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Context



Quadratically Constrained Quadratic Program

QCQP
Quadratic objective, quadratic constraints:

min x>Q0x + b>0 x

s.t. x>Qix + b>i x ≤ di ∀i ∈ [m]

• Thus, we care about

conv
{
x
∣∣ x>Qix + b>i x ≤ di ∀i ∈ [m]

}
• Challenging to compute! So we can consider “partial”

convexifications
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Two-row relaxations

• Single rows are not really useful to convexify.

• We can select two rows and try to find the convex hull of their

interesection:

C2 =
{
x ∈ Rn

∣∣ x>Qix + b>i x ≤ di ∀i ∈ [2]
}

• For some technical reasons, we consider the “open version” of the

above set:

O2 =
{
x ∈ Rn

∣∣ x>Qix + b>i x < di ∀i ∈ [2]
}

• It turns out the convex hull of O2 is well understood!
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Let’s first talk about aggregations

Given λ ∈ Rm
+ and

S :=
{
x
∣∣ x>Qix + b>i x < di ∀i ∈ [m]

}
,

Sλ :=

x

∣∣∣∣∣∣ x>
(

m∑
i=1

λiQi

)
x +

(
m∑
i=1

λibi

)>
x <

(
m∑
i=1

λidi

)
∀i ∈ [m]


is a relaxation of S .

We are multiplying i th constraint by λi and then adding them together.
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Convex hull of O2

O2 =
{
x ∈ Rn

∣∣∣ x>Qix + b>i x < di ∀i ∈ [2]
}

Theorem (Yildiran (2009))
Given a set O2, such that conv (O2) 6= Rn, there exists λ1, λ2 ∈ R2

+ such that:

conv (O2) = (O2)λ
1

∩ (O2)λ
2

.

• Yildiran (2009) also gives an algorithm to compute λ1 and λ2.

• The quadratic constraints in (O2)λ
i

i ∈ {1, 2} have very nice properties:

•
∑2

j=1 λ
i
jQj has at most one negative eigenvalue for both i ∈ {1, 2}

• Basically, the sets (O2)λi i ∈ {1, 2} are either ellipsoids or

hyperboloids (union of two convex sets).

• Henceforth, we call a quadratic constraint with the “quadratic part”

having at most one negative eigenvalue a good constraint.
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Example

S :=

{
x , y

∣∣∣∣∣ −xy < −1

x2 + y2 < 9

}
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Literature survey

Related results:

• [Yildiran (2009)]

• [Burer and Kılınc-Karzan (2017)] (second order cone intersected with a

nonconvex quadratic)

• [Modaresi and Vielma (2017)] (closed version of results)

Other related papers:

• [Tawarmalani, Richard, Chung (2010)] (covering bilinear knapsack)

• [Santana and Dey (2020)] (polytope and one quadratic constraint)

• [Ye and Zhang (2003)], [Burer and Anstreicher (2013)], [Bienstock (2014)]

[Burer (2015)], [Burer and Yang (2015)], [Anstreicher (2017)] (extended

trust-region problem)

• [Burer and Ye (2019)], [Wang and Kılınc-Karzan (2020, 2021)], [Argue,

Kılınc-Karzan, and Wang (2020)] (general conditions for the SDP relaxation

being tight)

• [Bienstock, Chen, and Muñoz (2020)], [Muñoz and Serrano (2020)] (cuts for

QCQP using intersection cuts approach)

• . . .
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The question we consider...

We want to understand the power of aggregations for m ≥ 3

Main contribution
Under some technical conditions, intersection of aggregations yield the

convex hull for three quadratic constraints.

Additional contribution
The above result represents the limit of aggregations. Basically,

aggregations 6→ convex hull if the technical suffcient condition does not

hold for m = 3 or when m ≥ 4.
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Main results



Three rows: main result

Theorem

Let n ≥ 3 and

O3 =

{
x ∈ Rn

∣∣∣∣∣ [x 1]

[
Ai bi

b>i ci

][
x

1

]
< 0, i ∈ [3]

}
.

Assume

• (PDLC) There exists θ ∈ R3 such that
∑3

i=1 θi

[
Ai bi

b>i ci

]
� 0.

• (Non-trivial convex hull) conv(O3) 6= Rn.

Let Ω :=
{
λ ∈ R3

+ | (O3)λ ⊇ conv(O3) and (O3)λ is good
}
, then

conv(O3) =
⋂
λ∈Ω

(O3)λ.
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Example

S :=

(x , y , z)

∣∣∣∣∣∣∣
x2 + y2 < 2

−x2 − y2 < −1

−x2 + y2 + z2 + 6x < 0



conv(S) :=

(x , y , z)

∣∣∣∣∣∣∣
x2 + y2 < 2

−2x2 + z2 + 6x < −1

−x2 + y2 + z2 + 6x < 0


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Comparsion of results

Two quadratic

constraints

Three quadratic

constraints

Yildiran (2009) This talk

When does it hold? conv(S) 6= Rn PDLC condition,

conv(S) 6= Rn

How many aggregated

inequalities needed?
2 ∞ (Conjecture!)

Structure of aggre-

gated inequalities

Polynomial-time

algorithm exists to

find them

Even checking if

λ ∈ Ω is not clear.
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The closed case

Theorem
Let n ≥ 3 and let

C3 =

{
x ∈ Rn

∣∣∣∣∣ [x 1]

[
Ai bi

b>i ci

][
x

1

]
≤ 0, i ∈ [3]

}
.

Assume

• (PDLC) There exists θ ∈ R3 such that
∑3

i=1 θi

[
Ai bi

b>i ci

]
� 0.

• (Non-trivial convex hull) conv(C3) 6= Rn.

• (No low-dimensional components) C3 ⊆ int(C3).

Let Ω :=
{
λ ∈ R3

+ | (C3)λ ⊇ conv(C3) and (C3)λ is good
}
, Then

conv(C3) =
⋂
λ∈Ω

(C3)λ.
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Counterexamples



m = 3 but not satisfying PDLC condition

S :=

(x , y , z)

∣∣∣∣∣∣∣
x2 < 1

y2 < 1

−xy + z2 < 0


• PDLC condition does not hold,

conv(S) 6= R3

conv(S) 6=
⋂
λ∈Ω Sλ
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m = 4 and satisfying PDLC

S :=

(x , y , z)

∣∣∣∣∣∣∣∣∣
x2 + y2 + z2 + 2.2(xy + yz + xz) < 1

−2.1x2 + y2 + z2 < 0

x2 − 2.1y2 + z2 < 0

x2 + y2 − 2.1z2 < 0



• PDLC condition holds,

conv(S) 6= R3

conv(S) 6=
⋂
λ∈Ω Sλ
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Do we need a finite number of aggregations?

A non-counterexample:

S := {x , y
∣∣ x2 ≤ 1, y2 ≤ 1, (x − 1)2 + (y − 1)2 ≥ 1

}
,
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• Let Ω+ := {λ ∈ R3
+ |Sλ ⊇ conv(S)}

• conv(S) =
⋂

λ∈Ω+ Sλ.

• conv(S) (
⋂

λ∈Ω̃+ Sλ for any Ω̃+ ⊆ Ω+ which is finite.

But PDLC does not hold!
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Main proof outline



A new S-Lemma for 3 quadratic constraints

Lemma

Let n ≥ 3 and let g1, g2, g3 : Rn → R be homogeneous quadratic

functions:

gi (x) = x>Qix .

Assuming there is a linear combination of Q1,Q2,Q3 that is positive

definite, the following equivalence holds

{x ∈ Rn : gi (x) < 0, i ∈ [3]} = ∅ ⇐⇒ ∃λ ∈ R3
+ \ {0},

3∑
i=1

λiQi � 0.

18 / 23



conv(S) =
⋂
λ∈Ω Sλ proof idea

conv(S) ⊆
⋂

λ∈Ω Sλ is straight-forward

conv(S) ⊇
⋂

λ∈Ω Sλ:

• Pick x∗ ∈ Rn such that x∗ 6∈ conv(S). We want to show that is lies

outside some aggregation

• Separation theorem ⇒ there exists α>x < β valid for conv(S) that

separates x∗.

S

αTx = β

x∗

19 / 23



conv(S) =
⋂
λ∈Ω Sλ proof idea

conv(S) ⊆
⋂

λ∈Ω Sλ is straight-forward

conv(S) ⊇
⋂

λ∈Ω Sλ:

• Pick x∗ ∈ Rn such that x∗ 6∈ conv(S). We want to show that is lies

outside some aggregation

• Separation theorem ⇒ there exists α>x < β valid for conv(S) that

separates x∗.

S

αTx = β

x∗

19 / 23



conv(S) =
⋂
λ∈Ω Sλ proof idea

conv(S) ⊆
⋂

λ∈Ω Sλ is straight-forward

conv(S) ⊇
⋂

λ∈Ω Sλ:

• Pick x∗ ∈ Rn such that x∗ 6∈ conv(S). We want to show that is lies

outside some aggregation

• Separation theorem ⇒ there exists α>x < β valid for conv(S) that

separates x∗.

S

αTx = β

x∗

19 / 23



conv(S) =
⋂
λ∈Ω Sλ proof idea

conv(S) ⊆
⋂

λ∈Ω Sλ is straight-forward

conv(S) ⊇
⋂

λ∈Ω Sλ:

• Pick x∗ ∈ Rn such that x∗ 6∈ conv(S). We want to show that is lies

outside some aggregation

• Separation theorem ⇒ there exists α>x < β valid for conv(S) that

separates x∗.

S

αTx = β

x∗

19 / 23



conv(S) =
⋂
λ∈Ω Sλ proof idea

• (Homogenization) The above can be shown to imply: {x |α>x = βxn+1}
(call it H) does not intersect homogenization of S :

H ∩

{
(x , xn+1) | [x xn+1]

[
Ai bi

b>i ci

][
x

xn+1

]
< 0, i ∈ [3]

}
= ∅.

Ŝ

αTx = βxn+1

(x∗, 1)
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conv(S) =
⋂
λ∈Ω Sλ proof idea

• Applying S-lemma we obtain λ ∈ Ω such that

H ∩

{
(x , xn+1) | [x xn+1]

(
3∑

i=1

λi

[
Ai bi

b>i ci

])[
x

xn+1

]
< 0,

}
= ∅.

Ŝλ

αTx = βxn+1

(x∗, 1)
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conv(S) =
⋂
λ∈Ω Sλ proof idea

• Dehomogenizing, we obtain Sλ ⊇ conv(S) that excludes x∗

S

αTx = β

x∗

Sλ

22 / 23



Summary and open questions

• We have shown that, under technical assumptions, aggregations are

enough to describe the convex hull of 3 quadratics

• We have also shown that the result is not true if some conditions are

relaxed.

• We do not know if Ω can be refined to a finite set.

• We do not completely understand the PDLC condition. What is its

geometrical meaning? Can we replace it by another condition and obtain

a similar result?

Thank you!
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