow from k to [, route of t;; at k and
each intermediate node j is proportional to a;; until flow
reaches k.

Trivial bookkeeping exercise?

*Joint work with O. Narayan, UCSC.



Extension to non-uniform edge weights and arbitrary demand

G = (N, L)is aconnected graph
A = an NxN symmetric matrix of non—negative weighted adjacencies

d; = X,;a;j is weighted degree of node j
D = an NxN diaginal matrix of weighted adjacencies
L = D — A is the graph Laplacian

n = (N"1YH1,,y perturbation matrix with N~! in all entries
M = L + II is the perturbed graph Laplacian

T = (ti;) is an NxN symmetric non-negative flow matrix
Tr = X tr; the total flow out of node j

T = (Ty) is an NxN diagonal matrix of total nodal out flows
Ly = T — T for symmetric T



Load on each node in myMCEF for a specific commodity k-I

* Start with 1 unit of flow for a given source-destination pair (k, 1)

« Let f*! be the flow at node i. Then

a..
kl JU kil
fim =0y — o6y + E 2/
j~i 7

with the boundary condition f;*! = 0*. In vector

form

fi = vk — pl + AD~1fH

(*)

i

1 message at each time t for |

*We'll add back the total flow terminating at each [in (*****),




Derivation of random load, 1

it = vk — vt + AD71FR with ff=0 (%)

Using the substitution rjkl = fjkl/dj, or ' = D~1f* (*) becomes
D rft = vk — vl + ArH

Or

L rkl = pk — ! (**)

If L were invertible we could just write 7®! = L~1(v* — v') and we’d be nearly there. Need
some adjustment. Notice that (**) is already telling us we have an under-determined system of
equations. We add a homogeneous boundary condition 77*!= 0 which we’ll update at the end.



Aside — Uniform Perturbation of the Laplacian

Let {0 =4y < A4 <...< Ay_; < 2d,,, be the eigenvalues and {§%;a =0,1,...,N — 1}
be the corresponding orthonormal eigenvectors of L. Recall corresponding to 0 = A, have

7 = (1,1, .., DT/VN

Consider projection Il = (%) and M = L + I1. Notice that M has the same eigen system
as L except that 1o(M)= 1.

ME = (L+ME=0+%8 1y =N(3) () 1w =&
and
ME*=(L+MH)E* =LE*+ I &Y = 1, witha > 0.

Above means M has a simple tractable inverse in terms of As and §s. Also observe that

M=L+0O0>MIO=LO+N0*=N*=10->| M 'N=0 (*%%)




Derivation of random load, 2

Let us return to L 1! = v¥ — vl with rlkl= 0 (**).
Adding IT r*! to both sides of (**), we get
Lr*t + I r* = w* —vh) + mrk

Mrk = (v* —vY) + I rk
So at last

rkt = M~ @* —vH + ¥ = M1 (W% —vY) + M1 ¥
— M—l(vk_vl) + Hrkl (by (***))
= M 1w —vH) +0(kD1y

And we can get 8 (kl) from the boundary condition.



Derivation of random load, 3

= = [M~1(v* — v, + 0(kl)

[M~ vk]l — [M_Ivl]l + 6 (kl)
= M1 — M1, + 6(kD)
0(kl) = [M~1], —[M~1],

Now going back to rj"l

rjkl = [M_l]jk - [M_l]jl — M, + M7,

(****)

We can now get fjkl for ty; units from (****)




Derivation of random load, 4 — Final Result

So flow fjkl for ty; units of flow is just tklrjkldj :

If A; denotes the total flow at node j for *all* commodities, then

Aj = Xk Xitr fi+ Dty
= dj X 2 tkl(rjkl = [M_l]jk - [M_l]jl — M7, + [M_l]”) +1;

And at last, if the demand matrix is symmetric (tx;)=(t;%)

A] = dJTT'[LT M_l]

+T,

J

A=DTr[L: MY ]+ T. 1y

(*****)



Derivation of random load, 5 — Case of All-to-All Uniform Flows

If ty; =1 forallk #lthen

This is seen more easily from re-writing (*****) in this form

N=dj ) Yty G D+ T,
k l

a>0




Load due to Net MCF

In derivation of

1
A=(N-1)+ (NZ—) d;
az1l }\a
we allowed RW to go through a transit node multiple times, each time contributing to

load. We may define an alternative load, Kj, which measures the net flow through node.
Thus for neighbors i & j net inflow to node i from neighbor j

kL kl
bj” Di

4 d
Thus in equilibrium

~kt 1 ki okl L

B =5 ) i =+ 5 G+ 8)

i~j
Adding up for all (k, )

_ 1 1
= kl _ .kl _
A 2N(N—1)Zzlrl Ity

K#l i~j



Load due to Net MCF

After substituting for rjklfrom (3),

A 1 a a 1 a a 1
N = o= 2, 0, 2 N~ ) € — 0+

k+li~j a>0

where as before {1,,§%} € eigSys(L).




Maximum Load A4 for Some Prototypical Graphs Using Shortest Paths

3
Square Lattice Ag ~ O(N2) for large N

Hyperbolci grids Ay ~ N2 for large N

For random graph, Aq ~ O(N log(N)) for large N

2
Ge_r (1000'M>



Dan’s software can express sentiments — Example of C code

struct module
{
char gross[3];
int manures[3], stools[6], sh*ts[9];
float zap, dunk, ditch;

}
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