On obtaining the convex hull of quadratic inequalities via aggregations

Santanu Dey¹, **Gonzalo Muñoz**² and Felipe Serrano³ DANniversary - MIP 2022

¹Georgia Tech, USA

²Universidad de O'Higgins, Chile

³I²DAMO GmbH, Germany

Context

QCQP Quadratic objective, quadratic constraints:

min
$$x^{\top} Q_0 x + b_0^{\top} x$$

s.t. $x^{\top} Q_i x + b_i^{\top} x \le d_i \quad \forall i \in [m]$

QCQP May be equivalently written as:

> min $c^{\top}x$ s.t. $x^{\top}Q_ix + b_i^{\top}x \le d_i \ \forall i \in [m]$

QCQP May be equivalently written as:

$$\begin{array}{ll} \min & c^\top x \\ \text{s.t.} & x^\top Q_i x + b_i^\top x \leq d_i \; \forall i \in [m] \end{array}$$

• Thus, we care about

 $\operatorname{conv}\left\{x \mid x^{\top} Q_{i} x + b_{i}^{\top} x \leq d_{i} \, \forall i \in [m]\right\}$

QCQP May be equivalently written as:

min
$$c^{\top}x$$

s.t. $x^{\top}Q_ix + b_i^{\top}x \le d_i \ \forall i \in [m]$

• Thus, we care about

$$\operatorname{conv}\left\{x \mid x^{\top} Q_{i} x + b_{i}^{\top} x \leq d_{i} \; \forall i \in [m]\right\}$$

• Challenging to compute! So we can consider "partial" convexifications

• Single rows are not really useful to convexify.

Two-row relaxations

- Single rows are not really useful to convexify.
- We can select two rows and try to find the convex hull of their interesection:

$$\mathcal{C}_2 = \left\{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x \le d_i \; \forall i \in [2] \right\}$$

Two-row relaxations

- Single rows are not really useful to convexify.
- We can select two rows and try to find the convex hull of their interesection:

$$\mathcal{C}_2 = \left\{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x \le d_i \; \forall i \in [2] \right\}$$

• For some technical reasons, we consider the "open version" of the above set:

$$\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x < d_i \; \forall i \in [2] \right\}$$

Two-row relaxations

- Single rows are not really useful to convexify.
- We can select two rows and try to find the convex hull of their interesection:

$$\mathcal{C}_2 = \left\{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x \le d_i \; \forall i \in [2] \right\}$$

• For some technical reasons, we consider the "open version" of the above set:

$$\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x < d_i \; \forall i \in [2] \right\}$$

• It turns out the convex hull of \mathcal{O}_2 is well understood!

Given $\lambda \in \mathbb{R}^m_+$ and

$$S := \left\{ x \mid x^\top Q_i x + b_i^\top x < d_i \; \forall i \in [m] \right\},\$$

Given $\lambda \in \mathbb{R}^m_+$ and

$$S := \left\{ x \mid x^\top Q_i x + b_i^\top x < d_i \; \forall i \in [m] \right\},$$

$$S^{\lambda} := \left\{ x \mid x^{\top} \left(\sum_{i=1}^{m} \lambda_i Q_i \right) x + \left(\sum_{i=1}^{m} \lambda_i b_i \right)^{\top} x < \left(\sum_{i=1}^{m} \lambda_i d_i \right) \quad \forall i \in [m] \right\}$$

is a relaxation of S.

We are multiplying i^{th} constraint by λ_i and then adding them together.

$$\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x < d_i \; \forall i \in [2] \right\}$$

$$\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \ \middle| \ x^\top Q_i x + b_i^\top x < d_i \ \forall i \in [2] \right\}$$

Theorem (Yildiran (2009)) Given a set \mathcal{O}_2 , such that conv $(\mathcal{O}_2) \neq \mathbb{R}^n$, there exists $\lambda^1, \lambda^2 \in \mathbb{R}^2_+$ such that: $\operatorname{conv}(\mathcal{O}_2) = (\mathcal{O}_2)^{\lambda^1} \cap (\mathcal{O}_2)^{\lambda^2}$.

$$\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x < d_i \; \forall i \in [2] \right\}$$

Theorem (Yildiran (2009)) Given a set \mathcal{O}_2 , such that $\operatorname{conv}(\mathcal{O}_2) \neq \mathbb{R}^n$, there exists $\lambda^1, \lambda^2 \in \mathbb{R}^2_+$ such that: $\operatorname{conv}(\mathcal{O}_2) = (\mathcal{O}_2)^{\lambda^1} \cap (\mathcal{O}_2)^{\lambda^2}$.

- Yildiran (2009) also gives an algorithm to compute λ_1 and λ_2 .
- The quadratic constraints in $(\mathcal{O}_2)^{\lambda^i}$ $i \in \{1,2\}$ have very nice properties:
 - $\sum_{j=1}^{2} \lambda_{j}^{i} Q_{j}$ has at most one negative eigenvalue for both $i \in \{1, 2\}$

$$\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x < d_i \; \forall i \in [2] \right\}$$

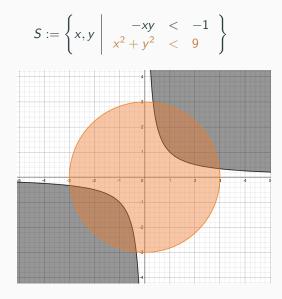
Theorem (Yildiran (2009)) Given a set \mathcal{O}_2 , such that $\operatorname{conv}(\mathcal{O}_2) \neq \mathbb{R}^n$, there exists $\lambda^1, \lambda^2 \in \mathbb{R}^2_+$ such that: $\operatorname{conv}(\mathcal{O}_2) = (\mathcal{O}_2)^{\lambda^1} \cap (\mathcal{O}_2)^{\lambda^2}$.

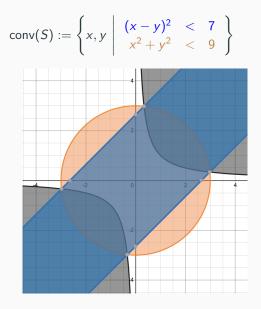
- Yildiran (2009) also gives an algorithm to compute λ_1 and λ_2 .
- The quadratic constraints in $(\mathcal{O}_2)^{\lambda^i}$ $i \in \{1,2\}$ have very nice properties:
 - $\sum_{j=1}^{2} \lambda_{j}^{i} Q_{j}$ has at most one negative eigenvalue for both $i \in \{1,2\}$
 - Basically, the sets (O2)^{λi} i ∈ {1,2} are either ellipsoids or hyperboloids (union of two convex sets).

$$\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x < d_i \; \forall i \in [2] \right\}$$

Theorem (Yildiran (2009)) Given a set \mathcal{O}_2 , such that $\operatorname{conv}(\mathcal{O}_2) \neq \mathbb{R}^n$, there exists $\lambda^1, \lambda^2 \in \mathbb{R}^2_+$ such that: $\operatorname{conv}(\mathcal{O}_2) = (\mathcal{O}_2)^{\lambda^1} \cap (\mathcal{O}_2)^{\lambda^2}$.

- Yildiran (2009) also gives an algorithm to compute λ_1 and λ_2 .
- The quadratic constraints in $(\mathcal{O}_2)^{\lambda^i}$ $i \in \{1,2\}$ have very nice properties:
 - $\sum_{j=1}^2 \lambda_j^i Q_j$ has at most one negative eigenvalue for both $i \in \{1,2\}$
 - Basically, the sets (O2)^{λi} i ∈ {1,2} are either ellipsoids or hyperboloids (union of two convex sets).
 - Henceforth, we call a quadratic constraint with the "quadratic part" having at most one negative eigenvalue a good constraint.





$$S := \left\{ x, y \mid \begin{array}{c} -xy < -1 \\ x^2 + y^2 < 9 \end{array} \right\}$$
$$\operatorname{conv}(S) := \left\{ x, y \mid \begin{array}{c} (x - y)^2 < 7 \\ x^2 + y^2 < 9 \end{array} \right\}$$

With the blue quadratic coming from $\lambda^1 = (2, 1)$

$$\begin{array}{rcl}
-xy & < & -1 & \cdot 2 \\
+ & x^2 + y^2 & < & 9 & \cdot 1
\end{array}$$

$$S := \left\{ x, y \mid \begin{array}{c} -xy < -1 \\ x^2 + y^2 < 9 \end{array} \right\}$$
$$\operatorname{conv}(S) := \left\{ x, y \mid \begin{array}{c} (x - y)^2 < 7 \\ x^2 + y^2 < 9 \end{array} \right\}$$

With the blue quadratic coming from $\lambda^1 = (2, 1)$

$$\begin{array}{rcl}
-xy & < & -1 & \cdot 2 \\
+ & x^2 + y^2 & < & 9 & \cdot 1
\end{array}$$

$$x^2 - 2xy + y^2 < 7 \equiv (x - y)^2 < 7$$

Literature survey

Related results:

- [Yildiran (2009)]
- [Burer and Kılınc-Karzan (2017)] (second order cone intersected with a nonconvex quadratic)
- [Modaresi and Vielma (2017)] (closed version of results)

Literature survey

Related results:

- [Yildiran (2009)]
- [Burer and Kılınc-Karzan (2017)] (second order cone intersected with a nonconvex quadratic)
- [Modaresi and Vielma (2017)] (closed version of results)

Other related papers:

- [Tawarmalani, Richard, Chung (2010)] (covering bilinear knapsack)
- [Santana and Dey (2020)] (polytope and one quadratic constraint)
- [Ye and Zhang (2003)], [Burer and Anstreicher (2013)], [Bienstock (2014)] [Burer (2015)], [Burer and Yang (2015)], [Anstreicher (2017)] (extended trust-region problem)
- [Burer and Ye (2019)], [Wang and Kılınc-Karzan (2020, 2021)], [Argue, Kılınc-Karzan, and Wang (2020)] (general conditions for the SDP relaxation being tight)
- [Bienstock, Chen, and Muñoz (2020)], [Muñoz and Serrano (2020)] (cuts for QCQP using intersection cuts approach)

• ...

We want to understand the power of aggregations for $m \geq 3$

We want to understand the power of aggregations for $m \ge 3$

Main contribution

Under some technical conditions, intersection of aggregations yield the convex hull for <u>three</u> quadratic constraints.

We want to understand the power of aggregations for $m \ge 3$

Main contribution

Under some technical conditions, intersection of aggregations yield the convex hull for <u>three</u> quadratic constraints.

Additional contribution

The above result represents the limit of aggregations.

We want to understand the power of aggregations for $m \ge 3$

Main contribution

Under some technical conditions, intersection of aggregations yield the convex hull for <u>three</u> quadratic constraints.

Additional contribution

The above result represents the limit of aggregations. Basically, aggregations $\not\rightarrow$ convex hull if the technical sufficient condition does not hold for m = 3 or when $m \ge 4$.

Main results

Theorem

Let $n \geq 3$ and

$$\mathcal{O}_3 = \left\{ x \in \mathbb{R}^n \ \left| \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_i & b_i \\ b_i^\top & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} < 0, \ i \in [3] \right\}.$$

Theorem

Let $n \geq 3$ and

$$\mathcal{O}_{3} = \left\{ x \in \mathbb{R}^{n} \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_{i} & b_{i} \\ b_{i}^{\top} & c_{i} \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} < 0, \ i \in [3] \right\}.$$

Assume

- (PDLC) There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^3 \theta_i \begin{vmatrix} A_i & b_i \\ b_i^\top & c_i \end{vmatrix} \succ 0$.
- (Non-trivial convex hull) $\operatorname{conv}(\mathcal{O}_3) \neq \mathbb{R}^n$.

Theorem

Let $n \geq 3$ and

$$\mathcal{O}_3 = \left\{ x \in \mathbb{R}^n \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_i & b_i \\ b_i^\top & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} < 0, \ i \in [3] \right\}.$$

Assume

- (PDLC) There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^3 \theta_i \begin{bmatrix} A_i & b_i \\ b_i^\top & c_i \end{bmatrix} \succ 0$.
- (Non-trivial convex hull) $\operatorname{conv}(\mathcal{O}_3) \neq \mathbb{R}^n$.

Let $\Omega := \left\{ \lambda \in \mathbb{R}^3_+ \, | \, (\mathcal{O}_3)^\lambda \supseteq \mathsf{conv}(\mathcal{O}_3) \text{ and } (\mathcal{O}_3)^\lambda \text{ is good} \right\},$

Theorem

Let $n \geq 3$ and

$$\mathcal{O}_3 = \left\{ x \in \mathbb{R}^n \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_i & b_i \\ b_i^\top & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} < 0, \ i \in [3] \right\}.$$

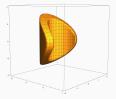
Assume

- (PDLC) There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^3 \theta_i \begin{vmatrix} A_i & b_i \\ b_i^\top & c_i \end{vmatrix} \succ 0$.
- (Non-trivial convex hull) $\operatorname{conv}(\mathcal{O}_3) \neq \mathbb{R}^n$.

 $\textit{Let } \Omega := \left\{ \lambda \in \mathbb{R}^3_+ \, | \, (\mathcal{O}_3)^\lambda \supseteq \mathsf{conv}(\mathcal{O}_3) \text{ and } (\mathcal{O}_3)^\lambda \text{ is good} \right\}, \ \textit{then}$

$$\operatorname{conv}(\mathcal{O}_3) = \bigcap_{\lambda \in \Omega} (\mathcal{O}_3)^{\lambda}$$

$$S := \begin{cases} (x, y, z) & x^2 + y^2 < 2 \\ -x^2 - y^2 < -1 \\ -x^2 + y^2 + z^2 + 6x < 0 \end{cases}$$



$$S := \left\{ (x, y, z) \middle| \begin{array}{ccc} x^2 + y^2 &< & 2 \\ -x^2 - y^2 &< & -1 \\ -x^2 + y^2 + z^2 + 6x &< & 0 \end{array} \right\}$$

$$\operatorname{conv}(S) := \left\{ (x, y, z) \middle| \begin{array}{c} x^2 + y^2 < 2 \\ -2x^2 + z^2 + 6x < -1 \\ -x^2 + y^2 + z^2 + 6x < 0 \end{array} \right\}$$

Comparsion of results

Two constra	quadratic ints	Three constra	•
Yildiran	(2009)	This ta	lk

Comparsion of results

	Two quadratic constraints	Three quadratic constraints
	Yildiran (2009)	This talk
When does it hold?	$conv(S) eq \mathbb{R}^n$	PDLC condition, $\operatorname{conv}(S) \neq \mathbb{R}^n$

	Two quadratic constraints	Three quadratic constraints
	Yildiran (2009)	This talk
When does it hold?	$conv(S) eq \mathbb{R}^n$	PDLC condition, $\operatorname{conv}(S) \neq \mathbb{R}^n$
How many aggregated inequalities needed?	2	∞ (Conjecture!)

	Two quadratic constraints	Three quadratic constraints
	Yildiran (2009)	This talk
When does it hold?	$\operatorname{conv}(S) eq \mathbb{R}^n$	PDLC condition, $\operatorname{conv}(S) \neq \mathbb{R}^n$
How many aggregated inequalities needed?	2	∞ (Conjecture!)
Structure of aggre- gated inequalities	Polynomial-time algorithm exists to find them	Even checking if $\lambda\in \Omega$ is not clear.

Let $n \geq 3$ and let

$$\mathcal{C}_{3} = \left\{ x \in \mathbb{R}^{n} \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_{i} & b_{i} \\ b_{i}^{\top} & c_{i} \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \leq 0, \ i \in [3] \right\}.$$

Let $n \geq 3$ and let

$$\mathcal{C}_{3} = \left\{ x \in \mathbb{R}^{n} \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_{i} & b_{i} \\ b_{i}^{\top} & c_{i} \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \leq 0, \ i \in [3] \right\}.$$

Assume

- (PDLC) There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^3 \theta_i \begin{vmatrix} A_i & b_i \\ b_i^\top & c_i \end{vmatrix} \succ 0$.
- (Non-trivial convex hull) $\operatorname{conv}(\mathcal{C}_3) \neq \mathbb{R}^n$.

Let $n \geq 3$ and let

$$\mathcal{C}_{3} = \left\{ x \in \mathbb{R}^{n} \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_{i} & b_{i} \\ b_{i}^{\top} & c_{i} \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \leq 0, \ i \in [3] \right\}.$$

Assume

- (PDLC) There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^3 \theta_i \begin{vmatrix} A_i & b_i \\ b_i^\top & c_i \end{vmatrix} \succ 0$.
- (Non-trivial convex hull) $\operatorname{conv}(\mathcal{C}_3) \neq \mathbb{R}^n$.
- (No low-dimensional components) $C_3 \subseteq \overline{int(C_3)}$.

Let $\Omega := \left\{ \lambda \in \mathbb{R}^3_+ \, | \, (\mathcal{C}_3)^\lambda \supseteq \operatorname{conv}(\mathcal{C}_3) \text{ and } (\mathcal{C}_3)^\lambda \text{ is good} \right\},$

Let $n \geq 3$ and let

$$\mathcal{C}_{3} = \left\{ x \in \mathbb{R}^{n} \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_{i} & b_{i} \\ b_{i}^{\top} & c_{i} \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \leq 0, \ i \in [3] \right\}.$$

Assume

- (PDLC) There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^3 \theta_i \begin{vmatrix} A_i & b_i \\ b_i^\top & c_i \end{vmatrix} \succ 0$.
- (Non-trivial convex hull) $\operatorname{conv}(\mathcal{C}_3) \neq \mathbb{R}^n$.
- (No low-dimensional components) $C_3 \subseteq \overline{int(C_3)}$.

Let $\Omega := \left\{ \lambda \in \mathbb{R}^3_+ \, | \, (\mathcal{C}_3)^\lambda \supseteq \operatorname{conv}(\mathcal{C}_3) \text{ and } (\mathcal{C}_3)^\lambda \text{ is good} \right\}, \text{ Then}$

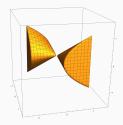
$$\overline{\operatorname{conv}(\mathcal{C}_3)} = \bigcap_{\lambda \in \Omega} (\mathcal{C}_3)^{\lambda}.$$

Counterexamples

m = 3 but not satisfying PDLC condition

$$S := \left\{ egin{array}{ccc} (x,y,z) & x^2 & < & 1 \ y^2 & < & 1 \ -xy+z^2 & < & 0 \end{array}
ight\}$$

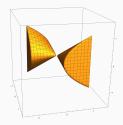
 PDLC condition does not hold, conv(S) ≠ ℝ³



m = 3 but not satisfying PDLC condition

$$S := \left\{ (x, y, z) \mid egin{array}{ccc} x^2 & < & 1 \ y^2 & < & 1 \ -xy + z^2 & < & 0 \end{array}
ight\}$$

• PDLC condition does not hold, $\operatorname{conv}(S) \neq \mathbb{R}^3$

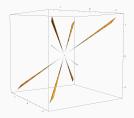


$$\mathsf{conv}(S)
eq igcap_{\lambda\in\Omega}S^\lambda$$

m = 4 and satisfying PDLC

$$S := \begin{cases} (x, y, z) & x^2 + y^2 + z^2 + 2.2(xy + yz + xz) < 1 \\ -2.1x^2 + y^2 + z^2 < 0 \\ x^2 - 2.1y^2 + z^2 < 0 \\ x^2 + y^2 - 2.1z^2 < 0 \end{cases}$$

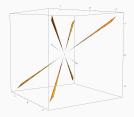
• PDLC condition holds, $\operatorname{conv}(S) \neq \mathbb{R}^3$



m = 4 and satisfying PDLC

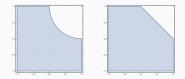
$$S := \left\{ (x, y, z) \middle| \begin{array}{rrrr} x^2 + y^2 + z^2 + 2.2(xy + yz + xz) &< 1 \\ -2.1x^2 + y^2 + z^2 &< 0 \\ x^2 - 2.1y^2 + z^2 &< 0 \\ x^2 + y^2 - 2.1z^2 &< 0 \end{array} \right\}$$

• PDLC condition holds, $\operatorname{conv}(S) \neq \mathbb{R}^3$



A non-counterexample:

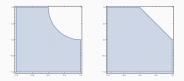
$$S := \{x, y \mid x^2 \le 1, \ y^2 \le 1, \ (x-1)^2 + (y-1)^2 \ge 1\},$$



• Let $\Omega^+ := \{\lambda \in \mathbb{R}^3_+ | S^\lambda \supseteq \operatorname{conv}(S)\}$

A non-counterexample:

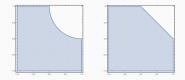
$$S := \{x, y \mid x^2 \le 1, \ y^2 \le 1, \ (x-1)^2 + (y-1)^2 \ge 1\},$$



- Let $\Omega^+ := \{\lambda \in \mathbb{R}^3_+ \mid S^\lambda \supseteq \operatorname{conv}(S)\}$
- $\operatorname{conv}(S) = \bigcap_{\lambda \in \Omega^+} S^{\lambda}$.
- $\operatorname{conv}(S) \subsetneq \bigcap_{\lambda \in \tilde{\Omega}^+} S^{\lambda}$ for any $\tilde{\Omega}^+ \subseteq \Omega^+$ which is finite.

A non-counterexample:

$$S := \{x, y \mid x^2 \le 1, \ y^2 \le 1, \ (x-1)^2 + (y-1)^2 \ge 1\},$$



- Let $\Omega^+ := \{\lambda \in \mathbb{R}^3_+ \mid S^\lambda \supseteq \operatorname{conv}(S)\}$
- $\operatorname{conv}(S) = \bigcap_{\lambda \in \Omega^+} S^{\lambda}$.
- $\operatorname{conv}(S) \subsetneq \bigcap_{\lambda \in \tilde{\Omega}^+} S^{\lambda}$ for any $\tilde{\Omega}^+ \subseteq \Omega^+$ which is finite.

But PDLC does not hold!

Main proof outline

Lemma

Let $n \ge 3$ and let $g_1, g_2, g_3 : \mathbb{R}^n \to \mathbb{R}$ be homogeneous quadratic functions:

 $g_i(x) = x^\top Q_i x.$

Assuming there is a linear combination of Q_1 , Q_2 , Q_3 that is positive definite, the following equivalence holds

 $\{x \in \mathbb{R}^n : g_i(x) < 0, \ i \in [3]\} = \emptyset \Longleftrightarrow \exists \lambda \in \mathbb{R}^3_+ \setminus \{0\}, \ \sum_{i=1}^3 \lambda_i Q_i \succeq 0.$

 $\operatorname{conv}(S) \subseteq \bigcap_{\lambda \in \Omega} S^{\lambda}$ is straight-forward

$\operatorname{\mathsf{conv}}(S) = igcap_{\lambda\in\Omega}S^\lambda$ proof idea

 $\operatorname{conv}(S) \subseteq \bigcap_{\lambda \in \Omega} S^{\lambda}$ is straight-forward $\operatorname{conv}(S) \supseteq \bigcap_{\lambda \in \Omega} S^{\lambda}$:

 $\operatorname{conv}(S) \subseteq \bigcap_{\lambda \in \Omega} S^{\lambda}$ is straight-forward

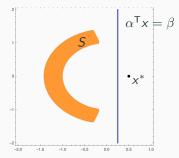
 $\operatorname{conv}(S) \supseteq \bigcap_{\lambda \in \Omega} S^{\lambda}$:

Pick x* ∈ ℝⁿ such that x* ∉ conv(S). We want to show that is lies outside some aggregation

 $\operatorname{conv}(S) \subseteq \bigcap_{\lambda \in \Omega} S^{\lambda}$ is straight-forward

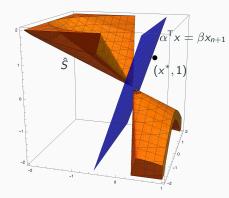
 $\operatorname{conv}(S) \supseteq \bigcap_{\lambda \in \Omega} S^{\lambda}$:

- Pick x* ∈ ℝⁿ such that x* ∉ conv(S). We want to show that is lies outside some aggregation
- Separation theorem ⇒ there exists α^Tx < β valid for conv(S) that separates x*.



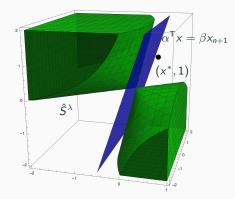
 (Homogenization) The above can be shown to imply: {x|α^Tx = βx_{n+1}} (call it H) does not intersect homogenization of S:

$$H \cap \left\{ \begin{pmatrix} x, x_{n+1} \end{pmatrix} | \begin{bmatrix} x & x_{n+1} \end{bmatrix} \begin{bmatrix} A_i & b_i \\ b_i^\top & c_i \end{bmatrix} \begin{bmatrix} x \\ x_{n+1} \end{bmatrix} < 0, \ i \in [3] \right\} = \emptyset.$$

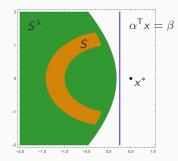


• Applying S-lemma we obtain $\lambda \in \Omega$ such that

$$H \cap \left\{ (x, x_{n+1}) \mid [x \quad x_{n+1}] \left(\sum_{i=1}^{3} \lambda_i \begin{bmatrix} A_i & b_i \\ b_i^\top & c_i \end{bmatrix} \right) \begin{bmatrix} x \\ x_{n+1} \end{bmatrix} < 0, \right\} = \emptyset.$$



• Dehomogenizing, we obtain $S^{\lambda} \supseteq \operatorname{conv}(S)$ that excludes x^*



- We have shown that, under technical assumptions, aggregations are enough to describe the convex hull of 3 quadratics
- We have also shown that the result is not true if some conditions are relaxed.

- We have shown that, under technical assumptions, aggregations are enough to describe the convex hull of 3 quadratics
- We have also shown that the result is not true if some conditions are relaxed.
- We do not know if Ω can be refined to a finite set.
- We do not completely understand the PDLC condition. What is its geometrical meaning? Can we replace it by another condition and obtain a similar result?

- We have shown that, under technical assumptions, aggregations are enough to describe the convex hull of 3 quadratics
- We have also shown that the result is not true if some conditions are relaxed.
- We do not know if Ω can be refined to a finite set.
- We do not completely understand the PDLC condition. What is its geometrical meaning? Can we replace it by another condition and obtain a similar result?

Thank you!