On obtaining the convex hull of quadratic inequalities via aggregations

Santanu Dey1, Gonzalo Muñoz2 and Felipe Serrano3
DANniversary - MIP 2022

1Georgia Tech, USA

2Universidad de O'Higgins, Chile

312 DAMO GmbH, Germany
Context
Quadratically Constrained Quadratic Program

QCQP
Quadratic objective, quadratic constraints:

\[
\begin{align*}
\text{min} & \quad x^T Q_0 x + b_0^T x \\
\text{s.t.} & \quad x^T Q_i x + b_i^T x \leq d_i \quad \forall i \in [m]
\end{align*}
\]
Quadratically Constrained Quadratic Program

QCQP
May be equivalently written as:

$$\begin{align*}
\text{min} \quad & c^T x \\
\text{s.t.} \quad & x^T Q_i x + b_i^T x \leq d_i \quad \forall i \in [m]
\end{align*}$$
QCQP
May be equivalently written as:

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad x^T Q_i x + b_i^T x \leq d_i \quad \forall i \in [m]
\end{align*}
\]

- Thus, we care about

\[
\text{conv} \left\{ x \mid x^T Q_i x + b_i^T x \leq d_i \quad \forall i \in [m] \right\}
\]
QCQP
May be equivalently written as:

$$\begin{align*}
\text{min} & \quad c^\top x \\
\text{s.t.} & \quad x^\top Q_i x + b_i^\top x \leq d_i \quad \forall i \in [m]
\end{align*}$$

- Thus, we care about

$$\text{conv} \{ x \mid x^\top Q_i x + b_i^\top x \leq d_i \quad \forall i \in [m] \}$$

- Challenging to compute! So we can consider “partial” convexifications
Two-row relaxations

- Single rows are not really useful to convexify.
Two-row relaxations

- Single rows are not really useful to convexify.
- We can select two rows and try to find the convex hull of their intersection:

\[C_2 = \left\{ x \in \mathbb{R}^n \mid x^T Q_i x + b_i^T x \leq d_i \quad \forall i \in [2] \right\} \]
Two-row relaxations

- Single rows are not really useful to convexify.
- We can select two rows and try to find the convex hull of their intersection:
 \[C_2 = \{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x \leq d_i \quad \forall i \in [2] \} \]
- For some technical reasons, we consider the “open version” of the above set:
 \[O_2 = \{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x < d_i \quad \forall i \in [2] \} \]
Two-row relaxations

- Single rows are not really useful to convexify.
- We can select two rows and try to find the convex hull of their intersection:

\[\mathcal{C}_2 = \left\{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x \leq d_i \ \forall i \in [2] \right\} \]

- For some technical reasons, we consider the “open version” of the above set:

\[\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x < d_i \ \forall i \in [2] \right\} \]

- It turns out the convex hull of \(\mathcal{O}_2 \) is well understood!
Let’s first talk about aggregations

Given $\lambda \in \mathbb{R}^m$ and

$$S := \{ x \mid x^T Q_i x + b_i^T x < d_i \ \forall i \in [m] \} ,$$
Let’s first talk about aggregations

Given \(\lambda \in \mathbb{R}^m_+ \) and

\[
S := \{ x \mid x^T Q_i x + b_i^T x < d_i \quad \forall i \in [m] \},
\]

\[
S^\lambda := \left\{ x \mid x^T \left(\sum_{i=1}^m \lambda_i Q_i \right) x + \left(\sum_{i=1}^m \lambda_i b_i \right)^T x < \left(\sum_{i=1}^m \lambda_i d_i \right) \quad \forall i \in [m] \right\}
\]

is a relaxation of \(S \).

We are multiplying \(i^{th} \) constraint by \(\lambda_i \) and then adding them together.
Convex hull of \mathcal{O}_2

$$\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \mid x^T Q_i x + b_i^T x < d_i \; \forall i \in [2] \right\}$$
Convex hull of \mathcal{O}_2

$$\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \mid x^T Q_i x + b_i^T x < d_i \; \forall i \in [2] \right\}$$

Theorem (Yildiran (2009))

Given a set \mathcal{O}_2, such that $\text{conv}(\mathcal{O}_2) \neq \mathbb{R}^n$, there exists $\lambda^1, \lambda^2 \in \mathbb{R}_+^2$ such that:

$$\text{conv}(\mathcal{O}_2) = (\mathcal{O}_2)^{\lambda^1} \cap (\mathcal{O}_2)^{\lambda^2}.$$
Convex hull of \mathcal{O}_2

\[\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x < d_i \; \forall i \in [2] \right\} \]

Theorem (Yildiran (2009))

Given a set \mathcal{O}_2, such that $\text{conv}(\mathcal{O}_2) \neq \mathbb{R}^n$, there exists $\lambda^1, \lambda^2 \in \mathbb{R}^2_+$ such that:

\[\text{conv}(\mathcal{O}_2) = (\mathcal{O}_2)^{\lambda^1} \cap (\mathcal{O}_2)^{\lambda^2}. \]

- Yildiran (2009) also gives an algorithm to compute λ_1 and λ_2.
- The quadratic constraints in $(\mathcal{O}_2)^{\lambda^i}$ $i \in \{1, 2\}$ have very nice properties:
 - $\sum_{j=1}^2 \lambda_j^i Q_j$ has at most one negative eigenvalue for both $i \in \{1, 2\}$
Convex hull of O_2

\[O_2 = \left\{ x \in \mathbb{R}^n \mid x^T Q_i x + b_i^T x < d_i \ \forall i \in [2] \right\} \]

Theorem (Yildiran (2009))

Given a set O_2, such that $\text{conv} (O_2) \neq \mathbb{R}^n$, there exists $\lambda^1, \lambda^2 \in \mathbb{R}_+^2$ such that:

\[\text{conv} (O_2) = (O_2)^{\lambda^1} \cap (O_2)^{\lambda^2}. \]

- Yildiran (2009) also gives an algorithm to compute λ_1 and λ_2.
- The quadratic constraints in $(O_2)^{\lambda_i} \ i \in \{1, 2\}$ have very nice properties:
 - $\sum_{j=1}^2 \lambda_j^i Q_j$ has at most one negative eigenvalue for both $i \in \{1, 2\}$
 - Basically, the sets $(O_2)^{\lambda_i} \ i \in \{1, 2\}$ are either **ellipsoids** or **hyperboloids** (union of two convex sets).
Convex hull of \mathcal{O}_2

\[
\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \mid x^T Q_i x + b_i^T x < d_i \; \forall i \in [2] \right\}
\]

Theorem (Yildiran (2009))

Given a set \mathcal{O}_2, such that $\text{conv}(\mathcal{O}_2) \neq \mathbb{R}^n$, there exists $\lambda^1, \lambda^2 \in \mathbb{R}^2_+$ such that:

\[
\text{conv}(\mathcal{O}_2) = (\mathcal{O}_2)^{\lambda^1} \cap (\mathcal{O}_2)^{\lambda^2}.
\]

- Yildiran (2009) also gives an algorithm to compute λ_1 and λ_2.
- The quadratic constraints in $(\mathcal{O}_2)^{\lambda^i}$ $i \in \{1, 2\}$ have very nice properties:
 - $\sum_{j=1}^{2} \lambda^i_j Q_j$ has at most one negative eigenvalue for both $i \in \{1, 2\}$
 - Basically, the sets $(\mathcal{O}_2)^{\lambda^i}$ $i \in \{1, 2\}$ are either **ellipsoids** or **hyperboloids** (union of two convex sets).
 - Henceforth, we call a quadratic constraint with the “quadratic part” having at most one negative eigenvalue a **good constraint**.
Example

\[S := \left\{ x, y \mid -xy < -1, \quad x^2 + y^2 < 9 \right\} \]
Example

\[\text{conv}(S) := \left\{ x, y \mid \frac{(x - y)^2}{7} < 7, \frac{x^2 + y^2}{9} < 9 \right\} \]
Example

\[S := \left\{ x, y \mid -xy < -1 \quad x^2 + y^2 < 9 \right\} \]

\[\text{conv}(S) := \left\{ x, y \mid (x - y)^2 < 7 \quad x^2 + y^2 < 9 \right\} \]

With the blue quadratic coming from \(\lambda^1 = (2, 1) \)

\[
\begin{align*}
-xy &< -1 \cdot 2 \\
+ x^2 + y^2 &< 9 \cdot 1
\end{align*}
\]
Example

\[S := \left\{ x, y \mid \begin{array}{c} -xy < -1 \\ x^2 + y^2 < 9 \end{array} \right\} \]

\[\text{conv}(S) := \left\{ x, y \mid \begin{array}{c} (x - y)^2 < 7 \\ x^2 + y^2 < 9 \end{array} \right\} \]

With the blue quadratic coming from \(\lambda^1 = (2, 1) \)

\[-xy < -1 \cdot 2 \\
+ \quad x^2 + y^2 < 9 \cdot 1 \]

\[x^2 - 2xy + y^2 < 7 \quad \equiv (x - y)^2 < 7 \]
Literature survey

Related results:

- [Yildiran (2009)]
- [Burer and Kılınç-Karzan (2017)] (second order cone intersected with a nonconvex quadratic)
- [Modaresi and Vielma (2017)] (closed version of results)
Literature survey

Related results:

- [Yildiran (2009)]
- [Burer and Kılınc-Karzan (2017)] (second order cone intersected with a nonconvex quadratic)
- [Modaresi and Vielma (2017)] (closed version of results)

Other related papers:

- [Tawarmalani, Richard, Chung (2010)] (covering bilinear knapsack)
- [Santana and Dey (2020)] (polytope and one quadratic constraint)
- [Ye and Zhang (2003)], [Burer and Anstreicher (2013)], [Bienstock (2014)]
- [Bienstock, Chen, and Muñoz (2020)], [Muñoz and Serrano (2020)] (cuts for QCQP using intersection cuts approach)
- ...
The question we consider...

We want to understand the power of aggregations for $m \geq 3$
The question we consider...

We want to understand the power of aggregations for $m \geq 3$

Main contribution
Under some technical conditions, intersection of aggregations yield the convex hull for three quadratic constraints.
The question we consider...

We want to understand the power of aggregations for $m \geq 3$

Main contribution
Under some technical conditions, intersection of aggregations yield the convex hull for three quadratic constraints.

Additional contribution
The above result represents the limit of aggregations.
The question we consider...

We want to understand the power of aggregations for \(m \geq 3 \)

Main contribution
Under some technical conditions, intersection of aggregations yield the convex hull for three quadratic constraints.

Additional contribution
The above result represents the limit of aggregations. Basically, aggregations \(\not\rightarrow \) convex hull if the technical sufficient condition does not hold for \(m = 3 \) or when \(m \geq 4 \).
Main results
Theorem

Let $n \geq 3$ and

$$O_3 = \left\{ x \in \mathbb{R}^n \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} < 0, \ i \in [3] \right\}.$$
Theorem

Let $n \geq 3$ and

$$
O_3 = \left\{ x \in \mathbb{R}^n \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} < 0, \ i \in [3] \right\}.
$$

Assume

- (PDLC) There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^{3} \theta_i \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \succ 0$.
- (Non-trivial convex hull) $\text{conv}(O_3) \neq \mathbb{R}^n$.

Theorem

Let $n \geq 3$ and

$$O_3 = \left\{ x \in \mathbb{R}^n \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_i & b_i \cr b_i^T & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} < 0, \ i \in [3] \right\}.$$

Assume

- **(PDLC)** There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^{3} \theta_i \begin{bmatrix} A_i & b_i \cr b_i^T & c_i \end{bmatrix} \succ 0.$

- **(Non-trivial convex hull)** $\text{conv}(O_3) \neq \mathbb{R}^n.$

Let $\Omega := \left\{ \lambda \in \mathbb{R}_+^3 \mid (O_3)^\lambda \supseteq \text{conv}(O_3) \text{ and } (O_3)^\lambda \text{ is good} \right\},$
Theorem

Let $n \geq 3$ and

$$O_3 = \left\{ x \in \mathbb{R}^n \mid [x \quad 1] \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} < 0, \ i \in [3] \right\}.$$

Assume

- (PDLC) There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^{3} \theta_i \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \succ 0$.
- (Non-trivial convex hull) $\text{conv}(O_3) \neq \mathbb{R}^n$.

Let $\Omega := \{ \lambda \in \mathbb{R}_+^3 \mid (O_3)^\lambda \supseteq \text{conv}(O_3) \text{ and } (O_3)^\lambda \text{ is good} \}$, then

$$\text{conv}(O_3) = \bigcap_{\lambda \in \Omega} (O_3)^\lambda.$$
Example

\[S := \left\{ (x, y, z) \mid \begin{array}{c}
x^2 + y^2 < 2 \\
-x^2 - y^2 < -1 \\
-x^2 + y^2 + z^2 + 6x < 0
\end{array}\right\} \]
Example

\[S := \left\{ (x, y, z) \middle| \begin{array}{l} x^2 + y^2 < 2 \\ -x^2 - y^2 < -1 \\ -x^2 + y^2 + z^2 + 6x < 0 \end{array} \right\} \]

\[\text{conv}(S) := \left\{ (x, y, z) \middle| \begin{array}{l} x^2 + y^2 < 2 \\ -2x^2 + z^2 + 6x < -1 \\ -x^2 + y^2 + z^2 + 6x < 0 \end{array} \right\} \]
Comparison of Results

<table>
<thead>
<tr>
<th></th>
<th>Two quadratic constraints</th>
<th>Three quadratic constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yildiran (2009)</td>
<td></td>
<td>This talk</td>
</tr>
</tbody>
</table>

When does it hold? $\text{conv}(S) \neq \mathbb{R}^n$ PDLC condition, $\text{conv}(S) \neq \mathbb{R}^n$ How many aggregated inequalities needed? 2^∞ (Conjecture!) Structure of aggregated inequalities Polynomial-time algorithm exists to find them Even checking if $\lambda \in \Omega$ is not clear.
Comparsion of results

<table>
<thead>
<tr>
<th></th>
<th>Two quadratic constraints</th>
<th>Three quadratic constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yildiran (2009)</td>
<td>conv((S)) (\neq \mathbb{R}^n)</td>
<td>This talk</td>
</tr>
<tr>
<td>When does it hold?</td>
<td>conv((S)) (\neq \mathbb{R}^n)</td>
<td>PDLC condition, conv((S)) (\neq \mathbb{R}^n)</td>
</tr>
</tbody>
</table>
Comparsion of results

<table>
<thead>
<tr>
<th></th>
<th>Two quadratic constraints</th>
<th>Three quadratic constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>When does it hold?</td>
<td>$\text{conv}(S) \neq \mathbb{R}^n$</td>
<td>PDLC condition, $\text{conv}(S) \neq \mathbb{R}^n$</td>
</tr>
<tr>
<td>How many aggregated inequalities needed?</td>
<td>2</td>
<td>∞ (Conjecture!)</td>
</tr>
</tbody>
</table>

- Yildiran (2009)
- This talk
Comparison of results

<table>
<thead>
<tr>
<th></th>
<th>Two quadratic constraints</th>
<th>Three quadratic constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yildiran (2009)</td>
<td>conv(S) $\neq \mathbb{R}^n$</td>
<td>PDLC condition, conv(S) $\neq \mathbb{R}^n$</td>
</tr>
<tr>
<td>When does it hold?</td>
<td>2</td>
<td>∞ (Conjecture!)</td>
</tr>
<tr>
<td>How many aggregated inequalities needed?</td>
<td>Polynomial-time algorithm exists to find them</td>
<td>Even checking if $\lambda \in \Omega$ is not clear.</td>
</tr>
<tr>
<td>Structure of aggregated inequalities</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The closed case

Theorem

Let \(n \geq 3 \) and let

\[
C_3 = \left\{ x \in \mathbb{R}^n \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_i & b_i \ b_i^T & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \leq 0, \ i \in [3] \right\}.
\]
The closed case

Theorem

Let \(n \geq 3 \) and let

\[
C_3 = \left\{ x \in \mathbb{R}^n \left| \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \leq 0, \; i \in [3] \right. \right\}.
\]

Assume

- (PDLC) There exists \(\theta \in \mathbb{R}^3 \) such that \(\sum_{i=1}^{3} \theta_i \begin{bmatrix} A_i \\ b_i^T \\ c_i \end{bmatrix} \succeq 0 \).

- (Non-trivial convex hull) \(\text{conv}(C_3) \neq \mathbb{R}^n \).
The closed case

Theorem
Let $n \geq 3$ and let

$$C_3 = \left\{ x \in \mathbb{R}^n \left| \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \leq 0, \ i \in [3] \right. \right\}.$$

Assume

- (PDLC) There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^{3} \theta_i \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \succ 0$.
- (Non-trivial convex hull) $\text{conv}(C_3) \neq \mathbb{R}^n$.
- (No low-dimensional components) $C_3 \subseteq \text{int}(C_3)$.

Let $\Omega := \left\{ \lambda \in \mathbb{R}_+^3 \mid (C_3)^\lambda \supseteq \text{conv}(C_3) \right\}$,
The closed case

Theorem

Let $n \geq 3$ and let

$$C_3 = \left\{ x \in \mathbb{R}^n \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \leq 0, \ i \in [3] \right\}.$$

Assume

- (PDLC) There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^3 \theta_i \begin{bmatrix} A_i \\ b_i \\ c_i \end{bmatrix} \succ 0$.
- (Non-trivial convex hull) $\text{conv}(C_3) \neq \mathbb{R}^n$.
- (No low-dimensional components) $C_3 \subseteq \text{int}(C_3)$.

Let $\Omega := \left\{ \lambda \in \mathbb{R}_+^3 \mid (C_3)^\lambda \supseteq \text{conv}(C_3) \text{ and } (C_3)^\lambda \text{ is good} \right\}$, Then

$$\overline{\text{conv}(C_3)} = \bigcap_{\lambda \in \Omega} (C_3)^\lambda.$$
Counterexamples
$m = 3$ but not satisfying PDLC condition

\[S := \left\{ (x, y, z) \ \middle| \ \begin{array}{c} x^2 < 1 \\ y^2 < 1 \\ -xy + z^2 < 0 \end{array} \right\} \]

- PDLC condition does not hold, \(\text{conv}(S) \neq \mathbb{R}^3 \)
$m = 3$ but not satisfying PDLC condition

$S := \left\{ (x, y, z) \mid \begin{array}{l}
x^2 < 1 \\
y^2 < 1 \\
-xy + z^2 < 0
\end{array} \right\}$

- PDLC condition does not hold, $\text{conv}(S) \neq \mathbb{R}^3$
$m = 4$ and satisfying PDLC

$$S := \left\{ (x, y, z) \mid \begin{align*}
x^2 + y^2 + z^2 + 2.2(xy + yz + xz) &< 1 \\
-2.1x^2 + y^2 + z^2 &< 0 \\
x^2 - 2.1y^2 + z^2 &< 0 \\
x^2 + y^2 - 2.1z^2 &< 0
\end{align*} \right\}$$

- PDLC condition holds, $\text{conv}(S) \neq \mathbb{R}^3$
m = 4 and satisfying PDLC

\[S := \begin{cases} (x, y, z) \\ x^2 + y^2 + z^2 + 2.2(xy + yz + xz) < 1 \\ -2.1x^2 + y^2 + z^2 < 0 \\ x^2 - 2.1y^2 + z^2 < 0 \\ x^2 + y^2 - 2.1z^2 < 0 \end{cases} \]

- PDLC condition holds, \(\text{conv}(S) \neq \mathbb{R}^3 \)

\[\text{conv}(S) \neq \bigcap_{\lambda \in \Omega} S^\lambda \]
Do we need a finite number of aggregations?

A non-counterexample:

\[S := \{ x, y \mid x^2 \leq 1, \ y^2 \leq 1, \ (x - 1)^2 + (y - 1)^2 \geq 1 \} , \]

- Let \(\Omega^+ := \{ \lambda \in \mathbb{R}^3_+ \mid S^\lambda \supseteq \text{conv}(S) \} \)
Do we need a finite number of aggregations?

A non-counterexample:

\[S := \{ x, y \mid x^2 \leq 1, \ y^2 \leq 1, \ (x - 1)^2 + (y - 1)^2 \geq 1 \} , \]

- Let \(\Omega^+ := \{ \lambda \in \mathbb{R}_+^3 \mid S^\lambda \supseteq \text{conv}(S) \} \)
- \(\text{conv}(S) = \bigcap_{\lambda \in \Omega^+} S^\lambda \).
- \(\text{conv}(S) \subsetneq \bigcap_{\lambda \in \tilde{\Omega}^+} S^\lambda \) for any \(\tilde{\Omega}^+ \subseteq \Omega^+ \) which is finite.
Do we need a finite number of aggregations?

A non-counterexample:

\[S := \{ x, y \mid x^2 \leq 1, \; y^2 \leq 1, \; (x - 1)^2 + (y - 1)^2 \geq 1 \}, \]

- Let \(\Omega^+ := \{ \lambda \in \mathbb{R}^3_+ \mid S^\lambda \supseteq \text{conv}(S) \} \)
- \(\text{conv}(S) = \bigcap_{\lambda \in \Omega^+} S^\lambda. \)
- \(\text{conv}(S) \subsetneq \bigcap_{\lambda \in \tilde{\Omega}^+} S^\lambda \) for any \(\tilde{\Omega}^+ \subseteq \Omega^+ \) which is finite.

But PDLC does not hold!
Main proof outline
Lemma

Let $n \geq 3$ and let $g_1, g_2, g_3 : \mathbb{R}^n \to \mathbb{R}$ be homogeneous quadratic functions:

$$g_i(x) = x^\top Q_i x.$$

Assuming there is a linear combination of Q_1, Q_2, Q_3 that is positive definite, the following equivalence holds

$$\{ x \in \mathbb{R}^n : g_i(x) < 0, \ i \in [3] \} = \emptyset \iff \exists \lambda \in \mathbb{R}^3_+ \setminus \{0\}, \sum_{i=1}^{3} \lambda_i Q_i \succeq 0.$$
\[\text{conv}(S) = \bigcap_{\lambda \in \Omega} S^\lambda \] proof idea

\[\text{conv}(S) \subseteq \bigcap_{\lambda \in \Omega} S^\lambda \] is straight-forward
\[\text{conv}(S) = \bigcap_{\lambda \in \Omega} S^\lambda \]

proof idea

\[
\text{conv}(S) \subseteq \bigcap_{\lambda \in \Omega} S^\lambda \text{ is straight-forward}
\]

\[
\text{conv}(S) \supseteq \bigcap_{\lambda \in \Omega} S^\lambda:
\]

- Pick \(x^* \in \mathbb{R}^n \) such that \(x^* \not\in \text{conv}(S) \). We want to show that it lies outside some aggregation.
- Separation theorem \(\Rightarrow \) there exists \(\alpha^T x < \beta \) valid for \(\text{conv}(S) \) that separates \(x^* \).

\[S^\alpha \cap \alpha^T x = \beta \]
$$\text{conv}(S) = \bigcap_{\lambda \in \Omega} S^\lambda$$ proof idea

$\text{conv}(S) \subseteq \bigcap_{\lambda \in \Omega} S^\lambda$ is straight-forward

$\text{conv}(S) \supseteq \bigcap_{\lambda \in \Omega} S^\lambda$:

- Pick $x^* \in \mathbb{R}^n$ such that $x^* \not\in \text{conv}(S)$. We want to show that is lies outside some aggregation
\[\text{conv}(S) = \bigcap_{\lambda \in \Omega} S^\lambda \]

proof idea

\(\text{conv}(S) \subseteq \bigcap_{\lambda \in \Omega} S^\lambda \) is straightforward

\(\text{conv}(S) \supseteq \bigcap_{\lambda \in \Omega} S^\lambda \):

- Pick \(x^* \in \mathbb{R}^n \) such that \(x^* \not\in \text{conv}(S) \). We want to show that it lies outside some aggregation
- **Separation theorem** \(\Rightarrow \) there exists \(\alpha^\top x < \beta \) valid for \(\text{conv}(S) \) that separates \(x^* \).
\[
\text{conv}(S) = \bigcap_{\lambda \in \Omega} S^\lambda
\]

proof idea

- **(Homogenization)** The above can be shown to imply: \(\{x | \alpha^T x = \beta x_{n+1}\}\) (call it \(H\)) does not intersect homogenization of \(S\):

 \[
 H \cap \left\{ (x, x_{n+1}) \mid \left[\begin{array}{cc} x & x_{n+1} \end{array} \right] \left[\begin{array}{cc} A_i & b_i \b_T \end{array} \right] \left[\begin{array}{c} x \\ x_{n+1} \end{array} \right] < 0, \ i \in [3] \right\} = \emptyset.
 \]
\(\text{conv}(S) = \bigcap_{\lambda \in \Omega} S^\lambda \) proof idea

- Applying S-lemma we obtain \(\lambda \in \Omega \) such that

\[
H \cap \left\{ (x, x_{n+1}) \mid [x \quad x_{n+1}] \left(\sum_{i=1}^{3} \lambda_i \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \right) \begin{bmatrix} x \\ x_{n+1} \end{bmatrix} < 0, \right\} = \emptyset.
\]
\[\text{conv}(S) = \bigcap_{\lambda \in \Omega} S^\lambda \] proof idea

- **Dehomogenizing**, we obtain \(S^\lambda \supseteq \text{conv}(S) \) that excludes \(x^* \)
Summary and open questions

- We have shown that, under technical assumptions, aggregations are enough to describe the convex hull of 3 quadratics.
- We have also shown that the result is not true if some conditions are relaxed.

We do not know if Ω can be refined to a finite set.
We do not completely understand the PDLC condition. What is its geometrical meaning? Can we replace it by another condition and obtain a similar result?
Summary and open questions

- We have shown that, under technical assumptions, aggregations are enough to describe the convex hull of 3 quadratics.
- We have also shown that the result is not true if some conditions are relaxed.
- We do not know if Ω can be refined to a finite set.
- We do not completely understand the PDLC condition. What is its geometrical meaning? Can we replace it by another condition and obtain a similar result?
Summary and open questions

- We have shown that, under technical assumptions, aggregations are enough to describe the **convex hull of 3 quadratics**.
- We have also shown that the result is **not true** if some conditions are relaxed.
- We do not know if Ω can be refined to a **finite set**.
- We do not completely understand the **PDLC condition**. What is its geometrical meaning? Can we replace it by another condition and obtain a similar result?

Thank you!