
04/06/20221 © Nokia 2020

Network Design Tools &
Multicommodity Flows

Iraj Saniee

Math & Algorithms Research

Bell Labs, Nokia

Murray Hill, NJ

DANniversary@MIPS, DIMACS May 23, 2022

© Nokia 2020

• Collaborations with Dan Bienstock

• A simplified multicommodity flow model

• Solution outline

• Observations

• Numerical confirmation

• Epilogue

© Nokia 2020

Network Design Tools -- Our (early 1990s) Little Cottage Industry at Bellcore

Data: Square nodes have large fixed cost

(switches), Hexagonal nodes have medium

fixed cost, Circular nodes and links have

per unit cost. There is partial capacity.

Problem: Given end-to-end new demands,

determine min-cost expansion to

accommodate all new demands.

Type: MILP

Technologies: SONET, Frame Relay, ATM,

IP over optics.

© Nokia 2020

Novel Extension -- Beyond Typical Regulated Monopoly-Inspired Models

Data: Demand-price elasticity and previous

fixed costs

Problem: maximize profit (revenue – cost)

over multi-year planning horizon

Type: Novel (very) non-linear objective function

Context: Inspired by companies like Level3

who were putting tons of dark fibers to own

telecom infrastructure globally (early 2000s)

© Nokia 2020

Multicommodity Flow Problem (myMCF) -- Can one solve it ‘analytically’?*

• Include fixed costs? Too complex

• Path-based solution? Maybe later

• Cost minimization? Start with capacity-guided:

Given an arbitrary graph 𝑮 with weighted symmetric
adjacency matrix 𝑨 = 𝑨𝑻 = 𝑎𝑖𝑗 and traffic matrix 𝑻 =
𝑡𝑘𝑙 , the required flow from 𝑘 to 𝑙, route of 𝑡𝑘𝑙 at 𝑘 and

each intermediate node 𝑗 is proportional to 𝑎𝑖𝑗 until flow
reaches 𝑘.

Trivial bookkeeping exercise?

*Joint work with O. Narayan, UCSC.

© Nokia 2020

Extension to non-uniform edge weights and arbitrary demand

𝑮 = 𝑵, 𝑳 is aconnected graph
𝑨 = an 𝑁𝑥𝑁 symmetric matrix of non−negative weighted adjacencies

𝑑𝑗 = ∑𝑗𝑎𝑖𝑗 is weighted degree of node 𝑗

𝑫 = an 𝑁𝑥𝑁 diaginal matrix of weighted adjacencies
𝑳 = 𝑫 − 𝑨 is the graph Laplacian

𝜫 = (𝑁−1)1𝑁𝑥𝑁 perturbation matrix with 𝑁−1 in all entries
𝑴 = 𝑳 +𝜫 is the perturbed graph Laplacian

𝑻 = 𝑡𝑘𝑙 is an 𝑁𝑥𝑁 symmetric non-negative flow matrix
𝑇𝑘 = ∑𝑘 𝑡𝑘𝑙 the total flow out of node j
෩𝑻 = 𝑇𝑘 is an 𝑁𝑥𝑁 diagonal matrix of total nodal out flows
𝑳𝑻 = ෩𝑻 − 𝑻 for symmetric 𝑇

© Nokia 2020

Load on each node in myMCF for a specific commodity k-l

• Start with 1 unit of flow for a given source-destination pair (𝒌, 𝒍)

• Let 𝑓𝑖
𝑘𝑙 be the flow at node 𝑖. Then

𝑓𝑖
𝑘𝑙 = 𝛿𝑖𝑘 − 𝛿𝑖𝑙 +෍

𝑗~𝑖

𝑎𝑗𝑖

𝑑𝑗
𝑓𝑗
𝑘𝑙

with the boundary condition 𝑓𝑙
𝑘𝑙 = 0*. In vector

form

𝒇𝑘𝑙 = 𝒗𝑘 − 𝒗𝑙 + 𝑨𝑫−1𝒇𝑘𝑙 (*)

*We’ll add back the total flow terminating at each 𝑙 in (*****).

j1

𝑘

i j2

𝑙

. . .

. . .

1 message at each time t for l

© Nokia 2020

Derivation of random load, 1

𝒇𝑘𝑙 = 𝒗𝑘 − 𝒗𝑙 + 𝑨𝑫−1𝒇𝑘𝑙 with 𝑓𝑙
𝑘𝑙= 0 (∗)

Using the substitution 𝑟𝑗
𝑘𝑙 = 𝑓𝑗

𝑘𝑙/𝑑𝑗 , or 𝒓𝑘𝑙 = 𝑫−1𝒇𝑘𝑙 (*) becomes

𝑫 𝒓𝑘𝑙 = 𝒗𝑘 − 𝒗𝑙 + 𝑨 𝒓𝑘𝑙

Or

𝑳 𝒓𝑘𝑙 = 𝒗𝑘 − 𝒗𝑙 (**)

If 𝑳 were invertible we could just write 𝒓𝑘𝑙 = 𝑳−𝟏(𝒗𝑘 − 𝒗𝑙) and we’d be nearly there. Need
some adjustment. Notice that (**) is already telling us we have an under-determined system of
equations. We add a homogeneous boundary condition 𝑟𝑙

𝑘𝑙= 0 which we’ll update at the end.

© Nokia 2020

Aside – Uniform Perturbation of the Laplacian

Let {0 = 𝜆0 ≤ 𝜆1 ≤. . . ≤ 𝜆𝑁−1 ≤ 2dmax be the eigenvalues and 𝝃𝛼; 𝛼 = 0, 1, . . . , 𝑁 − 1
be the corresponding orthonormal eigenvectors of 𝑳. Recall corresponding to 0 = 𝜆0, have

(𝝃0)𝑇 = (1,1,… , 1)𝑇/ 𝑁

Consider projection 𝜫 =
1

𝑁 𝑁𝑥𝑁
and 𝑴 = 𝑳+ 𝜫. Notice that 𝑴 has the same eigen system

as 𝑳 except that 𝜆0(M)= 1.

𝑴 𝝃0 = (𝑳 + 𝜫)𝝃0 = 0 + ∑𝑖 𝜉𝑖
0 𝟏𝑁 = 𝑁

1

𝑁

1

√𝑁
𝟏𝑁 = 𝝃0

and
𝑴 𝝃𝛼 = (𝑳 + 𝜫)𝝃𝛼 = 𝑳𝝃𝛼 + 𝜫 𝝃𝛼 = 𝜆𝛼𝝃

𝛼 with 𝛼 > 0.

Above means 𝑴 has a simple tractable inverse in terms of 𝜆𝑠 and 𝝃s. Also observe that

𝑴 = 𝑳 +𝜫→𝑴𝜫 = 𝑳𝜫 + 𝜫𝟐 = 𝜫𝟐 = 𝜫 → 𝑴−1𝚷 = 𝚷 (***)

© Nokia 2020

Derivation of random load, 2

Let us return to 𝑳 𝒓𝑘𝑙 = 𝒗𝑘 − 𝒗𝑙 with 𝑟𝑙
𝑘𝑙= 0 (**).

Adding 𝚷 𝒓𝑘𝑙 to both sides of (**), we get

𝑳 𝒓𝑘𝑙 + 𝚷 𝒓𝑘𝑙 = (𝒗𝑘 −𝒗𝑙) + 𝚷 𝒓𝑘𝑙

𝑴𝑟𝑘𝑙 = (𝒗𝑘 −𝒗𝑙) + 𝚷 𝒓𝑘𝑙

So at last

𝒓𝑘𝑙 = 𝑴−𝟏[(𝒗𝑘 −𝒗𝑙) + 𝚷 𝒓𝑘𝑙] = 𝑴−𝟏(𝒗𝑘 −𝒗𝑙) + 𝐌−𝟏𝚷 𝒓𝑘𝑙

= 𝑴−𝟏(𝒗𝑘−𝒗𝑙) + 𝚷 𝒓𝑘𝑙 (by (***))
= 𝑴−𝟏(𝒗𝑘−𝒗𝑙) + 𝜃(𝑘𝑙)𝟏𝑁

And we can get 𝜃(𝑘𝑙) from the boundary condition.

© Nokia 2020

Derivation of random load, 3

0 = 𝑟𝑙
𝑘𝑙 = [𝑴−𝟏(𝒗𝑘 − 𝒗𝑙]𝑙 + 𝜃(𝑘𝑙)

0 = [𝑴−𝟏𝒗𝑘]𝒍− [𝑴−𝟏𝒗𝑙]𝒍 + 𝜃(𝑘𝑙)
0 = [𝑴−𝟏]𝒍𝒌− [𝑴−𝟏]𝒍𝒍 + 𝜃(𝑘𝑙)

𝜃(𝑘𝑙) = [𝑴−𝟏]𝒍𝒍 −[𝑴
−𝟏]𝒍𝒌

Now going back to 𝑟𝑗
𝑘𝑙

𝑟𝑗
𝑘𝑙 = 𝑴−1

𝑗𝑘 − 𝑴−1
𝑗𝑙 − 𝑴−1

𝑙𝑘 + 𝑴−1
𝑙𝑙 (****)

We can now get 𝑓𝑗
𝑘𝑙 for 𝑡𝑘𝑙 units from (****)

© Nokia 2020

Derivation of random load, 4 – Final Result

So flow 𝑓𝑗
𝑘𝑙 for 𝑡𝑘𝑙 units of flow is just 𝑡𝑘𝑙𝑟𝑗

𝑘𝑙𝑑𝑗 .

If Λ𝑗 denotes the total flow at node j for *all* commodities, then

Λ𝑗 = ∑𝑘∑𝑙 𝑡𝑘𝑙 𝑓𝑗
𝑘𝑙+ ∑𝑘 𝑡𝑘𝑗

= 𝑑𝑗 ∑𝑘∑𝑙 𝑡𝑘𝑙 𝑟𝑗
𝑘𝑙 = 𝑴−1

𝑗𝑘 − 𝑴−1
𝑗𝑙 − 𝑴−1

𝑙𝑘 + 𝑴−1
𝑙𝑙 + 𝑇𝑗

And at last, if the demand matrix is symmetric (𝑡𝑘𝑙)=(𝑡𝑙𝑘)

Λ𝑗 = 𝑑𝑗𝑇𝑟 𝑳𝑇 𝑴
−1 + 𝑇𝑗

𝚲 = 𝑫 𝑇𝑟 𝑳𝑇 𝑴
−1 + ෩𝑻. 𝟏𝑁 (*****)

© Nokia 2020

Derivation of random load, 5 – Case of All-to-All Uniform Flows

𝐼𝑓 𝑡𝑘𝑙 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≠ 𝑙 𝑡ℎ𝑒𝑛

Λ𝑗= 𝑑𝑗𝑁 ෍

𝑎>0

1

𝜆𝑎
+ (𝑁 − 1)

This is seen more easily from re-writing (*****) in this form

Λ𝑗 = 𝑑𝑗 ෍

𝑘

෍

𝑙

𝑡𝑘𝑙 ෍

𝛼>0

1

𝜆𝛼
𝜉𝑙
𝛼 𝜉𝑙

𝛼 − 𝜉𝑘
𝛼 + 𝑇𝑗

© Nokia 2020

Load due to Net MCF

In derivation of

Λ𝑗 = (𝑁 − 1) + (𝑁෍

𝑎≥1

1

λ𝑎
) 𝑑𝑗

we allowed RW to go through a transit node multiple times, each time contributing to

load. We may define an alternative load, Λ𝑗 , which measures the 𝑛𝑒𝑡 𝑓𝑙𝑜𝑤 through node.

Thus for neighbors 𝑖 & 𝑗 net inflow to node 𝑖 from neighbor 𝑗

=
𝑝𝑗
𝑘𝑙

𝑑𝑗
−
𝑝𝑖
𝑘𝑙

𝑑𝑖
Thus in equilibrium

Λ𝑗
𝑘𝑙
=
1

2
෍

𝑖~𝑗

|𝑟𝑖
𝑘𝑙 − 𝑟𝑗

𝑘𝑙| +
1

2
(𝛿𝑖𝑘 + 𝛿𝑖𝑙)

Adding up for all (𝑘, 𝑙)

Λ𝑗 =
1

2𝑁(𝑁 − 1)
෍

𝑘≠𝑙

෍

𝑖~𝑗

|𝑟𝑖
𝑘𝑙 − 𝑟𝑗

𝑘𝑙| +
1

𝑁

© Nokia 2020

Load due to Net MCF

After substituting for 𝑟𝑗
𝑘𝑙from (3),

Λ𝑗 =
1

2𝑁(𝑁 − 1)
෍

𝑘≠𝑙

෍

𝑖~𝑗

෍

𝑎>0

|(𝜉𝑘
𝑎 − 𝜉𝑙

𝑎)
1

𝜆𝑎
(𝜉𝑗

𝑎 − 𝜉𝑖
𝑎)| +

1

𝑁

where as before {𝜆𝑎 , ξ
𝑎} ∈ 𝑒𝑖𝑔𝑆𝑦𝑠(𝑳).

© Nokia 2020

Maximum Load Λd for Some Prototypical Graphs Using Shortest Paths

Square Lattice Λd ~ 𝑂(𝑁
3
2) 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑁

Hyperbolci grids Λd ~ 𝑁2 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑁

For random graph, Λd ~ 𝑂 𝑁 𝑙𝑜𝑔 𝑁 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑁

GE−R 1000,
2

1000

© Nokia 2020

Dan’s software can express sentiments – Example of C code

struct module
{
char gross[3];
int manures[3], stools[6], sh*ts[9];
float zap, dunk, ditch;
}

04/06/202218 © Nokia 2020

